首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chaperonins are megadalton ring assemblies that mediate essential ATP-dependent assistance of protein folding to the native state in a variety of cellular compartments, including the mitochondrial matrix, the eukaryotic cytosol, and the bacterial cytoplasm. Structural studies of the bacterial chaperonin, GroEL, both alone and in complex with its co-chaperonin, GroES, have resolved the states of chaperonin that bind and fold non-native polypeptides. Functional studies have resolved the action of ATP binding and hydrolysis in driving the GroEL-GroES machine through its folding-active and binding-active states, respectively. Yet the exact fate of substrate polypeptide during these steps is only poorly understood. For example, while binding involves multivalent interactions between hydrophobic side-chains facing the central cavity of GroEL and exposed hydrophobic surfaces of the non-native protein, the structure of any polypeptide substrate while bound to GroEL remains unknown. It is also unclear whether binding to an open GroEL ring is accompanied by structural changes in the non-native substrate, in particular whether there is an unfolding action. As a polypeptide-bound ring becomes associated with GroES, do the large rigid-body movements of the GroEL apical domains serve as another source of a potential unfolding action? Regarding the encapsulated folding-active state, how does the central cavity itself influence the folding trajectory of a substrate? Finally, how do GroEL and GroES serve, as recently recognized, to assist the folding of substrates too large to be encapsulated inside the machine? Here, such questions are addressed with the findings available to date, and means of further resolving the states of chaperonin-associated polypeptide are discussed.  相似文献   

2.
Folding of bacteriophage T4 major capsid protein, gene product 23 (534 a.a.), is aided by two proteins: E. coli GroEL chaperonin and viral gp31 co-chaperonin. In the present work a set of mutants with extensive deletions inside gene 23 using controlled digestion with Bal31 nuclease has been constructed. Proteins with deletions were co-expressed from plasmid vectors with phage gp31 co-chaperonin. Deletions from 8 to 33 a.a. in the N-terminal region of the gp23 molecule covering the protein proteolytic cleavage site during capsid maturation have no influence on the mutants' ability to produce in E. coli cells proteins which form regular structures—polyheads. Deletions in other regions of the polypeptide chain (187-203 and 367-476 a.a.) disturb the correct folding and subsequent assembly of gp23 into polyheads.  相似文献   

3.
The infectious prion protein, PrP(Sc), a predominantly beta-sheet aggregate, is derived from PrP(C), the largely alpha-helical cellular isoform of PrP. Conformational conversion of PrP(C) into PrP(Sc) has been suggested to involve a chaperone-like factor. Here we report that the bacterial chaperonin GroEL, a close homolog of eukaryotic Hsp60, can catalyze the aggregation of chemically denatured and of folded, recombinant PrP in a model reaction in vitro. Aggregates form upon ATP-dependent release of PrP from chaperonin and have certain properties of PrP(Sc), including a high beta-sheet content, the ability to bind the dye Congo red, detergent-insolubility and increased protease-resistance. A conserved sequence segment of PrP (residues 90-121), critical for PrP(Sc) generation in vivo, is also required for chaperonin-mediated aggregate formation in vitro. Initial binding of refolded, alpha-helical PrP to chaperonin is mediated by the unstructured N-terminal segment of PrP (residues 23-121) and is followed by a rearrangement of the globular PrP core-domain. These results show that chaperonins of the Hsp60 class can, in principle, mediate PrP aggregation de novo, i.e. independently of a pre-existent PrP(Sc) template.  相似文献   

4.
The mechanism of GroEL (chaperonin)-mediated protein folding is only partially understood. We have analysed structural and functional properties of the interaction between GroEL and the co-chaperonin GroES. The stoichiometry of the GroEL 14mer and the GroES 7mer in the functional holo-chaperonin is 1:1. GroES protects half of the GroEL subunits from proteolytic truncation of the approximately 50 C-terminal residues. Removal of this region results in an inhibition of the GroEL ATPase, mimicking the effect of GroES on full-length GroEL. Image analysis of electron micrographs revealed that GroES binding triggers conspicuous conformational changes both in the GroES adjacent end and at the opposite end of the GroEL cylinder. This apparently prohibits the association of a second GroES oligomer. Addition of denatured polypeptide leads to the appearance of irregularly shaped, stain-excluding masses within the GroEL double-ring, which are larger with bound alcohol oxidase (75 kDa) than with rhodanese (35 kDa). We conclude that the functional complex of GroEL and GroES is characterized by asymmetrical binding of GroES to one end of the GroEL cylinder and suggest that binding of the substrate protein occurs within the central cavity of GroEL.  相似文献   

5.
The actin-related protein Arp1 (or centractin, actin RPV) is the major subunit of dynactin, a key component of the cytoplasmic dynein motor machinery [1] [2] [3]. Of the ubiquitously expressed members of the Arp superfamily, Arp1 is most similar to conventional actin [4] [5] [6] and, on the basis of conserved sequence features, is predicted to bind ATP and possibly polymerize. In vivo, all cytosolic Arp1 sediments at 20S [7] suggesting that it assembles into oligomers, most likely dynactin - a multiprotein complex known to contain eight or nine Arp1 monomers in a 37 nm filament [8]. The uniform length of Arp1 polymers suggests a novel assembly mechanism that may be governed by a 'ruler' activity. In dynactin, the Arp1 filament is bounded by actin-capping protein at one end and a heterotetrameric protein complex containing the p62 subunit (D.M. Eckley, S.R. Gill, J.B.B., J.E. Heuser, T.A.S., unpublished observations) at the other [8]. In the present study, we analyzed the behavior of highly purified, native Arp1. Arp1 was found to polymerize rapidly into short filaments that were similar, but not identical, in length to those in dynactin. With time, these filaments appeared to anneal to form longer assemblies but never attained the length of conventional actin filaments.  相似文献   

6.
gamma-tubulin is a minus end-specific microtubule binding protein   总被引:3,自引:3,他引:3       下载免费PDF全文
The role of microtubules in mediating chromosome segregation during mitosis is well-recognized. In addition, interphase cells depend upon a radial and uniform orientation of microtubules, which are intrinsically asymmetric polymers, for the directional transport of many cytoplasmic components and for the maintenance of the structural integrity of certain organelles. The slow growing minus ends of microtubules are linked to the centrosome ensuring extension of the fast growing plus ends toward the cell periphery. However, the molecular mechanism of this linkage is not clear. One hypothesis is that gamma-tubulin, located at the centrosome, binds to the minus ends of microtubules. To test this model, we synthesized radiolabeled gamma-tubulin in vitro. We demonstrate here biochemically a specific, saturable, and tight (Kd = 10(-10) M) interaction of gamma-tubulin and microtubule ends with a stoichiometry of 12.6 +/- 4.9 molecules of gamma-tubulin per microtubule. In addition, we designed an in vitro assay to visualize gamma-tubulin at the minus ends of axonemal microtubules. These data show that gamma-tubulin represents the first protein to bind microtubule minus ends and might be responsible for mediating the link between microtubules and the centrosome.  相似文献   

7.
The ro-4 mutant of the filamentous fungus Neurospora crassa forms distinctive colonies in which hyphae grow into rope-like aggregates. This unusual morphology coincides with a defect in hyphal nuclear migration. The ro-4 gene was cloned from a cosmid library by complementation of the closely linked pab-2 gene. The deduced 380 amino acid protein is most similar to the vertebrate actin-related protein/centractin. The R04 protein is not essential for cell viability, and new strains created by inducing point mutations at the ro-4 locus have a phenotype which is very similar to that of the original mutant. This study provides genetic evidence that an actin-related protein plays a role in nuclear motility. Since nuclear motility is believed to be a microtubule-dependent process, the ro-4 gene product may function as a component of the dynactin complex which activates force generation by cytoplasmic dynein.  相似文献   

8.
Actin is an ancient cytoskeletal protein that plays many essential roles in cell motility. In eukaryotes, its gene belongs to a highly conserved gene family, while the protein is also a member of an actin superfamily comprising various kinds of actin-related proteins (Arps). A ciliate, Tetrahymena, has a unique conventional actin. Data from the TIGR Tetrahymena genome project and our own research suggest the existence of 12 actin-like sequences: four conventional actins, two of Arp4, one each of Arp1, Arp2, Arp3, Arp5, and Arp6, and a novel actin-related protein, tArp. We cloned the entire cDNA sequences of Tetrahymena Arp2 (tArp2), Tetrahymena Arp3 (tArp3), and tArp for the work described herein. In phylogenetic analyses, tArp was not included in any Arp subfamily. Unlike other known Arps, tArp localizes in cilia, and its expression was upregulated after deciliation. To see the precise localization of tArp, cilia were fractionated and analyzed using specific antibodies. tArp was observed preferentially in the "outer-doublet" fraction, while actin was found in the "crude-dynein" fraction. In immunoelectron microscopy, most of the gold particles were found either on the outer-doublet or central-pair microtubules. These results suggest that tArp is a ciliary component and that it has a unique function in the formation and maintenance of cilia.  相似文献   

9.
Chaperones are centrally involved in the control of protein structure, function, localization and transport. A flurry of scientific activity continues to examine the molecular nature of chaperone-substrate recognition and the role of auxiliary chaperones (cohort proteins) and small molecules that expedite these processes. Chaperones have been implicated in processes as diverse as protein secretion, nuclear transport, thermotolerance, the steroid receptor signal transduction pathway, T-cell receptor and major histocompatibility complex class I and II multimeric assembly and bacterial virulence.  相似文献   

10.
Single-molecule force-quench atomic force microscopy (FQ-AFM) is used to detect folding intermediates of a simple protein by detecting changes of molecular stiffness of the protein during its folding process. Those stiffness changes are obtained from shape and peaks of an autocorrelation of fluctuations in end-to-end length of the folding molecule. The results are supported by predictions of the equipartition theorem and agree with existing Langevin dynamics simulations of a simplified model of a protein folding. In the light of the Langevin simulations the experimental data probe an ensemble of random-coiled collapsed states of the protein, which are present both in the force-quench and thermal-quench folding pathways.  相似文献   

11.
12.
肌动蛋白相关蛋白2/3复合体的结构、功能与调节   总被引:3,自引:0,他引:3  
微丝参与了细胞形态维持及细胞运动等多种重要的细胞过程。微丝由肌动蛋白单体组装而成 ,肌动蛋白相关蛋白 2 / 3(Arp2 /Arp3,Arp2 / 3)复合体在微丝形成过程中起重要作用。Arp2 / 3复合体由 7个亚单位组成 ,在细胞内受到多种核化促进因子的调节 ,并与这些因子协同作用来调节肌动蛋白的核化。Arp2 / 3复合体结构、功能及调节的研究对于阐明微丝形成机制及细胞骨架与某些信号分子的关系有重要意义。  相似文献   

13.
The review analyzes the research concerning the folding of proteins in the course of their synthesis on ribosomes. The experimental data obtained for various proteins using various methods give grounds for concluding that a nascent protein largely acquires its spatial structure while still attached to the ribosome, and final folding into the biologically active conformation takes place as soon as the completed protein is released therefrom. Cotranslational folding is characteristic of both bacterial and eukaryotic cells, and appears to be the universal and the most evolutionarily ancient mechanism.  相似文献   

14.
15.
Zinc-dependent protein folding   总被引:6,自引:0,他引:6  
Studies of classic zinc-finger peptides over the past 15 years have offered insights into the coupled processes of metal binding and protein folding. Within the past two years, this insight has been used to increase our understanding of the importance of first and second shell contributions (i.e. contributions from direct and indirect metal ligands) to metal binding and protein-folding stability, and led to advances in de novo protein design and protein redesign.  相似文献   

16.
We have investigated the structure, equilibria, and folding kinetics of an engineered 35-residue subdomain of the chicken villin headpiece, an ultrafast-folding protein. Substitution of two buried lysine residues by norleucine residues stabilizes the protein by 1 kcal/mol and increases the folding rate sixfold, as measured by nanosecond laser T-jump. The folding rate at 300 K is (0.7 micros)(-1) with little or no temperature dependence, making this protein the first sub-microsecond folder, with a rate only twofold slower than the theoretically predicted speed limit. Using the 70 ns process to obtain the effective diffusion coefficient, the free energy barrier height is estimated from Kramers theory to be less than approximately 1 kcal/mol. X-ray crystallographic determination at 1A resolution shows no significant change in structure compared to the single-norleucine-substituted molecule and suggests that the increased stability is electrostatic in origin. The ultrafast folding rate, very accurate X-ray structure, and small size make this engineered villin subdomain an ideal system for simulation by atomistic molecular dynamics with explicit solvent.  相似文献   

17.
We describe the identification of GIM1/YKE2, GIM2/PAC10, GIM3, GIM4 and GIM5 in a screen for mutants that are synthetically lethal with tub4-1, encoding a mutated yeast gamma-tubulin. The cytoplasmic Gim proteins encoded by these GIM genes are present in common complexes as judged by co-immunoprecipitation and gel filtration experiments. The disruption of any of these genes results in similar phenotypes: the gim null mutants are synthetically lethal with tub4-1 and super-sensitive towards the microtubule-depolymerizing drug benomyl. All except Deltagim4 are cold-sensitive and their microtubules disassemble at 14 degrees C. The Gim proteins have one function related to alpha-tubulin and another to Tub4p, supported by the finding that the benomyl super-sensitivity is caused by a reduced level of alpha-tubulin while the synthetic lethality with tub4-1 is not. In addition, GIM1/YKE2 genetically interacts with two distinct classes of genes, one of which is involved in tubulin folding and the other in microtubule nucleation. We show that the Gim proteins are important for Tub4p function and bind to overproduced Tub4p. The mammalian homologues of GIM1/YKE2 and GIM2/PAC10 rescue the synthetically lethal phenotype with tub4-1 as well as the cold-sensitivity and benomyl super-sensitivity of the yeast deletion mutants. We suggest that the Gim proteins form a protein complex that promotes formation of functional alpha- and gamma-tubulin.  相似文献   

18.
Pro-sequence-assisted protein folding   总被引:8,自引:0,他引:8  
Many proteins, including proteases and growth factors, are synthesized as precursors in the form of prepro-proteins. Whereas the pre-sequences usually act as signal peptides for transport, the pro-sequences of an increasing number of these proteins have been found to be essential for the correct folding of their associated proteins. In contrast to the action of molecular chaperones, pro-sequences appear to catalyse the protein-folding reaction directly. The similarity between the pro-sequence-assisted folding mechanisms of different proteases supports the hypothesis that a common folding mechanism has developed through convergent evolution. Further, the frequent requirement of the pro-sequences for both folding and intracellular transport or secretion suggests that these two functionalities are intimately related.  相似文献   

19.
Investigating the in vitro refolding of proteins that naturally reside in biological membranes is a notoriously difficult task. Biophysical studies on model systems are beginning to provide a sound physical basis for membrane protein folding that should help to alleviate this problem. Highlights of these studies include insights into the interaction of transmembrane alpha helices, as well as into the important role that membrane lipids play in folding.  相似文献   

20.
Theory of protein folding   总被引:9,自引:0,他引:9  
Protein folding should be complex. Proteins organize themselves into specific three-dimensional structures, through a myriad of conformational changes. The classical view of protein folding describes this process as a nearly sequential series of discrete intermediates. In contrast, the energy landscape theory of folding considers folding as the progressive organization of an ensemble of partially folded structures through which the protein passes on its way to the natively folded structure. As a result of evolution, proteins have a rugged funnel-like landscape biased toward the native structure. Connecting theory and simulations of minimalist models with experiments has completely revolutionized our understanding of the underlying mechanisms that control protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号