首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two genes, nda2 and nda3, previously defined by cold sensitive nuclear division arrest (nda) mutations in the fission yeast Schizosaccharomyces pombe were studied. A mutant nda2-KM52 was found to be supersensitive (at the permissive temperature) to the tubulin-binding drugs such as thiabendazole, methylbenzimidazol-2yl carbamate and nocodazole. A single mutation in nda2 appears to cause both drug supersensitivity and cold sensitivity. The defective phenotypes of nda2-KM52 with a low concentration of the drugs were characterized by nuclear displacement and anomalously situated spindle pole bodies. The allele of the other mutant, nda3-KM311, was sh216 to be linked closely to the ben1 locus, which determines resistance to the drug. The identity of ben1 and nda3 genes was proved by a newly isolated mutant ben1-TB1005; it manifests ben1 resistance and the cold sensitive nda3 phenotype. At 22 degrees C, ben1-TB1005 showed cell branching and deformation characteristic of nda3-KM311. Eleven mutants supersensitive to thiabendazole were newly isolated by replica plating. Four strains were mapped in nda2, while the other four were in nda3. Most of the isolated mutants were blocked at nuclear division in the presence of a low concentration of the drug. Thus, the products of genes nda2 and nda3 (ben1) interact directly or indirectly with the drugs and control, in different ways, microtubular organization in the cells of S. pombe.  相似文献   

2.
Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.  相似文献   

3.
In eukaryotes, the segregation of chromosomes is co-ordinated by the centromere and must proceed accurately if aneuploidy and cell death are to be avoided. The fission yeast centromere is complex, containing highly repetitive regions of DNA showing the characteristics of heterochromatin. Two proteins, Swi6p and Clr4p, that are associated with the fission yeast centromere also contain a chromo (chromatin organisation modifier) domain and are required for centromere function. We have analysed a novel fission yeast gene encoding a putative chromo domain called chp 1(+) (chromo domain protein in Schizosaccharomyces p ombe ). In the absence of Chp1p protein, cells are viable but show chromosome segregation defects such as lagging chromosomes on the spindle during anaphase and high rates of minichromosome loss, phenotypes which are also displayed by swi 6 and clr 4. A fusion protein between green fluorescent protein (GFP) and Chp1p, like Swi6p, is localized to discrete sites within the nucleus. In contrast to Swi6p and Clr4p, Chp1p is not required to repress silent mating-type genes. We demonstrate a genetic interaction between chp 1(+) and alpha-tubulin ( nda 2(+)) and between swi 6(+) and beta-tubulin ( nda 3(+)). Chp1p and Swi6p proteins may be components of the kinetochore which captures and stabilizes the microtubules of the spindle.  相似文献   

4.
An interference assay has been devised in Schizosaccharomyces pombe to rapidly identify and clone genes involved in chromosome segregation. Random S.pombe cDNAs were overexpressed from an inducible promoter in a strain carrying an additional, non-essential minichromosome. Overexpression of cDNAs derived from four genes, two known (nda3+and ubc4+, encoding beta-tubulin and a ubiquitin conjugating enzyme, respectively) and two unknown, named mlo2+ and mlo3+ (missegregation & lethal when over expressed) caused phenotypes consistent with a failure to segregate chromosomes. Full overexpression of all four cDNAs was lethal. Cells overexpressing nda3+ and ubc4+ cDNAs arrested with condensed unsegregated chromosomes and cells overexpressing mlo2+ displayed an asymmetric distribution of nuclear chromatin. Sublethal levels of overexpression of nda3+, ubc4+ and mlo2+ cDNAs caused elevated rates of minichromosome loss. A third cDNA mlo3+, displayed no increase in the frequency of minichromosome loss at sublethal levels of overexpression but full overexpression caused a complete failure to segregate chromosomes. Our results confirm the assumption that beta-tubulin overexpression is lethal in S.pombe, implicate ubc4+ in the control of metaphase-anaphase transition in fission yeast and finally identify two new genes, mlo2+and mlo3+, likely to play an important role for chromosome transmission fidelity in mitosis.  相似文献   

5.
During mitosis, the spindle assembly checkpoint (SAC) responds to faulty attachments between kinetochores and the mitotic spindle by imposing a metaphase arrest until the defect is corrected, thereby preventing chromosome missegregation. A genetic screen to isolate SAC mutants in fission yeast yielded point mutations in three fission yeast SAC genes: mad1, bub3, and bub1. The bub1-A78V mutant is of particular interest because it produces a wild-type amount of protein that is mutated in the conserved but uncharacterized Mad3-like region of Bub1p. Characterization of mutant cells demonstrates that the alanine at position 78 in the Mad3-like domain of Bub1p is required for: 1) cell cycle arrest induced by SAC activation; 2) kinetochore accumulation of Bub1p in checkpoint-activated cells; 3) recruitment of Bub3p and Mad3p, but not Mad1p, to kinetochores in checkpoint-activated cells; and 4) nuclear accumulation of Bub1p, Bub3p, and Mad3p, but not Mad1p, in cycling cells. Increased targeting of Bub1p-A78V to the nucleus by an exogenous nuclear localization signal does not significantly increase kinetochore localization or SAC function, but GFP fused to the isolated Bub1p Mad 3-like accumulates in the nucleus. These data indicate that Bub1p-A78V is defective in both nuclear accumulation and kinetochore targeting and that a threshold level of nuclear Bub1p is necessary for the nuclear accumulation of Bub3p and Mad3p.  相似文献   

6.
Fluorescence in situ hybridization (FISH) shows that fission yeast centromeres and telomeres make up specific spatial arrangements in the nucleus. Their positioning and clustering are cell cycle regulated. In G2, centromeres cluster adjacent to the spindle pole body (SPB), while in mitosis, their association with each other and with the SPB is disrupted. Similarly, telomeres cluster at the nuclear periphery in G2 and their associations are disrupted in mitosis. Mitotic centromeres interact with the spindle. They remain undivided until the spindle reaches a critical length, then separate and move towards the poles. This demonstrated, for the first time, that anaphase A occurs in fission yeast. The mode of anaphase A and B is similar to that of higher eukaryotes. In nda3 and cut7 mutants defective in tubulin of a kinesin-related motor, cells are blocked in early stages of mitosis due to the absence of the spindle, and centromeres dissociate but remain close to the SPB, whereas in a metaphase-arrested nuc2 mutant, they reside at the middle of the spindle. FISH is therefore a powerful tool for analyzing mitotic chromosome movement and disjunction using various mutants. Surprisingly, in top2 defective in DNA topoisomerase II, while most chromatid DNAs remain undivided, sister centromeres are separated. Significance of this finding is discussed. In contrast, most chromatid DNAs are separated but telomeric DNAs are not in cut1 mutant. In cut1, the dependence of SPB duplication on the completion of mitosis is abolished. In crm1 mutant cells defective in higher-order chromosome organization, the interphase arrangements of centromeres and telomeres are disrupted.  相似文献   

7.
To investigate the influence of pressure stress on the cell cycle of Schizosaccharomyces pombe, we used a cold-sensitive nda3-KM311 mutant which arrests cell division at a step similar to the mitotic prophase, proposed by Hiraoka and colleagues (Cell 39 (1984) 349-358), under the restrictive temperature, 20 degrees C. The nda3-KM311 cells were first aerobically grown at 30 degrees C, transferred to 20 degrees C for 4 h and shifted to a permissive temperature of 36 degrees C for 15 min. The cells were treated with 100-200 MPa pressure and studied by electron and fluorescence microscopy. At 100 MPa, the nuclear membrane was damaged and the matrix of mitochondria had an electron-dense area. At 150 MPa, the nuclear membrane was broken over broad areas; numerous small vacuoles had fused into large pieces. Actin patches were concentrated in the central region and actin rings were seen in the 20 degrees C-grown cells. Even at 100 MPa, specific actin distribution was lost. Although at 100 MPa, long and fine actin cables were seen all over the cells, large actin patches and the actin rings remained in the center of the cell. They changed into thick and short cables at 150 MPa and above 200 MPa they decomposed but the actin ring was visible even with faint fluorescence. Immunoelectron microscopic observation confirmed this phenomenon.  相似文献   

8.
Fission yeast cold-sensitive mutants nda1-376 and nda4-108 display a cell cycle block phenotype at the restrictive temperature (cell elongation with the single nucleus) accompanied by an alteration in the nuclear chromatin region. DNA content analysis shows that the onset of DNA synthesis is blocked or greatly delayed in both mutant cells, the block being reversible in nda4-108. Upon release to the permissive temperature, nda4-108 cells resumed replicating DNA, followed by mitosis and cytokinesis. The nda4 phenotype was partly rescued by the addition of Ca2+ to the medium; Ca2+ plays a positive role in the nda4+ function. The predicted protein sequences of nda1+ and nda4+ isolated by complementation are similar to each other and also, respectively, to those of the budding yeast, MCM2 and CDC46, both of which are members of the gene family required for the initiation of DNA replication. The central domains of these proteins are conserved, whereas the NH2- and COOH- domains are distinct. Results of the disruption of the nda1+ and nda4+ genes demonstrates that they are essential for viability.  相似文献   

9.
We have screened for temperature-sensitive (ts) fission yeast mutants with altered polarity (alp1–15). Genetic analysis indicates that alp2 is allelic to atb2 (one of two α-tubulin genes) and alp12 to nda3 (the single β-tubulin gene). atb2+ is nonessential, and the ts atb2 mutations we have isolated are dominant as expected. We sequenced two alleles of ts atb2 and one allele of ts nda3. In the ts atb2 mutants, the mutated residues (G246D and C356Y) are found at the longitudinal interface between α/β-heterodimers, whereas in ts nda3 the mutated residue (Y422H) is situated in the domain located on the outer surface of the microtubule. The ts nda3 mutant is highly sensitive to altered gene dosage of atb2+; overexpression of atb2+ lowers the restrictive temperature, and, conversely, deletion rescues ts. Phenotypic analysis shows that contrary to undergoing mitotic arrest with high viability via the spindle assembly checkpoint as expected, ts nda3 mutants execute cytokinesis and septation and lose viability. Therefore, it appears that the ts nda3 mutant becomes temperature lethal because of irreversible progression through the cell cycle in the absence of activating the spindle assembly checkpoint pathway.  相似文献   

10.
Precise chromosome transmission in cell division cycle is maintained by a number of genes. The attempt made in the present study was to isolate temperature-sensitive (ts) fission yeast mutants that display high loss rates of minichromosomes at permissive or semipermissive temperature (designated mis). By colony color assay of 539 ts strains that contain a minichromosome, we have identified 12 genetic loci (mis1-mis12) and determined their phenotypes at restrictive temperature. Seven of them are related to cell cycle block phenotype at restrictive temperature, three of them in mitosis. Unequal distribution of regular chromosomes in the daughters is extensive in mis6 and mis12. Cells become inviable after rounds of cell division due to missegregation. The phenotype of mis5 is DNA replication defect and hypersensitivity to UV ray and hydroxyurea. mis5+ encodes a novel member of the ubiquitous MCM family required for the onset of replication. The mis5+ gene is essential for viability and functionally distinct from other previously identified members in fission yeast, cdc21+, nda1+, and nda4+. The mis11 mutant phenotype was the cell division block with reduced cell size. Progression of the G1 and G2 phases is blocked in mis11. The cloned mis11+ gene is identical to prp2+, which is essential for RNA splicing and similar to a mammalian splicing factor U2AF65.  相似文献   

11.
Cullen CF  May KM  Hagan IM  Glover DM  Ohkura H 《Genetics》2000,155(4):1521-1534
We describe a general genetic method to identify genes encoding proteins that functionally interact with and/or are good candidates for downstream targets of a particular gene product. The screen identifies mutants whose growth depends on high levels of expression of that gene. We apply this to the plo1(+) gene that encodes a fission yeast homologue of the polo-like kinases. plo1(+) regulates both spindle formation and septation. We have isolated 17 high plo1(+)-dependent (pld) mutants that show defects in mitosis or septation. Three mutants show a mitotic arrest phenotype. Among the 14 pld mutants with septation defects, 12 mapped to known loci: cdc7, cdc15, cdc11 spg1, and sid2. One of the pld mutants, cdc7-PD1, was selected for suppressor analysis. As multicopy suppressors, we isolated four known genes involved in septation in fission yeast: spg1(+), sce3(+), cdc8(+), and rho1(+), and two previously uncharacterized genes, mpd1(+) and mpd2(+). mpd1(+) exhibits high homology to phosphatidylinositol 4-phosphate 5-kinase, while mpd2(+) resembles Saccharomyces cerevisiae SMY2; both proteins are involved in the regulation of actin-mediated processes. As chromosomal suppressors of cdc7-PD1, we isolated mutations of cdc16 that resulted in multiseptation without nuclear division. cdc16(+), dma1(+), byr3(+), byr4(+) and a truncated form of the cdc7 gene were isolated by complementation of one of these cdc16 mutations. These results demonstrate that screening for high dose-dependent mutants and their suppressors is an effective approach to identify functionally interacting genes.  相似文献   

12.
The mitotic arrest deficiency 2 (Mad2) protein is an essential component of the spindle assembly checkpoint that interacts with Cdc20/Slp1 and inhibit its ability to activate anaphase promoting complex/cyclosome (APC/C). In bladder cancer cell line the C-terminal residue of the mad2 gene has been found to be deleted. In this study we tried to understand the role of the C-terminal region of mad2 on the spindle checkpoint function. To envisage the role of C-terminal region of Mad2, we truncated 25 residues of Mad2 C-terminal region in fission yeast S.pombe and characterized its effect on spindle assembly checkpoint function. The cells containing C-terminal truncation of Mad2 exhibit sensitivity towards microtubule destabilizing agent suggesting perturbation of spindle assembly checkpoint. Further, the C-terminal truncation of Mad2 exhibit reduced viability in the nda3-KM311 mutant background at non-permissive temperature. Truncation in mad2 gene also affects its foci forming ability at unattached kinetochore suggesting that the mad2-?CT mutant is unable to maintain spindle checkpoint activation. However, in response to the defective microtubule, only brief delay of mitotic progression was observed in Mad2 C-terminal truncation mutant. In addition we have shown that the deletion of two β strands of Mad2 protein abolishes its ability to interact with APC activator protein Slp1/Cdc20. We purpose that the truncation of two β strands (β7 and β8) of Mad2 destabilize the safety belt and affect the Cdc20-Mad2 interaction leading to defects in the spindle checkpoint activation.  相似文献   

13.
By using a multiply marked supernumerary chromosome III as an indicator, we isolated mutants of Saccharomyces cerevisiae that display increased rates of chromosome loss. In addition to mutations in the tubulin-encoding TUB genes, we found mutations in the CIN1, CIN2, and CIN4 genes. These genes have been defined independently by mutations causing benomyl supersensitivity and are distinct from other known yeast genes that affect chromosome segregation. Detailed phenotypic characterization of cin mutants revealed several other phenotypes similar to those of tub mutants. Null alleles of these genes caused cold sensitivity for viability. At 11 degrees C, cin mutants arrest at the mitosis stage of their cell cycle because of loss of most microtubule structure. cin1, cin2, and cin4 mutations also cause defects in two other microtubule-mediated processes, nuclear migration and nuclear fusion (karyogamy). Overproduction of the CIN1 gene product was found to cause the same phenotype as loss of function, supersensitivity to benomyl. Our findings suggest that the CIN1, CIN2, and CIN4 proteins contribute to microtubule stability either by regulating the activity of a yeast microtubule component or as structural components of microtubules.  相似文献   

14.
We have isolated mutants defective in DNA topoisomerases and an endonuclease from the fission yeast Schizosaccharomyces pombe by screening individual extracts of mutagenized cells. Two type I topoisomerase mutants (top1) and three endonuclease mutants (end1) were all viable. The double mutant top1 end1 was also viable and, in its extract, Mg2+- and ATP- dependent type II activity could be detected. Three temperature-sensitive (ts-) mutants having heat-sensitive (hs-) type II enzymes were isolated, and the ts- marker cosegregated with the hs- type II activity. All the ts- mutations fell in one gene (top2) tightly linked to leul in chromosome II. The nuclear division of single top2 mutants was blocked at the restrictive temperature, but the formation of a septum was not inhibited so that the nucleus was cut across with the cell plate. In contrast, the double top1 top2 mutants were rapidly arrested at various stages of the cell cycle, showing a strikingly altered nuclear chromatin region. The type II topoisomerase may have an essential role in the compaction and/or segregation of chromosomes during the nuclear division but also complement the defect of the type I enzyme whose major function is the maintenance of chromatin organization throughout the cell cycle.  相似文献   

15.
Tange Y  Niwa O 《Genetics》2008,179(2):785-792
The core proteins of the spindle assembly checkpoint (SAC), Mads, Bubs, and Mps1, first identified in the budding yeast, are thought to be functionally and structurally conserved through evolution. We found that fission yeast Bub3 is dispensable for SAC, as bub3 null mutants blocked mitotic progression when spindle formation was disrupted. Consistently, the bub3 mutation only weakly affected the stability of minichromosome Ch16 compared with other SAC mutants. Fission yeast Rae1 has sequence homology with Bub3. The bub3 rae1 double mutant and rae1 single mutant did not have defective SAC, suggesting that these genes do not have overlapping roles for SAC. Observations of living cells revealed that the duration of the mitotic prometaphase/metaphase was longer in the bub3 mutant and was Mad2 dependent. Further, the bub3 mutant was defective in sister centromere association during metaphase. Together, these findings suggest that fission yeast Bub3 is required for normal spindle dynamics, but not for SAC.  相似文献   

16.
We have previously shown that replication of fission yeast chromosomes is initiated in distinct regions. Analyses of autonomous replicating sequences have suggested that regions required for replication are very different from those in budding yeast. Here, we present evidence that fission yeast replication origins are specifically associated with proteins that participate in initiation of replication. Most Orp1p, a putative subunit of the fission yeast origin recognition complex (ORC), was found to be associated with chromatin-enriched insoluble components throughout the cell cycle. In contrast, the minichromosome maintenance (Mcm) proteins, SpMcm2p and SpMcm6p, encoded by the nda1(+)/cdc19(+) and mis5(+) genes, respectively, were associated with chromatin DNA only during the G(1) and S phases. Immunostaining of spread nuclei showed SpMcm6p to be localized at discrete foci on chromatin during the G(1) and S phases. A chromatin immunoprecipitation assay demonstrated that Orp1p was preferentially localized at the ars2004 and ars3002 origins of the chromosome throughout the cell cycle, while SpMcm6p was associated with these origins only in the G(1) and S phases. Both Orp1p and SpMcm6p were associated with a 1-kb region that contains elements required for autonomous replication of ars2004. The results suggest that the fission yeast ORC specifically interacts with chromosomal replication origins and that Mcm proteins are loaded onto the origins to play a role in initiation of replication.  相似文献   

17.
By examining cytological phenotypes of 587 temperature-sensitive mutants of the fission yeast Schizosaccharomyces pombe, we obtained 18 mutants which cause cell division in the absence of nuclear division. By genetic analyses, these novel nuclear division arrest mutants can be classified into nine complementation groups (designated cut1cut9). The cytological phenotype of cut mutants is similar but not identical to that of DNA topoisomerase II mutants (top2). The cut1+ gene was cloned by transformation and shown to complement cut2 as well as cut1, indicating a functional relationship between the two genes. The cut genes are required for nuclear division, but their mutant phenotypes differ from most of the previously identified mutants which block nuclear division and also the subsequent cytokinesis. Fluorescence microscopy indicates that the mitotic chromosomes formed in cut mutant cells are abnormal and fail to separate properly. We suggest that cut mutations, like top2, block mitotic chromosome formation and concomitantly nuclear division, but that cytokinesis proceeds independently of the defects in nuclear division, demonstrating uncoordinated mitotic pathways. A novel mutant nuc1 is also described which shows a cytological phenotype similar to the double mutant of DNA topoisomerases I and II but contains normal levels of both DNA topoisomerase activities.  相似文献   

18.
Fission yeast temperature-sensitive mutants cut3-477 and cut14-208 fail to condense chromosomes but small portions of the chromosomes can separate along the spindle during mitosis, producing phi-shaped chromosomes. Septation and cell division occur in the absence of normal nuclear division, causing the cut phenotype. Fluorescence in situ hybridization demonstrated that the contraction of the chromosome arm during mitosis was defective. Mutant chromosomes are apparently not rigid enough to be transported poleward by the spindle. Loss of the cut3 protein by gene disruption fails to maintain the nuclear chromatin architecture even in interphase. Both cut3 and cut14 proteins contain a putative nucleoside triphosphate (NTP)-binding domain and belong to the same ubiquitous protein family which includes the budding yeast Smc1 protein. The cut3 mutant was suppressed by an increase in the cut14+ gene dosage. The cut3 protein, having the highest similarity to the mouse protein, is localized in the nucleus throughout the cell cycle. Plasmids carrying the DNA topoisomerase I gene partly suppressed the temperature sensitive phenotype of cut3-477, suggesting that the cut3 protein might be involved in chromosome DNA topology.  相似文献   

19.
20.
BACKGROUND: Proteins conserved from yeast to human hold two sister chromatids together. The failure to form cohesion in the S phase results in premature separation of chromatids in G2/M. Mitotic kinetochores free from microtubules or the lack of tension are known to activate spindle checkpoint. RESULTS: The loss of chromatid cohesion in fission yeast mutants (mis4-242 and rad21-K1) leads to the activation of Mad2- and Bub1-dependent checkpoint, possibly due to a diminished microtubule-kinetochore interaction. Bub1, a checkpoint kinase, localizes briefly at early mitotic kinetochores in wild-type, whereas the cohesion mutation greatly increases the duration of kinetochore localization. Bub1 is bound to the central centromere region of mitotic cells. These cohesion mutants are hypersensitive to a tubulin poison and are synthetic lethal with dis1 and bir1/cut17, which are defective in microtubule-kinetochore interaction. The formation of specialized centromere chromatin containing CENP-A does not require cohesion. Dominant-negative noncleavable Rad21 fails to activate checkpoint but blocks sister chromatid separation and full spindle elongation in anaphase. CONCLUSIONS: Mis4 and Rad21 (budding yeast Scc2 and Scc1 homologs, respectively) act in establishing the normal spindle-kinetochore interaction in early mitosis and inhibit sister chromatid separation until the cleavage of Rad21 in anaphase. Checkpoint directly or indirectly monitors the states of cohesion in early mitosis. Full spindle extension occurs with unequal nuclear division in cohesion mutants in the absence of Mad2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号