首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Effective cancer immunotherapy depends on the body’s ability to generate tumor antigen-presenting cells and tumor-reactive effector lymphocytes. As the most potent antigen presenting cells (APCs), dendritic cells (DCs) are capable of sensitizing T cells to new and recall antigens. Clinical trials of antigen-pulsed autologous DCs have been conducted in patients with a number of hematological and solid cancers, including malignant melanoma, lymphoma, myeloma, and non-small cell lung cancer. These studies suggest that antigen-loaded DC vaccination is a potentially safe and effective cancer therapy. However, the clinical results have been variable. Since the elderly are preferentially affected by diseases targeted by DC-directed immunotherapy, it is quite striking that few studies to date have focused on the effect of aging on DC function, a key aspect of optimal immunotherapy design in an aging population. In the present paper, we will discuss the consequences of aging on murine bone marrow-derived DC function and their use in cancer immunotherapy.  相似文献   

2.
The adoptive transfer of cancer Ag-specific effector T cells in patients can result in tumor rejection, thereby illustrating the immune system potential for cancer therapy. Ideally, one would like to directly induce efficient tumor-specific effector and memory T cells through vaccination. Therapeutic vaccines have two objectives: priming Ag-specific T cells and reprogramming memory T cells (i.e., a transformation from one type of immunity to another, for example, regulatory to cytotoxic). Recent successful phase III clinical trials showing benefit to the patients revived cancer vaccines. Dendritic cells (DCs) are essential in generation of immune responses, and as such represent targets and vectors for vaccination. We have learned that different DC subsets elicit different T cells. Similarly, different activation methods result in DCs able to elicit distinct T cells. We contend that a careful manipulation of activated DCs will allow cancer immunotherapists to produce the next generation of highly efficient cancer vaccines.  相似文献   

3.
4.
5.
Bone marrow-derived APC are critical for both priming effector/memory T cell responses to pathogens and inducing peripheral tolerance in self-reactive T cells. In particular, dendritic cells (DC) can acquire peripheral self-Ags under steady state conditions and are thought to present them to cognate T cells in a default tolerogenic manner, whereas exposure to pathogen-associated inflammatory mediators during the acquisition of pathogen-derived Ags appears to reprogram DCs to prime effector and memory T cell function. Recent studies have confirmed the critical role of DCs in priming CD8 cell effector responses to certain pathogens, although the necessity of steady state DCs in programming T cell tolerance to peripheral self-Ags has not been directly tested. In the current study, the role of steady state DCs in programming self-reactive CD4 cell peripheral tolerance was assessed by combining the CD11c-diphtheria toxin receptor transgenic system, in which DC can be depleted via treatment with diphtheria toxin, with a TCR-transgenic adoptive transfer system in which either naive or Th1 effector CD4 cells are induced to undergo tolerization after exposure to cognate parenchymally derived self-Ag. Although steady state DCs present parenchymal self-Ag and contribute to the tolerization of cognate naive and Th1 effector CD4 cells, they are not essential, indicating the involvement of a non-DC tolerogenic APC population(s). Tolerogenic APCs, however, do not require the cooperation of CD4(+)CD25(+) regulatory T cells. Similarly, DC were required for maximal priming of naive CD4 cells to vaccinia viral-Ag, but priming could still occur in the absence of DC.  相似文献   

6.
Co-culturing of immunological effector cells with antigen-pulsed DC leads to an increase of cytotoxic activity against antigen-expressing tumour cells. Using this approach, we could detect up to 2.8% antigen-specific CTLs after co-culture with antigen-pulsed DC. However, the required high effector cell numbers remain a major obstacle in immunotherapy. In this study, we show an approach for generating activated and antigen-specific effector cells that enables us to decrease effector to target cell ratios. We used an interferon-gamma secretion assay to enrich activated effector cells after co-culture with antigen-pulsed dendritic cells (DC). Purified immunological effector cells lysed 58.3% of antigen-expressing tumour cells at an effector to target ratio of 1:1. Furthermore, using MHC-IgG complexes, we enriched effector cells expressing antigen-specific T-cell receptor after co-culture with DC. Performing ELISpot, flow cytometry and TCR analysis, we could show a significant increase of activated and specific TCR-expressing effector cells after co-culture with DC.  相似文献   

7.
8.
Strategies that generate tumor Ag-specific effector cells do not necessarily cure established tumors. We hypothesized that the relative efficiency with which tumor-specific effector cells reach the tumor is critical for therapy. We demonstrate in this study that activated T cells respond to the chemokine CCL3, both in vitro and in vivo, and we further demonstrate that expression of CCL3 within tumors increases the effector T cell infiltrate in those tumors. Importantly, we show that adenoviral gene transfer to cause expression of CCL3 within B16ova tumors in vivo increases the efficacy of adoptive transfer of tumor-specific effector OT1 T cells. We additionally demonstrate that such therapies result in endogenous immune responses to tumor Ags that are capable of protecting animals against subsequent tumor challenge. Strategies that modify the "visibility" of tumors have the potential to significantly enhance the efficacy of both vaccine and adoptive transfer therapies currently in development.  相似文献   

9.
Within the ovarian cancer microenvironment, there are several mechanisms that suppress the actions of antitumor immune effectors. Delineating the complex immune microenvironment is an important goal toward developing effective immune-based therapies. A dominant pathway of immune suppression in ovarian cancer involves tumor-associated and dendritic cell (DC)-associated B7-H1. The interaction of B7-H1 with PD-1 on tumor-infiltrating T cells is a widely cited theory of immune suppression involving B7-H1 in ovarian cancer. Recent studies suggest that the B7-H1 ligand, programmed death receptor-1 (PD-1), is also expressed on myeloid cells, complicating interpretations of how B7-H1 regulates DC function in the tumor. In this study, we found that ovarian cancer-infiltrating DCs progressively expressed increased levels of PD-1 over time in addition to B7-H1. These dual-positive PD-1(+) B7-H1(+) DCs have a classical DC phenotype (i.e., CD11c(+)CD11b(+)CD8(-)), but are immature, suppressive, and respond poorly to danger signals. Accumulation of PD-1(+)B7-H1(+) DCs in the tumor was associated with suppression of T cell activity and decreased infiltrating T cells in advancing tumors. T cell suppressor function of these DCs appeared to be mediated by T cell-associated PD-1. In contrast, ligation of PD-1 expressed on the tumor-associated DCs suppressed NF-κB activation, release of immune regulatory cytokines, and upregulation of costimulatory molecules. PD-1 blockade in mice bearing ovarian cancer substantially reduced tumor burden and increased effector Ag-specific T cell responses. Our results reveal a novel role of tumor infiltrating PD-1(+)B7-H1(+) DCs in mediating immune suppression in ovarian cancer.  相似文献   

10.
Targeting tumors with LIGHT to generate metastasis-clearing immunity   总被引:1,自引:0,他引:1  
Metastatic diseases cause the majority of morbidity and mortality of cancer patients. Established tumors form both physical and immunological barriers to limit immune detection and destruction. Current immunotherapy of vaccination and adoptive transfer shows limited effect at least in part due to the existing barriers in the tumors and depending on the knowledge of tumor antigens. Tumor necrosis factor (TNF) superfamily (TNFSF) member 14 (TNFSF14) LIGHT interacts with stromal cells, dendritic cells (DCs), NK cells, na?ve and activated T cells and tumor cells inside the tumor tissues via its two functional receptors, HVEM and lymphotoxin beta receptor (LTbetaR). Targeting tumor tissues with LIGHT leads to augmentation of priming, recruitment, and retention of effector cells at tumor sites, directly or indirectly, to induce strong anti-tumor immunity to inhibit the growth of primary tumors as well as eradicate metastases. Intratumor treatment would break tumor barriers and allow strong immunity against various tumors without defining tumor antigens. This review summarizes recent findings to support that LIGHT is a promising candidate for an effective cancer immunotherapy.  相似文献   

11.
The long-held belief that breast cancer is a weakly immunogenic tumor and a poor candidate for immunotherapy should be reappraised. There is ample evidence for the existence of an immune response, which is, however, attenuated by multiple inhibitory factors. Many tumor-associated antigens (TAA) have been identified in breast cancer, some of which appear to play a critical role in tumorigenesis and may be attractive targets for immunotherapy. There is evidence for DC recruitment and activation within breast cancers, and the presence of intratumoral activated DCs impacts favorably upon survival. Furthermore, there is a striking paucity of activated DCs within the primary draining or sentinel lymph nodes of breast cancers. Tumor infiltrating lymphocytes (TIL) are often documented, however, their function is impaired by inhibitory cytokines, increased regulatory T lymphocyte activity, tumor cell MHC molecule alterations, and aberrant Fas ligand expression, amongst others. DCs are recognized as one of the critical interfaces between a cancer and the immune system, and have emerged as a promising platform for cancer vaccination via ex vivo immunomodulation. Clinical evaluation of DC vaccination in breast cancer is still relatively limited, although evolving. This article details evidence for the immune response in breast cancer and its many failings, and reviews the clinical trials and significant preclinical data which, taken together, validate the concept of DC vaccination in breast cancer.  相似文献   

12.
Tumors create a unique immunosuppressive microenvironment (tumor microenvironment, TME) whereby leukocytes are recruited into the tumor by various chemokines and growth factors. However, once in the TME, these cells lose the ability to promote anti-tumor immunity and begin to support tumor growth and down-regulate anti-tumor immune responses. Studies on tumor-associated leukocytes have mainly focused on cells isolated from tumor-draining lymph nodes or spleen due to the inherent difficulties in obtaining sufficient cell numbers and purity from the primary tumor. While identifying the mechanisms of cell activation and trafficking through the lymphatic system of tumor bearing mice is important and may give insight to the kinetics of immune responses to cancer, in our experience, many leukocytes, including dendritic cells (DCs), in tumor-draining lymph nodes have a different phenotype than those that infiltrate tumors. Furthermore, we have previously demonstrated that adoptively-transferred T cells isolated from the tumor-draining lymph nodes are not tolerized and are capable of responding to secondary stimulation in vitro unlike T cells isolated from the TME, which are tolerized and incapable of proliferation or cytokine production. Interestingly, we have shown that changing the tumor microenvironment, such as providing CD4(+) T helper cells via adoptive transfer, promotes CD8(+) T cells to maintain pro-inflammatory effector functions. The results from each of the previously mentioned studies demonstrate the importance of measuring cellular responses from TME-infiltrating immune cells as opposed to cells that remain in the periphery. To study the function of immune cells which infiltrate tumors using the Miltenyi Biotech isolation system, we have modified and optimized this antibody-based isolation procedure to obtain highly enriched populations of antigen presenting cells and tumor antigen-specific cytotoxic T lymphocytes. The protocol includes a detailed dissection of murine prostate tissue from a spontaneous prostate tumor model (TRansgenic Adenocarcinoma of the Mouse Prostate -TRAMP) and a subcutaneous melanoma (B16) tumor model followed by subsequent purification of various leukocyte populations.  相似文献   

13.
Fusions of patient-derived dendritic cells (DCs) and autologous tumor cells induce T-cell responses against autologous tumors in animal models and human clinical trials. These fusion cells require patient-derived tumor cells, which are not, however, always available. Here we fused autologous DCs from patients with hepatocellular carcinoma (HCC) to an allogeneic HCC cell line (HepG2). These fusion cells co-expressed tumor-associated antigens (TAAs) and DC-derived costimulatory and MHC molecules. Both CD4+ and CD8+ T cells were activated by the fusion cells. Cytotoxic T lymphocytes (CTLs) induced by the fusion cells were able to kill autologous HCC by HLA-A2- and/or HLA-A24-restricted mechanisms. CTL activity against shared TAAs indicates that the presence of alloantigens does not prevent the development of CTLs with activity against autologous HCC cells. These fusion cells may have applications in anti-tumor immunotherapy through cross-priming against shared tumor antigens and may provide a platform for adoptive immunotherapy.  相似文献   

14.
It is commonly believed that T cells have difficulty reaching tumors located in the brain due to the presumed "immune privilege" of the central nervous system (CNS). Therefore, we studied the biodistribution and anti-tumor activity of adoptively transferred T cells specific for an endogenous tumor-associated antigen (TAA), gp100, expressed by tumors implanted in the brain. Mice with pre-established intracranial (i.c.) tumors underwent total body irradiation (TBI) to induce transient lymphopenia, followed by the adoptive transfer of gp100(25-33)-specific CD8+ T cells (Pmel-1). Pmel-1 cells were transduced to express the bioluminescent imaging (BLI) gene luciferase. Following adoptive transfer, recipient mice were vaccinated with hgp100(25-33) peptide-pulsed dendritic cells (hgp100(25-33)/DC) and systemic interleukin 2 (IL-2). This treatment regimen resulted in significant reduction in tumor size and extended survival. Imaging of T cell trafficking demonstrated early accumulation of transduced T cells in lymph nodes draining the hgp100(25-33)/DC vaccination sites, the spleen and the cervical lymph nodes draining the CNS tumor. Subsequently, transduced T cells accumulated in the bone marrow and brain tumor. BLI could also detect significant differences in the expansion of gp100-specific CD8+ T cells in the treatment group compared with mice that did not receive either DC vaccination or IL-2. These differences in BLI correlated with the differences seen both in survival and tumor infiltrating lymphocytes (TIL). These studies demonstrate that peripheral tolerance to endogenous TAA can be overcome to treat tumors in the brain and suggest a novel trafficking paradigm for the homing of tumor-specific T cells that target CNS tumors.  相似文献   

15.
Dendritic cells (DCs) encompass a heterogeneous population of cells capable of orchestrating innate and adaptive immune responses. The ability of DCs to act as professional APCs has been the foundation for the development and use of these cells as vaccines in cancer immunotherapy. DCs are also endowed with the nonconventional property of directly killing tumor cells. The current study investigates the regulation of murine DC cytotoxic function by T lymphocytes. We provide evidence that CD4(+) Th-1, but not Th-2, Th-17 cells, or regulatory T cells, are capable of inducing DC cytotoxic function. IFN-γ was identified as the major factor responsible for Th-1-induced DC tumoricidal activity. Tumor cell killing mediated by Th-1-activated killer DCs was dependent on inducible NO synthase expression and NO production. Importantly, Th-1-activated killer DCs were capable of presenting the acquired Ags from the killed tumor cells to T lymphocytes in vitro or in vivo. These observations offer new possibilities for the application of killer DCs in cancer immunotherapy.  相似文献   

16.
Lymph nodes draining progressive tumors contain tumor-sensitized but not functional preeffector T lymphocytes. These cells can acquire antitumor reactivity after stimulation with tumor cells and interleukin-2 (IL-2). We demonstrated here that, in the absence of tumor cells, preeffector cells could be stimulated and expanded by sequential culture with anti-CD3 monoclonal antibody and IL-2. The adoptive transfer of such activated cells mediated immunologically specific reductions of established pulmonary metastases. The therapeutic effects could be enhanced by the administration of IL-2. This activation represents a secondary immune response because effector cells could be generated only from tumor-draining but not from normal or adjuvant-stimulated lymph nodes. Furthermore, treatment of advanced metastases with these cells resulted in prolongation of survival and cure of the disease. Thus, anti-CD3 may serve as a universal reagent for activating tumor-sensitized T lymphocytes for cancer therapy.  相似文献   

17.
Known for years as the principal messengers of the immune system, dendritic cells (DC) represent a heterogeneous population of antigen presenting cells critically located at the nexus between innate and adaptive immunity. DC play a central role in the initiation of tumor-specific immune responses as they are endowed with the unique ability to take up, process and present tumor antigens to naïve CD4+ or CD8+ effector T lymphocytes. By virtue of the cytokines they produce, DC also regulate the type, strength and duration of T cell immune responses. In addition, they can participate in anti-tumoral NK and NKT cell activation and in the orchestration of humoral immunity. More recent studies have documented that besides their primary role in the induction and regulation of adaptive anti-tumoral immune responses, DC are also endowed with the capacity to directly kill cancer cells. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. First, the direct killing of malignant cells by DC may foster the release and thereby the immediate availability of specific tumor antigens for presentation to cytotoxic or helper T lymphocytes. Second, DC may participate in the effector phase of the immune response, potentially augmenting the diversity of the killing mechanisms leading to tumor elimination. This review focuses on this non-conventional cytotoxic function of DC as it relates to the promotion of cancer immunity and discusses the potential application of killer DC (KDC) in tumor immunotherapy.  相似文献   

18.
The unique Ag-presenting capabilities of dendritic cells (DCs) make them attractive vehicles for the delivery of therapeutic cancer vaccines. While tumor Ag-pulsed DC vaccination has shown promising results in a variety of murine tumor models and early clinical trials, the optimal form of tumor Ag for use in DC pulsing has not been determined. We have studied DC vaccination using alternative forms of a soluble protein tumor Ag, the tumor-specific Ig idiotype (Id) expressed by a murine B cell lymphoma. Vaccination of mice with Id-pulsed DCs was able to induce anti-Id Abs only when the Id was modified to constitute a hapten-carrier system. DCs pulsed with Id proteins modified to include foreign constant regions, foreign constant regions plus GM-CSF, or linkage to keyhole limpet hemocyanin (KLH) carrier protein were increasingly potent in their ability to elicit anti-Id Abs. Vaccination with Id-KLH-pulsed DCs induced tumor-protective immunity superior to that obtained with Id-KLH plus a chemical adjuvant, and protection was not dependent upon effector T cells. Rather, protection was associated with the induction of high titers of anti-Id Abs of the IgG2a subclass, characteristic of a Th1 response. These findings have implications for the design of therapeutic Ag-pulsed DC vaccines for cancer immunotherapy in humans.  相似文献   

19.
Immunization can prevent tumor growth, but the effector cells directly responsible for tumor cell killing in immunized hosts remain undetermined. The present study compares tumor grafts that progress in naive syngeneic rats with the same grafts that completely regress in hosts preimmunized with an immunogenic cell variant. The progressive tumors contain only a few macrophages that remain at the periphery of the tumor without direct contact with the cancer cells. These macrophages do not kill tumor cells in vitro. In contrast, tumors grafted in immunized hosts and examined at the beginning of tumor regression show a dramatic infiltration with mature macrophages, many of them in direct contact with the cancer cells. These macrophages are strongly cytotoxic for the tumor cells in vitro. In contrast to macrophages, tumor-associated lymphocytes are not directly cytotoxic to the tumor cells, even when obtained from tumor-immune rats. However, CD4(+) and CD8(+) T cells prepared from the regressing tumors induce tumoricidal activity in splenic macrophages from normal or tumor-bearing rats and in macrophages that infiltrate progressive tumors. These results strongly suggest that the main tumoricidal effector cells in preimmunized rats are macrophages that have been activated by adjacent tumor-immune lymphocytes.  相似文献   

20.

Background

Immunotherapeutic strategies to stimulate anti-tumor immunity are promising approaches for cancer treatment. A major barrier to their success is the immunosuppressive microenvironment of tumors, which inhibits the functions of endogenous dendritic cells (DCs) that are necessary for the generation of anti-tumor CD8+ T cells. To overcome this problem, autologous DCs are generated ex vivo, loaded with tumor antigens, and activated in this non-suppressive environment before administration to patients. However, DC-based vaccines rarely induce tumor regression.

Methodology/Principal Findings

We examined the fate and function of these DCs following their injection using murine models, in order to better understand their interaction with the host immune system. Contrary to previous assumptions, we show that DC vaccines have an insignificant role in directly priming CD8+ T cells, but instead function primarily as vehicles for transferring antigens to endogenous antigen presenting cells, which are responsible for the subsequent activation of T cells.

Conclusions/Significance

This reliance on endogenous immune cells may explain the limited success of current DC vaccines to treat cancer and offers new insight into how these therapies can be improved. Future approaches should focus on creating DC vaccines that are more effective at directly priming T cells, or abrogating the tumor induced suppression of endogenous DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号