首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bioassay was developed, involving steady-state ATP level determinations, for estimation of phosphate demand and deficiency in natural phytoplankton communities. The studies were performed on phytoplankton from the moderately acidified Lake Njupfatet in central Sweden before and after liming. Phytoplankton samples from in situ enclosure experiments with low-dose enrichments of nitrate and phosphate and removal of large (> 100 µm) zooplankton and from the lake water were collected. The phytoplankton were concentrated by through-flow centrifugation and post-cultured in the laboratory with or without the addition of phosphate. A relative increase in the ATP:chlorophyll a ratio after the phosphate treatment as compared to samples without phosphate enrichment was found to be a highly reproducible indicator of phosphate deficiency in the natural phytoplankton population. In contrast, the absolute ATP:chlorophyll a ratio varied substantially between different sampling occasions. No phosphate deficiency was detected in phytoplankton from the acidic lake or from fertilized in situ enclosures. However, phytoplankton from in situ enclosures without added nutrients showed evidence of phosphate limitation after 21 days incubation. Also, the phytoplankton community developed a significant phosphate deficiency the summer after lake liming. The results from the ATP analyses are compared with chemical data of the lake water, phytoplankton community structure and phosphatase activities in the lake before and after liming. The average total biomass of phytoplankton and the average Tot-P measured during May to September decreased with appr. 30% after liming while Tot-N was essentially unaffected and the phosphatase activities increased by 1000–2000%.  相似文献   

2.
When phytoplankton growth in lakes is limited by the available phosphate, the external phosphate concentration fluctuates around a threshold value at which available energy is insufficient to drive phosphate incorporation into a polyphosphate pool. As a result, occasional increases in the external concentration are experienced by phytoplankton as a series of phosphate pulses. Based on [(32) P] phosphate uptake experiments with lake phytoplankton, we show that a community is able to process information about the experienced pattern of phosphate pulses via a complex regulation of the kinetic and energetic properties of cellular phosphate uptake systems. As a result, physiological adaptation to alterations of ambient phosphate concentration depends on the pattern of phosphate fluctuations to which the community had been exposed during its previous growth. In this process, the entire community exhibits coherent uptake behaviour with respect to a common threshold value. Thereby, different threshold values result from different antecedent pulse patterns, apparently unrestrained by the amount of previously stored phosphate. The coherent behaviour observed contradicts the basic assumptions of the competitive exclusion principle and provides an alternative perspective for explaining the paradoxical coexistence of many phytoplankton species.  相似文献   

3.
Galveston Bay, Texas, is a large shallow estuary with a watershed that includes 60% of the major industrial facilities of Texas. However, the system exhibits low to moderate (2-20 μg l−1) microalgal biomass with sporadic phytoplankton blooms. Both nitrogen (N) and phosphate (P) limitation of phytoplankton growth have been proposed for the estuary. However, shifts between N and P limitation of algae growth may occur due to annual fluctuations in nutrient concentrations. The primary goal of this work was to determine the primary limiting nutrient for phytoplankton in Galveston Bay. Nutrient addition bioassays were used to assess short-term (1-2 days) phytoplankton responses (both biomass and community composition) to potentially limiting nutrients. The experimental bioassays were conducted over an annual cycle using natural water collected from the center to lower part of the estuary. Total phytoplankton biomass increased in the nitrate (10 μM) additions in 11 of the 13 bioassays, but no significant increases were detected in the phosphate (3 μM)-only additions. Bioassay results suggest that the phytoplankton community was usually not phosphate limited. All major groups increased in biomass following nitrate additions but diatoms increased in biomass at a faster rate than other groups, shifting the community composition toward higher relative abundance of diatoms. The results of this study suggest that pulsed N input events preferentially favor increases in diatom biomass in this estuary. The broader implications of this study are that N pulsing events, primarily due to river discharge, play an important role in structuring the phytoplankton community in the Galveston Bay estuary.  相似文献   

4.
5.
Seasonal, local and monthly vertical variations in chlorophyll a concentration and in qualitative and quantitative counts in Aswan High Dam Lake (AHDL) phytoplankton were followed from March 1982 to February 1984. The chlorophyll a values correlated more or less with the total phytoplankton counts. Total algal counts exhibited considerable local variations in the different seasons and tended to decrease in the most southern part of AHDL, especially during the flood period. The temporal course of algal development showed an almost inverse trend to that of dissolved nitrate-nitrogen. The possibility of nitrogen limitation of algal growth was verified. Diatoms and blue-green algae alternated in the dominance of the phytoplankton community. The genera Cyclotella and Anabaenopsis respectively were the most predominant genera among the diatoms and blue-greens and consequently in the phytoplankton community.  相似文献   

6.
SUMMARY.
  • 1 The uptake of phosphate and inorganic nitrogen by sediment and phytoplankton was studied under natural conditions (1977) and during lake fertilization with phosphorus and nitrogen (1978–79) in Lake Gunillajaure, a small, stratified, subarctic lake in northern Sweden. The experiments were performed in situ in plexiglass cylinders, to which additions of nutrients were made, and the uptake followed by consecutive sampling and analysis of the water phase.
  • 2 Additions of HgCl2 to the experimental vessels reduced the phosphate uptake to the sediment to less than 10% and it could therefore be concluded that the sediment uptake was mainly of biological nature.
  • 3 Dark assimilation was 30–40% of that in light. Since light clearly stimulated the sediment uptake the epipelic algae were probably responsible.
  • 4 The phosphate uptake to the sediment could be described by Michaelis-Menten kinetics and the calculated constants (Vmax, ks) were very alike in 1977 and 1978 but appeared to have increased in 1979.
  • 5 The sediment uptake of ammonium and nitrate was very slow indrcating that the epipelic algae were not nitrogen starved.
  • 6 Even though the epipelic algae had a potential for efficient uptake of phosphorus, the phytoplankton took up 92–96% of the phosphate added to the lake on each fertilization occasion due to the relatively large water volume in the epilimnion in relation to the bottom area available for the epipelic algae.
  相似文献   

7.
We compared the results of phosphorus-enrichment bioassay experiments with alkaline phosphatase activity (APA) assays as indicators of phosphorus (P) limitation of in situ phytoplankton growth. In 4-d experiments, phytoplankton APA decreased or remained unchanged in P-enriched samples, but increased in unenriched samples, indicating a rapid alteration of the P status of the unenriched algae during the experimental incubations. In direct comparisons of enrichment bioassays and APA assays of reservoir phytoplankton samples, the results of the two methods corresponded in general, although contradictory results were not uncommon. Our data support the conclusion that enrichment experiments can indicate the potential for nutrient limitation of algal growth in the absence of other limiting factors, but do not necessarily demonstrate the occurrence of in situ nutrient limitation of phytoplankton production.  相似文献   

8.
Previous studies conducted on the continental shelf in the Southeast Bay of Biscay influenced by Gironde waters (one of the two largest rivers on the French Atlantic coast) showed the occurrence of late winter phytoplankton blooms and phosphorus limitation of algal growth thereafter. In this context, the importance of dissolved organic phosphorus (DOP) for both algae and bacteria was investigated in 1998 and 1999 in terms of stocks and fluxes. Within the mixed layer, although phosphate decreased until exhaustion from winter to spring, DOP remained high and phosphate monoesters made up between 11 to 65% of this pool. Total alkaline phosphatase activity (APA, Vmax) rose gradually from winter (2-8 nM h−1) to late spring (100-400 nM h−1), which was mainly due to an increase in specific phytoplankton (from 0.02 to 3.0 nmol μgC−1 h−1) and bacterial APA (from 0.04 to 4.0 nmol μgC−1 h−1), a strategy to compensate for the lack of phosphate. At each season, both communities had equal competitive abilities to exploit DOP but, taking into account biomass, the phytoplankton community activity always dominated (57-63% of total APA) that of bacterial community (9-11%). The dissolved APA represented a significant contribution. In situ regulation of phytoplanktonic APA by phosphate (induction or inversely repression of enzyme synthesis) was confirmed by simultaneously conducted phosphate-enrichment bioassays. Such changes recorded at a time scale of a few days could partly explain the seasonal response of phytoplankton communities to phosphate depletion.  相似文献   

9.
Regulation of phosphate uptake kinetics inOscillatoria agardhii   总被引:1,自引:0,他引:1  
In order to study phosphate uptake kinetics the cyanobacteriumOscillatoria agardhii was grown in continuous culture under a phosphorus limitation. The affinity of the uptake system reflected in the initial slope of the uptake rate versus external substrate concentration curve (dV/ds) was found to be unaffected by the growth wate.The maximum phosphate uptake rate (V m ) decreased as the growth rate was increased. Attempts were made to relate the decrease ofV m to the increase in phosphorus content of the cells that occurred a higher growth rates. Accumulation of phosphate during pulse experiments indeed resulted in a decrease ofV m . However feedback regulation ofV m by accumulated phosphorus was found to occur only to a small extent in steady state growing cells. The main part of the regulation of the activity of the phosphate uptake system seemingly is determined by a long term process that is, at least longer than 2 h. The presence of short term feedback inhibition by accumulated phosphorus on the activity of the uptake system provides an explanation of the phenomenon thatOscillatoria agardhii is not able to grow at near max growth rates under a phosphorus limitation.  相似文献   

10.
We determined phosphate uptake by calcareous sediments at two locations within a shallow lagoon in Bermuda that varied in trophic status, with one site being mesotrophic and the other being more eutrophic. Phosphate adsorption over a six hour period was significantly faster in sediments from the mesotrophic site. Uptake at both sites was significantly less than that reported for a similar experiment on calcareous sediments in an oligotrophic lagoon in the Bahamas. The difference in phosphorus adsorption between our sites did not appear to be related to sediment characteristics often cited as important, such as differences in surface area (as inferred from grain size distributions), total organic matter content, or iron content. However, the sediment total phosphorus contents were inversely related to phosphorus uptake at our sites in Bermuda, and at the previously studied Bahamas site.We hypothesize that phosphate uptake in these calcareous sediments is a multi-step process, as previously described for fluvial sediments or pure calcium carbonate solids, with rapid initial surface chemisorption followed by a slower incorporation into the carbonate solid-phase matrix. Accordingly, sediments already richer in solid phase phosphorus take up additional phosphate more slowly since the slower incorporation of surface-adsorbed phosphate into the carbonate matrix limits the rate of renewal of surface-reactive adsorption sites.Although carbonate sediments are a sink for phosphate, and thereby reduce the availability of phosphorus for benthic macrophytes and phytoplankton in the shallow overlying water, phosphate uptake by these sediments appears to decrease along a gradient from oligotrophic to eutrophic sites. If our result is general, it implies a positive feedback in phosphorus availability, with a proportionately greater percentage of phosphorus loading being biologically available longer as phosphorus loading increases. This pattern is supported by the significantly higher tissue phosphorus content of the seagrass,Thalassia testudinum, collected from the eutrophic inner bay site. Over time, this effect may tend to cause a shift from phosphorus to nitrogen limitation in some calcareous marine environments.  相似文献   

11.
Levine  M.A.  Whalen  S.C. 《Hydrobiologia》2001,455(1-3):189-201
We used 54 enrichment bioassays to assess nutrient limitation (N, P) of 14C uptake by natural phytoplankton assemblages in 39 lakes and ponds in the Arctic Foothills region of Alaska. Our purpose was to categorize phytoplankton nutrient status in this under-represented region of North America and to improve our ability to predict the response of primary production to anticipated anthropogenically mediated increases in nutrient loading. Experiments were performed across several watersheds and included assays on terminal lakes and lakes occupying various positions in chains (lakes in series within a watershed and connected by streams). In total, 89% (48 of 54) of the bioassays showed significant stimulation of 14C primary production by some form of nutrient addition relative to unamended controls. A significant response was observed following enrichment with N and P, N alone and P alone in 83, 35 and 22% of the bioassays, respectively. In experiments where N and P proved stimulatory, the influence of N alone was significantly greater than the influence of P alone. Overall, the data point to a greater importance for N than P in regulating phytoplankton production in this region. The degree of response to N and P enrichment declined as the summer progressed and showed no relationship to irradiance or water temperature, suggesting secondary limitation by some micronutrient such as iron as the summer advanced. Phytoplankton nutrient status was often consistent across lakes within a watershed, suggesting that watershed characteristics influence nutrient availability. Lakes in this region will clearly show increased phytoplankton production in response to anthropogenic activities and anticipated changes in climate that will increase nutrient loading.  相似文献   

12.
围隔生态系内浮游植物对富磷的响应   总被引:31,自引:4,他引:31  
在长江口外应用围隔生态系实验方法,研究了富磷与浮游植物生物量的相关性以及浮游植物对磷吸收的种间竞争。结果表明,可溶性磷(主要是PO  相似文献   

13.
SUMMARY. 1. The successional patterns of the dominant phytoplankton species in Lake Maarsseveen (The Netherlands) were very similar in 1980 and 1981. In December/January the diatoms Stephanodiscus hantzschii Grun., Stephanodiscus astraea (Ehr.) Grun. and Asterionella formosa Hass. dominated the algal community (A. formosa had several further population increases during the year). Fragilaria crotonensis Kitt. came to dominance in March/April, followed by the chrysophyte Dinobryon divergens Imhof and the diatom Cyclotella comta (Ehr.) Kütz in May/June. A second appearance of D. divergens was observed in July/August, followed in 1980 by F. crotonensis and a third small increase of D. divergens. In both years S. astraea and S. hantzschii started to grow again in November/December. Cryptophyceae and Chlorophyta were present throughout the year, but did not show a distinct succession. 2. Natural community bioassays, performed under natural light and temperature conditions in a newly developed outdoor bioassay apparatus, showed that phosphate was the major nutrient limiting the growth rate of the phytoplankton. From January till June, during the decline in phosphorus concentration, the diatoms became successively phosphate limited in the sequence: S. hantzschii, S. astraea, F. crotonensis, A. formosa and C. comta. Light limitation was probably the major cause of the relatively late start of F. crotonensis in early spring. 3. D. divergens, increasing after the diatoms from June till September, was stimulated by the addition of a chelator (EDTA). The chelator might stimulate the formation of trace metal species favouring their uptake (e.g. iron). 4. The patterns of succession of the diatoms observed from January till June and from July till December were to a large extent symmetrical. The controlling factors followed opposite trends: declining phosphorus concentrations with increasing irradiance from winter till spring and increasing phosphorus concentrations with decreasing irradiance from summer till late winter.  相似文献   

14.
1. Grazer and nutrient controls of phytoplankton biomass were tested on two reservoirs of different productivity to assess the potential for zooplankton grazing to affect chlorophyll/phosphorus regression models under Australian conditions. Experiments with zooplankton and nutrients manipulated in enclosures, laboratory feeding trials, and the analysis of in-lake plankton time series were performed. 2. Enclosures with water from the more productive Lake Hume (chlorophyll a = 3–17.5 μg l–1), revealed significant zooplankton effects on chlorophyll a in 3/6, phosphorus limitation in 4/6 and nitrogen limitation in 1/6 of experiments conducted throughout the year. Enclosures with water from the less productive Lake Dartmouth (chlorophyll a = 0.8–3.5 μg l–1), revealed significant zooplankton effects in 5/6, phosphorus limitation in 5/6 and nitrogen limitation in 2/6 of experiments. 3. While Lake Hume enclosure manipulations of the biomass of cladocerans (Daphnia and Diaphanosoma) and large copepods (Boeckella) had negative effects, small copepods (Mesocyclops and Calamoecia) could have positive effects on chlorophyll a. 4. In Lake Hume, total phytoplankton biovolume was negatively correlated with cladoceran biomass, positively with copepod biomass and was uncorrelated with total crustacean biomass. In Lake Dartmouth, total phytoplankton biovolume was negatively correlated with cladoceran biomass, copepod biomass and total crustacean biomass. 5. In both reservoirs, temporal variation in the biomass of Daphnia carinata alone could explain more than 50% of the observed variance in total phytoplankton biovolume. 6. During a period of low phytoplankton biovolume in Lake Hume in spring–summer 1993–94, a conservative estimate of cladoceran community grazing reached a maximum of 0.80 day–1, suggesting that Cladocera made an important contribution to the development of the observed clear-water phase. 7. Enclosure experiments predicted significant grazing when the Cladocera/Phytoplankton biomass ratio was greater than 0.1; this threshold was consistently exceeded during clear water phase in Lake Hume. 8. Crustacean length had a significant effect on individual grazing rates in bottle experiments, with large Daphnia having highest rates. In both reservoirs, mean crustacean length was negatively correlated with phytoplankton biovolume. The observed upper limit of its variation was nearly twice as high compared to other world lakes.  相似文献   

15.
More and more studies emphasize the status of phosphorus (P)as the principal limiting nutrient of phytoplankton growth,especially in coastal waters under the influence of freshwaterdischarges. The purpose of the present paper is to investigatethe role of P on planktonic production in the waters influencedby the Gironde discharges; the Gironde being one of the twolargest rivers on the French Atlantic coast. The survey is basedon several cruises made in 1998 and 1999. Two different patternswere observed for waters with salinity below and above 34.5.For waters with salinity < 34.5, P was found to be the firstlimiting nutrient of winter and spring phytoplankton blooms,based on undetectable phosphate (< 20 nM), high NO3 : PO4ratios, typically > 100 : 1, short phosphate turnover time(1 to 2 h), high alkaline phosphatase activities (mean of 176nM h-1 in late May 1999) and ultimately great increases of chlorophylla (Chl a) and primary production in phosphate-enriched samplesrelative to controls. This limitation could be partly explainedby the Gironde nutrient supplies, which were phosphate deficientcompared with the mineral nitrogen(Nmin : PO4 was > 40 withina salinity range 16–33). In summer, corresponding to theperiod of low influence of Gironde supplies (low runoff anda spreading effect of the plume), phytoplankton growth wouldbe controlled by both P and nitrogen (N), according to low nitrateand the major effect of combined P+N (NH4) enrichment on Chla and primary production compared with the addition of N orP singly. In early October, after the first autumn gales, themixed layer was enriched with a sufficient supply of nutrientsto support exponential phytoplankton growth for 4 days in enclosures.The pattern was different for waters at the limit of the Girondeplume and Atlantic oceanic waters (within salinity range 34.5–35.4).P would not be the single limiting nutrient of winter bloomsand spring phytoplankton growth since low phosphate, and alsolow nitrate and silicate, availability were recorded and phosphateaddition alone had no effect on phytoplankton biomass and productionin bioassays. The early P limitation of winter blooms had consequencesfor the phytoplankton community structure in the Gironde plumewaters (salinity < 34.5). Whereas major cells of these bloomswere greater than 20 µm in size, phytoplankton growthin spring and autumn was dominated by 3–20 µm (e.g.53% of Chl a in late April 1999) and < 3 µm cells (e.g.29% of Chl a). The decreasing size of phytoplankton cells isemphasized by the severe competition between bacteria and algaefor phosphate, since bacteria dominated phosphate uptake inspring (e.g. 87% in late April, 77% in late May). Bacteria tendedto have greater affinity for phosphate and seemed also to beP limited at certain times in spring, according to results fromphosphate enrichment bioassays in late May 1999. The alternativemethod for phytoplankton to obtain P would be the use of thedissolved organic phosphorus pool by alkaline phosphatase activity.According to the movement of 33P after initial labelling ofmicrobial populations and a subsequent cold chase, the majortransfer of P occurred from the bacterial to the dissolved fraction.We hypothesize that algae obtain part of its dissolved organicphosphorus from bacteria-originated organic phosphorus compounds.  相似文献   

16.
Nutrient limitation in Crater Lake,Oregon   总被引:2,自引:2,他引:0  
Experiments were carried out to determine what nutrient (or nutrients) was primarily responsible for limiting phytoplankton productivity in ultraoligotrophic Crater Lake. The experiments included in situ and laboratory nutrient addition bioassays utilizing the natural phytoplankton community, Selenastrum capricornutum bottle assays, photosynthetic responses, photosynthetic carbon metabolism, and response of dark uptake of 14CO2 with the addition of NH 4 + . The results suggested that a trace metal(s) or its availability was the primary factor limiting the epilimnetic phytoplankton productivity. Nitrogen was extremely low, and quickly became limiting with the addition of trace metals and a chelator. Iron is the most likely candidate as the limiting nutrient. Trace metals and nitrogen are also both important in limiting phytoplankton at 100 m, a depth where biologically mediated turnover of nutrients seems to be more important.  相似文献   

17.
Several types of bioassays were used in 1986 and 1987 to investigate the effect of contaminated sediments on natural populations of bacteria and phytoplankton from the Trenton Channel, Detroit River. The approach included the measurement of uptake of 3H-glucose or 3H-adenine by bacteria and 14C-bicarbonate by phytoplankton in the presence of different amounts of Trenton Channel and Lake Michigan (control) sediments. Trenton Channel sediments are contaminated by high levels of toxic organic compounds and metals, especially zinc, lead, and copper. Because levels of biomass of bacteria and phytoplankton varied widely among the different bioassays, it was necessary to adjust uptake rates for biomass. Biomass adjustments were made using acridine orange counts for bacteria and chlorophyll measurements for phytoplankton. The results show a statistically significant suppression of uptake of substrates for both bacteria and phytoplankton with increasing amounts of sediment. Uptake was suppressed as much as 90 percent for bacteria and 93 percent for phytoplankton at 1200 mg l-1 of Trenton Channel sediments compared to bioassays without sediment. Uncontaminated Lake Michigan sediment suppressed uptake much less than Detroit River sediment; the difference in suppression of uptake between the two types of sediment was statistically significant for both bacteria and phytoplankton.Contribution No. 518 of the Center for Great Lakes and Aquatic Sciences of the University of Michigan.  相似文献   

18.
Biotic factors in the rhizosphere and their effect on the growth ofPlantago major L. ssp.pleiosperma Pilger (Great plantain) were studied. In a pot experiment the effect on shoot growth of the addition of 2.5% rhizosphere soil at four levels of phosphate was highly dependent on the availability of phosphate: a promoting effect at low phosphate levels was observed while a reducing effect occurred at higher phosphate levels. As the roots were infected with vesicular-arbuscular mycorrhizal (VAM) fungi in the treatment with rhizosphere soil, two other experiments were set up to separate effects of the indigenous VAM fungi from effects of the total rhizosphere population. The uptake of phosphate and shoot growth was not decreased at higher phosphate availability when VAM inoculum was added alone or in combination with rhizosphere soil. The growth reducing effect of the rhizosphere soil could therefore not be ascribed only to mycorrhizal infection. The results suggest that biotic factors in the rhizosphere soil affect the phosphate uptake ofPlantago major ssp.pleiosperma. This may, under conditions of phosphate limitation, lead to an increase of phosphate stress and, subsequently, a growth reduction. Futhermore, it is concluded that VAM fungi, as part of the rhizosphere population, may compensate this phosphate stress by enhancing the phosphate uptake.Grassland Species Research Group Publication No. 148.  相似文献   

19.
As a result of a low pH, the inorganic carbon of acidic lakes is present as CO2 at air-equilibrium concentration and is substantially lower than the inorganic carbon concentration in higher-pH waters with bicarbonate. This situation is quite common in artificially acidified lakes and where inorganic carbon is considered the limiting factor in phytoplankton growth. Apart from low inorganic carbon content, Lake Caviahue in Argentina has low nitrogen and high phosphorus content. The aim of this work was to assess the importance of inorganic carbon, phosphorus, and nitrogen, relating data on lake nutrients to phytoplankton species requirements. Lake samples taken in the 2004–2006 period did not show any particular trend in the vertical distribution of the water column of ammonium, inorganic carbon, and phosphorus with reference to either seasonality or depth. A decrease of some 15% in the lake’s phosphorus concentration was observed over the same period. Although the total phytoplankton biomass in Lake Caviahue was similar throughout the period, a seasonal variation was observed. Lab bioassays were carried out with solutions of bicarbonates, ammonium, nitrates, and phosphate. We worked with three species separately, namely, two chlorophytes, Keratococcus rhaphidioides and Watanabea sp.; and one euglenophyte, Euglena mutabilis. Answers to specific nutrient requirements differed for each algal species: both chlorophytes prefer ammonium or nitrates added on their own, whereas the euglenophyte registered a higher growth rate with the joint addition of ammonium and phosphorus. Even when the limiting nutrient(s) for phytoplankton yield and rate varied between species, we observed a tendency for nitrogen limitation in Lake Caviahue.  相似文献   

20.
The marine diatom Thalassiosira weissflogii (Grunow) G. A. Fryxell & Hasle was grown in a chemostat over a series of phosphate‐limited growth rates. Ambient substrate concentrations were determined from bioassays involving picomolar spikes of 33P‐labeled phosphate, and maximum uptake rates were determined from analogous bioassays that included the addition of micromolar concentrations of unlabeled phosphate and tracer concentrations of 33P. The relationship between cell phosphorus quotas and growth rates was well described by the Droop equation. Maximum uptake rates of phosphate spikes were several orders of magnitude higher than steady state uptake rates. Despite the large size of the T. weissflogii cells, diffusion of phosphate through the boundary layer around the cells had little effect on growth kinetics, in part because the cellular N:P ratios exceeded the Redfield ratio at all growth rates. Fitting the Monod equation to the experimental data produced an estimate of the nutrient‐saturated growth rate that was ~50% greater than the maximum growth rate observed in batch culture. A modified hyperbolic equation with a curvature that is a maximum in magnitude at positive growth rates gave a better fit to the data and an estimate of the maximum growth rate that was consistent with observations. The failure of the Monod equation to describe the data may reflect a transition from substrate to co‐substrate limitation and/or the presence of an inducible uptake system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号