首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extracellular acid phytase was purified to homogeneity from the culture supernatant of the Saccharomyces cerevisiae CY strain by ultrafiltration, DEAE-Sepharose column chromatography, and Sephacryl S-300 gel filtration. The molecular weight of the purified enzyme was estimated to be 630 kDa by gel filtration. Removing the sugar chain by endoglycosidase H digestion revealed that the molecular mass of the protein decreased to 446 kDa by gel filtration and gave a band of 55 kDa by SDS-PAGE. The purified enzyme was most active at pH 3.6 and 40 °C and was fairly stable from pH 2.5 to 5.0. The phytase displayed broad substrate specificity and had a Km value of 0.66 mM (sodium phytate, pH 3.6, 40 °C). The phytase activity was completely inhibited by Fe3+ and Hg2+, and strongly inhibited (maximum of 91%) by Ba2+, Co2+, Cu+, Cu2+, Fe2+, Mg2+, and Sn2+ at 5 mM concentrations.  相似文献   

2.
Galactokinase (EC 2.7.1.6; ATP:D-galactose-1-phosphotransferase) was purified to homogeneity with a 50% yield from cells of Saccharomyces cerevisiae which were fully induced for the production of the galactose metabolizing enzymes. The purification was accomplished by:(a) ammonium sulfate fractionation, (b) streptomycin sulfate precipitation. (c) DEAE-cellulose chromatography, (d) hydroxylapatite chromatography, and finally (e) Bio-Gel A-0.5 m gel filtration. The resulting preparation of galactokinase was judged to be at least 95% pure by the following criteria: (a) sodium dodecyl sulfate-polyacrylamide gel electrophoresis, (b) ultracentrifuge analysis, (c) nondissociating polyacrylamide gel electrophoresis, and (d) Bio-Gel A-0.5 m gel filtration. The purified enzyme preparation was used to determine the Km values for the two substrates, galactose and ATP, which were found to be 0.60 and 0.15 mM, respectively. Vmax was also determined and found to be 3.35 mmol/h/mg. This corresponds to a turnover rate of 3350 molecules of galactose phosphorylated/min/enzyme molecule. The effect of pH on the galactokinase-catalyzed phosphorylation of galactose was determined; the results showed the pH optimum of the reaction to be in the range of pH 8.0 to 9.0. The enzyme is highly specific for galactose since galactokinase did not appear to phosphorylate any of the other sugars tested at a rate greater than 0.5% of the rate of galactose phosphorylation. Amino acid analysis was performed on the enzyme preparation and the results were used to calculate the partial specific volume (v) of 0.736. The NH2-terminal sequence was determined for the first 3 residues. The molecular weight and subunit composition were determined by ultracentrifugation and polyacrylamide gel electrophoresis under dissociating and nondissociating conditions. The data obtained indicated that galactokinase is a monomeric protein of molecular weight 58,000.  相似文献   

3.
Summary Low concentrations of inorganic phosphate stimulate by up to 2-fold aerobic growth ofS. cerevisiae N.C.Y.C. 625 in starch medium. No such stimulation of growth is seen in a glucose medium. Enhanced growth on starch appears to result from increased secretion of glucoamylase (1,4--D-glucan glucohydrolase, EC 3.2.1.3) into the culture medium.  相似文献   

4.
Fructose 1,6-bisphosphatase (EC 3.1.3.11) from Saccharomyces cerevisiae has been purified to homogeneity. A molecular weight of 115,000 has been obtained by gel filtration. The enzyme appears to be a dimer with identical subunits. The apparent Km for fructose bisphosphatase varies with the Mg2+ concentration of the enzyme, being 1 × 10?6m at 10 mm Mg2+ and 1 × 10?5m at 2 mm Mg2+. Other phosphorylated compounds are not significantly hydrolyzed by the enzyme. An optimum pH of 8.0 is exhibited by the enzyme. This optimum is not changed by addition of EDTA. AMP inhibits the enzyme with a Ki of 8.0 × 10?5m at 25 °C. The inhibition is temperature dependent, the value of Ki increasing with raising temperature. 2-Deoxy-AMP is also inhibitory with a Ki value at 25 °C of 1.6 × 10?4m. An ordered uni-bi mechanism has been deduced for the reaction with phosphate leaving the enzyme as the first product and the fructose 6-phosphate as the second one.  相似文献   

5.
A procedure for the purification of aldehyde dehydrogenase from bakers' yeast (Saccharomyces cerevisiae) is reported. Treatment with acid, heat and organic solvents was avoided and chromatographic and filtration techniques in the presence of phenylmethylsulfonylfluoride were mainly used. An affinity chromatography step using the reactive dye Cibacron blue F3G-A, which was covalently bound to Sepharose 4B, was found to be essential. The enzyme was bound to and then released from the dye. The purified enzyme was shown to be homogeneous by gel filtration, disc electrophoresis and SDS electrophoresis. The molecular weight of the purified enzyme determined by gel filtration was 170,000, which agreed with that of the enzyme in the crude extract. The enzyme was composed of subunits of a molecular weight of 57,000. The specific activity of the enzyme was 20 units per mg of protein under the standard assay conditions. The substrate specificity, the relative maximal velocity, the michaelis constants, the pH optimum, the stability and the activation energy of the enzyme are reported.  相似文献   

6.
An endonuclease, which is found only in the mitochondrion of the yeast Saccharomyces cerevisiae, has been purified. The protein has a sedimentation coefficient of 6.3 S, equivalent to a molecular weight of 105,000. The enzyme is active at pH 7.6, when it degrades single-stranded DNA about 10-times faster than double-stranded DNA, but at pH 5.4 only double-stranded DNA is degraded. In both cases the enzyme acts endonucleolytically, breaking a single phosphodiester bond at a random location within the DNA substrate. Mn2+ or Mg2+ are required for activity; Ca2+ and Zn2+ are ineffective cofactors. Enzyme activity at pH 7.6 is severely inhibited by low concentrations of NaCl or KCl, while activity at pH 5.4 is unaffected by salt. Ethidium bromide inhibits both the DNase activity at pH 5.4 and the activity with single-stranded DNA at pH 7.6, but has no effect on the DNase activity with double-stranded DNA at pH 7.6.  相似文献   

7.
Calmodulin from the yeast Saccharomyces cerevisiae was purified to complete homogeneity by hydrophobic interaction chromatography and HPLC gel filtration. The biochemical properties of the purified protein as calmodulin were examined under various criteria and its similarity and dissimilarity to other calmodulins have been described. Like other calmodulins, yeast calmodulin activated bovine phosphodiesterase and pea NAD kinase in a Ca2+-dependent manner, but its concentration for half-maximal activation was 8-10 times that of bovine calmodulin. The amino acid composition of yeast calmodulin was different from those of calmodulins from other lower eukaryotes in that it contained no tyrosine, but more leucine and had a high ratio of serine to threonine. Yeast calmodulin did not contain tryptophanyl or tyrosyl residues, so its ultraviolet spectrum reflected the absorbance of phenylalanyl residues, and had a molar absorption coefficient at 259 nm of 1900 M-1 cm-1. Ca2+ ions changed the secondary structure of yeast calmodulin, causing a 3% decrease in the alpha-helical content, unlike its effect on other calmodulins. Antibody against yeast calmodulin did not cross-react with bovine calmodulin, and antibody against bovine calmodulin did not cross-react with yeast calmodulin, presumably due to differences in the amino acid sequences of the antigenic sites. It is concluded that the molecular structure of yeast calmodulin differs from those of calmodulins from other sources, but that its Ca2+-dependent regulatory functions are highly conserved and essentially similar to those of calmodulins of higher eukaryotes.  相似文献   

8.
We have purified glutamine synthetase over 130-fold from Saccharomyces cerevisiae. The enzyme exhibits a Km for glutamate of 6.3 mM and a Km for ATP of 1.3 mM in the biosynthetic reaction, with a pH optimum from 6.1 to 7.0. Ten to twelve 43,000 molecular weight subunits comprise the active enzyme of 470,000 molecular weight. Rabbit antibodies prepared against the purified enzyme were used to show that induction of enzyme activity correlates with de novo synthesis of the enzyme subunit.  相似文献   

9.
10.
11.
An extracellular endo-polygalacturonase (PGase) produced by a mutant of Saccharomyces cerevisiae was isolated. The enzyme was regarded, immunologically, as a PGase belonging to the Kluyveromyces marxianus group. The enzyme had properties similar to the PGase from K. marxianus in heat and pH stability, and N-terminal amino acid sequence. However, the enzyme showed different properties in optimum pH and temperature, molecular weight, and reactivity in antiserum against PGase from K. marxianus, indicating that the enzyme has a different molecular structure from the PGase from K. marxianus.  相似文献   

12.
Chromatography of wild-type yeast extracts on DEAE-cellulose columns resolves two populations of glycogen synthase I (glucose-6-P-independent) and D (glucose-6-P-dependent) (Huang, K. P., Cabib, E. (1974) J. Biol. Chem. 249, 3851-3857). Extracts from a glycogen-deficient mutant strain, 22R1 (glc7), yielded only the D form of glycogen synthase. Glycogen synthase D purified from either wild-type yeast or from this glycogen-deficient mutant displayed two polypeptides with molecular masses of 76 and 83 kDa on sodium dodecyl sulfate-gel electrophoresis in a protein ratio of about 4:1. Phosphate analysis showed that glycogen synthase D from either strain of yeast contained approximately 3 phosphates/subunit. The 76- and 83-kDa bands of the mutant strain copurified through a variety of procedures including nondenaturing gel electrophoresis. These two polypeptides showed immunological cross-reactivity and similar peptide maps indicating that they are structurally related. The relative amounts of these two forms remained constant during purification and storage of the enzyme and after treatment with cAMP-dependent protein kinase or with protein phosphatases. The two polypeptides were phosphorylated to similar extent in vitro by the catalytic subunit of mammalian cyclic AMP-dependent protein kinase. Phosphorylation of the enzyme in the presence of labeled ATP followed by tryptic digestion and reversed phase high performance liquid chromatography yielded two labeled peptides from each of the 76- and 83-kDa subunits. Treatment of wild-type yeast with Li+ increased the glycogen synthase activity, measured in the absence of glucose-6-P, by approximately 2-fold, whereas similar treatment of the glc7 mutant had no effect. The results of this study indicate that the GLC7 gene is involved in a pathway that regulates the phosphorylation state of glycogen synthase.  相似文献   

13.
Prenyltransferase (EC 2.5.1.1) has been purified to homogeneity from the supernatant fraction of yeast by ammonium sulfate fractionation, diethylaminoethyl-cellulose and hydroxylapatite chromatography, and column isoelectric focusing techniques. The active enzyme from isoelectric focusing columns emerged as a single symmetrical peak with specific activities 15- to 35-fold higher than previously reported preparations. The enzyme was found to be homogeneous by continuous polyacrylamide gel electrophoresis at pH 8.4 and discontinuous polyacrylamide gel electrophoresis at pH 6.9 as well as sodium dodecyl sulfate polyacrylamide electrophoresis at pH 7.0. By means of gel chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis, the protein was shown to be a dimer with a molecular weight of 84,000 plus or minus 10%. The isoelectric point of the enzyme was determined to be 5.3. The enzyme synthesizes farnesyl and geranylgeranyl pyrophosphates from dimethylallyl, geranyl, and farnesyl pyrophosphates. Michaelis constants for the enzyme were 4, 8, and 14 mu M for isopentenyl, dimethylallyl, and geranyl pyrophosphates, respectively.  相似文献   

14.
The arginine-specific carbamoyl-phosphate synthase of yeast was stabilized sufficiently to allow partial purification of the enzyme (30- to 40-fold). The synthase (mol. wt 115000) comprised two unequal subunits: a heavy subunit (mol. wt 80000) capable of catalysing synthesis of carbamoyl phosphate with ammonia as a nitrogen donor and a light subunit conferring upon the holoenzyme the ability to utilize glutamine. The enzyme had unusually high affinity for ATP (Km = 0.2 mM) and atypical negative cooperativity for glutamine binding ([S]0.5 = 0.25 mM). Glutamine activity was not modulated by possible effectors such as arginine, ornithine or N-acetylglutamate. Thus, although the yeast arginine enzyme physically and functionally resembles the single enteric synthase, the systems differ substantially both in kinetic properties and in regulation of activity.  相似文献   

15.
A stable strain of Saccharomyces cerevisiae secreting glucoamylase (EC 3.2.1.3) with high debranching activity was constructed using recombinant DNA technology. An expression cassette without bacterial sequences, containing Hormoconis resinae glucoamylase P cDNA and the dominant selection marker MEL1 was integrated into the yeast chromosome using ARS1 homology. The glucoamylase expression level of the integrant yeast strain was increased by chemical mutagenesis. The yeast strains secreting glucoamylase were able to grow on soluble starch (5%, w/v) and ferment it to ethanol.Correspondence to: A. Vainio  相似文献   

16.
The amino acid sequence of a single polypeptide chain, B-4, from fowl feather barbs has been determined. The B-4 chain was found to consist of 96 amino acid residues and to have a molecular weight of 10206 in the S-carboxymethylated form. The N terminus of this protein was an N-acetylserine residue. The B-4 protein contained seven S-carboxymethylcysteine residues, six of which are located in the N-terminal region (residues 1-26), and other one in C terminus. The central region of the peptide chain was rich in hydrophobic residues. There were homologous amino acids at 66 positions in the sequences of the feather keratins of fowl, emu and silver gull. The variation (substitution, deletion and insertion) in sequence was found to be localized in both terminal sections of the polypeptide chain. The B-4 protein structure was predicted to contain beta-sheet (about 30%), turn and random-coil-like structure, and no alpha-helix. beta-Sheet structure is mostly located in the central region (residues 22-70). On the other hand, both terminal regions are almost devoid of secondary structure.  相似文献   

17.
A cytosolic aldo-keto reductase was purified from Saccharomyces cerevisiae ATCC 26602 to homogeneity by affinity chromatography, chromatofocusing, and hydroxylapatite chromatography. The relative molecular weights of the aldo-keto reductase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion chromatography were 36,800 and 35,000, respectively, indicating that the enzyme is monomeric. Amino acid composition and N-terminal sequence analysis revealed that the enzyme is closely related to the aldose reductases of xylose-fermenting yeasts and mammalian tissues. The enzyme was apparently immunologically unrelated to the aldose reductases of other xylose-fermenting yeasts. The aldo-keto reductase is NADPH specific and catalyzes the reduction of a variety of aldehydes. The best substrate for the enzyme is the aromatic aldehyde p-nitrobenzaldehyde (Km = 46 microM; kcat/Km = 52,100 s-1 M-1), whereas among the aldoses, DL-glyceraldehyde was the preferred substrate (Km = 1.44 mM; kcat/Km = 1,790 s-1 M-1). The enzyme failed to catalyze the reduction of menadione and p-benzoquinone, substrates for carbonyl reductase. The enzyme was inhibited only slightly by 2 mM sodium valproate and was activated by pyridoxal 5'-phosphate. The optimum pH of the enzyme is 5. These data indicate that the S. cerevisiae aldo-keto reductase is a monomeric NADPH-specific reductase with strong similarities to the aldose reductases.  相似文献   

18.
19.
The starch-degrading yeastCandida tsukubaensis CBS 6389 secreted amylase at high activity when grown in a medium containing soluble starch. The extracellular α-amylase activity was very low. The major amylase component was purified by DEAE-Sephadex A-50 chromatography and Ultrogel AcA 44 gel filtration and characterized as a glucoamylase. The enzyme proved to be a glycoprotein with a molecular weight of 56000. The glucoamylase had a temperature optimum at 55°C and displayed highest activity in a pH range of 2.4–4.8. Acarbose strongly inhibited the purified glucoamylase. Debranching activity was present as demonstrated by the release of glucose from pullulan.  相似文献   

20.
An extracellular endo-polygalacturonase (PGase) produced by a mutant of Saccharomyces cerevisiae was isolated. The enzyme was regarded, immunologically, as a PGase belonging to the Kluyveromyces marxianus group. The enzyme had properties similar to the PGase from K. marxianus in heat and pH stability, and N-terminal amino acid sequence. However, the enzyme showed different properties in optimum pH and temperature, molecular weight, and reactivity in antiserum against PGase from K. marxianus, indicating that the enzyme has a different molecular structure from the PGase from K. marxianus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号