首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent insights into iron import by bacteria   总被引:1,自引:0,他引:1  
Bacteria are confronted with a low availability of iron owing to its insolubility in the Fe3+ form or its being bound to host proteins. The bacteria cope with the iron deficiency by using host heme or siderophores synthesized by themselves or other microbes. In contrast to most other nutrients, iron compounds are tightly bound to proteins at the cell surfaces, from which they are further translocated by highly specific proteins across the cell wall of gram-positive bacteria and the outer membrane of gram-negative bacteria. Once heme and iron siderophores arrive at the cytoplasmic membrane, they are taken up across the cytoplasmic membrane by ABC transporters. Here we present an outline of bacterial heme and iron siderophore transport exemplified by a few selected cases in which recent progress in the understanding of the transport mechanisms has been achieved.  相似文献   

2.
Due to its extreme insolubility, Fe3+ is not transported as a monoatomic ion. In microbes, iron is bound to low molecular weight carriers, designated siderophores. For uptake into cells of Escherichia coli Fe3+ siderophores have to be translocated across two membranes. Transport across the outer membrane is receptor-dependent and energy-coupled; transport across the cytoplasmic membrane seems to follow a periplasmic binding protein-dependent transport mechanism. In support of this notion we demonstrate specific binding of the Fe3+ hydroxamate compounds ferrichrome, aerobactin, and coprogen, which are transported via the Fhu system, to the periplasmic FhuD protein, and no binding of the transport inactive ferrichrome A, ferric citrate, and iron sulfate. About 10(4) ferrichrome molecules were bound to the FhuD protein of cells which overproduced plasmid-encoded FhuD. Binding depended on transport across the outer membrane mediated by the FhuA receptor and the TonB protein. Binding to FhuD was supported by the exclusive resistance of FhuD to proteinase K in the presence of the transport active hydroxamates. The overproduced precursor form of the FhuD protein was not protected by the Fe3+ hydroxamates indicating a conformation different to the mature form. The FhuD protein apparently serves as a periplasmic carrier for Fe3+ hydroxamates with widely different structures.  相似文献   

3.
Iron is a vital micronutrient for teleost fish, being an integral component of proteins involved in cellular respiration and oxygen transfer. However, in excess iron is toxic, and fish need to balance uptake to prevent deficiency vs. potential toxicity. This review assesses the current physiological and molecular knowledge of the mechanisms of iron acquisition in the teleost fish. It focuses on freshwater teleost fish when assessing the gill as a possible site for iron acquisition, and includes a summary of geochemical processes that govern aquatic iron bioavailability. It focuses on marine teleost fish for assessing the mechanism of intestinal iron uptake. Physiological evidence indicates that iron preferentially crosses the apical membrane of both the gills and intestine in the ferrous (Fe2+) state. Molecular evidence supports this, demonstrating the presence of homologues in fish to the large Slc 11a family of evolutionary conserved proteins linked to Fe2+ transport. This symporter is probably linked to a reductase, which reduces either ferric (Fe3+) or organic complexed iron to Fe2+ prior to uptake.  相似文献   

4.
Escherichia coli strains which contain the Fe3+-aerobactin transport system specified by the ColV plasmid became deficient in aerobactin-dependent iron transport when they were converted to cloacin-resistant derivatives. An outer membrane protein with a molecular mass of 74,000 daltons was overproduced under iron-limiting growth conditions and was absent in cloacin-resistant mutants. Fe3+-aerobactin protected cells against cloacin. These results suggest that the cloacin receptor protein, controlled by the colV plasmid, also participates in Fe3+-aerobactin transport.  相似文献   

5.
Bacteria solubilize iron (Fe(3+)) with secreted siderophores, which are then taken up as Fe(3+)-siderophore complexes. Some bacteria also use iron in heme, hemoglobin, hemopexin, transferrin and lactoferrin of eukaryotic hosts. Crystal structures of two outer membrane transport proteins, FhuA and FepA, and biochemical data reveal strong long-range conformational changes of the proteins upon binding of Fe(3+)-siderophore complexes and in response to energy transfer from the cytoplasmic membrane into the outer membrane via the TonB-ExbB-ExbD protein complex. The crystal structure of the periplasmic binding protein FhuD strongly deviates from the uniform overall structure of binding proteins hitherto determined. Sideromycins, antibiotics that contain Fe(3+)-siderophore complexes as carriers, are highly effective, as they enter cells via Fe(3+)-siderophore transport systems. In this review, recently published data is discussed to demonstrate the state of understanding of iron transport across the outer membrane and the cytoplasmic membrane.  相似文献   

6.
The fluorophore, Phen Green SK (PGSK), was assessed for its suitability to be used in an assay for ferrous ion transport into membrane vesicles. The long wavelengths of excitation and emission (506 and 520 nm, respectively) enable PGSK fluorescence to be detected in membranes, such as the chloroplast inner envelope, that contain high levels of carotenoids which absorb light at lower wavelengths. At low concentrations of Fe2+, less than 3 microM, the interaction between PGSK and Fe2+ appears to result in both static and dynamic quenching of the PGSK fluorescence. The characteristics of this quenching were used to develop a calibration curve to determine the concentration of free Fe2+ at these low concentrations. Pronounced quenching of PGSK fluorescence entrapped within chloroplast inner envelope membrane vesicles was observed when Fe2+ was added. The extent of quenching of PGSK fluorescence trapped inside asolectin vesicles on Fe2+ addition was much less. The kinetics of the quenching of PGSK fluorescence by Fe2+ in vesicles was quite different from that for PGSK and Fe2+ in solution. Using the calibration curve developed for interaction of PGSK and low Fe2+ concentrations the initial rates of iron transport could be determined for the chloroplast inner envelope membranes.  相似文献   

7.
8.
Previously we had demonstrated the presence of transferrin receptor (TfR) on the plasma membrane of cultured rat cortical astrocytes. In this study, we investigated the roles of TfR in transferrin-bound iron (Tf-Fe) as well as transferrin-free iron (Fe II) uptake by the cells. The cultured rat astrocytes were incubated with 1 microM of double-labelled transferrin (125I-Tf-59Fe) in serum- free DMEM F12 medium or 59Fe II in isotonic sucrose solution at 37 degrees C or 4 degrees C for varying times. The cellular Tf-Fe, Tf and Fe II uptake was analyzed by measuring the intracellular radioactivity with gamma counter. The result showed that Tf-Fe uptake kept increasing in a linear manner at least in the first 30-min. In contrast to Tf-Fe uptake, the internalization of Tf into the cells was rapid initially but then slowed to a plateau level after 10 min. of incubation. The addition of either NH4Cl or CH3NH2, the blockers of Tf-Fe uptake via inhibiting iron release from Tf within endosomes, decreased the cellular Tf-Fe uptake but had no significant effect on Tf uptake. Pre-treated cells with trypsin inhibited significantly the cellular uptake of Tf-Fe as well as Tf. These findings suggested that Tf-Fe transport across the membrane of astrocytes is mediated by Tf-TfR endocytosis. The results of transferrin-free iron uptake indicated that the cultured rat cortical astrocytes had the capacity to acquire Fe II. The highest uptake of Fe II occurred at pH 6.5. The Fe II uptake was time and temperature dependent, iron concentration saturable, inhibited by several divalent metal ions, such as Co2+, Zn2+, Mn2+ and Ni2+ and not significantly affected by phenylarsine oxide treatment. These characteristics of Fe II uptake by the cultured astrocytes suggested that Fe II uptake is not mediated by TfR and implied that a carrier-mediated iron transport system might be present on the membrane of the cultured cells.  相似文献   

9.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

10.
Acquisition of iron by Aeromonas salmonicida.   总被引:9,自引:1,他引:8       下载免费PDF全文
The ability of six typical and three atypical strains of Aeromonas salmonicida to sequester Fe3+ from the high-affinity iron chelators ethylenediaminedihydroxy-phenylacetic acid, lactoferrin, and transferrin was determined. Typical strains were readily able to sequester Fe3+ and used two different mechanisms. One mechanism was inducible and appeared to involve production of a low-molecular-weight soluble siderophore(s). Iron uptake by this mechanism was strongly inhibited by ferricyanide. One virulent strain displayed a second mechanism which was constitutive and required cell contact with Fe3+-lactoferrin or -transferrin. This strain did not produce a soluble siderophore(s) but could utilize the siderophore(s) produced by the other strain. Fe3+ uptake by this stripping mechanism was strongly inhibited by dinitrophenol. Atypical strains displayed a markedly reduced ability to sequester iron from high-affinity chelators, although one of them was able to utilize the siderophores produced by the typical strain. In all strains examined, Fe3+ limitation resulted in the increased synthesis of several high-molecular-weight outer membrane proteins.  相似文献   

11.
12.
Sealed right-side-out reticulocyte ghosts transported and accumulated iron offered as 59Fe(2+)-ascorbate (Km = 1.1 microM). The uptake of iron by ghosts presented the characteristics of a transporter-mediated process: it responded to osmotic challenge, the rate of transport increased when iron was present in the opposing side, and the transport rate showed the temperature dependence typical of membrane-mediated processes. The transport of iron was dependent on an associated influx of Cl- in order to keep electroneutrality. Other transition metals, such as Cu2+, Zn2+, and Co2+, inhibited the transport of Fe2+. The overall characteristics of the system make reticulocyte sealed ghosts a very useful model in determining the basic mechanisms of membrane iron transport.  相似文献   

13.
In a previous study (Minotti, G., 1989, Arch. Biochem. Biophys. 268, 398-403) NADPH-supplemented microsomes were found to reduce adriamycin (ADR) to semiquinone free radical (ADR-.), which in turn autoxidized at the expense of oxygen to regenerate ADR and form O2-. Redox cycling of ADR was paralleled by reductive release of membrane-bound nonheme iron, as evidenced by mobilization of bathophenanthroline-chelatable Fe2+. In the present study, iron release was found to increase with concentration of ADR in a superoxide dismutase- and catalase-insensitive manner. This suggested that membrane-bound iron was reduced by ADR-. with negligible contribution by O2-. or interference by its dismutation product H2O2. Following release from microsomes, Fe2+ was reconverted to Fe3+ via two distinct mechanisms: (i) catalase-inhibitable oxidation by H2O2 and (ii) catalase-insensitive autoxidation at the expense of oxygen, which occurred upon chelation by ADR and increased with the ADR:Fe2+ molar ratio. Malondialdehyde formation, indicative of membrane lipid peroxidation, was observed when approximately 50% of Fe2+ was converted to Fe3+. This occurred in presence of catalase and low concentrations of ADR, which prevented Fe2+ oxidation and favored only partial Fe2+ autoxidation, respectively. Lipid peroxidation was inhibited by superoxide dismutase via increased formation of H2O2 from O2-. and excessive Fe2+ oxidation. Lipid peroxidation was also inhibited by high concentrations of ADR, which favored maximum Fe2+ release but also caused excessive Fe2+ autoxidation via formation of very high ADR:Fe2+ molar ratios. These results highlighted multiple and diverging effects of ADR, O2-., and H2O2 on iron release, iron (auto-)oxidation and lipid peroxidation. Stimulation of malondialdehyde formation by catalase suggested that lipid peroxidation was not promoted by reaction of Fe2+ with H2O2 and formation of hydroxyl radical. The requirement for both Fe2+ and Fe3+ was indicative of initiation by some type of Fe2+/Fe3+ complex.  相似文献   

14.
15.
It has been found that addition of iron(III)-gluconate complex to rat liver mitochondria disturbed the mitochondrial Ca2+ transport. Indirect evidence when the changes in the membrane potential during the transport of Ca2+ were followed, as well as direct evidence, when the fluxes of Ca2+ were monitored by a Ca2+-selective electrode, indicated that this iron complex induced an efflux of Ca2+ from liver mitochondria. The mechanisms by which iron induced Ca2+ release appeared to be linked to the induction of lipoperoxidation of mitochondrial membrane. The mitochondrial membrane, however, did not become irreversibly damaged under these conditions, as indicated by its complete repolarization. It was also shown that the induction by iron of lipoperoxidation brought about an efflux of K+ from mitochondria.  相似文献   

16.
Studies of 59Fe3+ uptake by brush-border membrane vesicles prepared from mouse duodenum have indicated that uptake represents transport across the brush-border membrane which is rate-limited by the membrane-transfer step (Simpson, R.J. and Peters, T.J. (1984) Biochim. Biophys. Acta 772, 220-226). Further studies presented here reveal that the uptake rate represents the net influx rate for Fe3+ and is independent of Na+ in the medium and of the method of vesicle preparation. Uptake by brush-border membrane vesicles prepared from mouse distal ileum also represents predominantly transport and is higher than that observed with duodenal brush-border membrane vesicles. Studies of the initial uptake rate by vesicles prepared from normal and hypoxic mouse intestine demonstrated an increase in Fe3+ transport in duodenal vesicles only.  相似文献   

17.
Neisseria gonorrhoeae is an obligate pathogen that hijacks iron from the human iron transport protein, holo-transferrin (Fe(2)-Tf), by expressing TonB-dependent outer membrane receptor proteins, TbpA and TbpB. Homologous to other TonB-dependent outer membrane transporters, TbpA is thought to consist of a β-barrel with an N-terminal plug domain. Previous reports by our laboratories show that the sequence EIEYE in the plug domain is highly conserved among various bacterial species that express TbpA and plays a crucial role in iron utilization for gonococci. We hypothesize that this highly conserved EIEYE sequence in the TbpA plug, rich in hard oxygen donor groups, binds with Fe(3+) through the transport process across the outer membrane through the β-barrel. Sequestration of Fe(3+) by the TbpA-plug supports the paradigm that the ferric iron must always remain chelated and controlled throughout the transport process. In order to test this hypothesis here we describe the ability of both the recombinant wild-type plug, and three small peptides that encompass the sequence EIEYE of the plug, to bind Fe(3+). This is the first report of the expression/isolation of the recombinant wild-type TbpA plug. Although CD and SUPREX spectroscopies suggest that a non-native structure is observed for the recombinant plug, fluorescence quenching titrations indicate that the wild-type recombinant TbpA plug binds Fe (3+) with a conditional log K(d) = 7 at pH 7.5, with no evidence of binding at pH 6.3. A recombinant TbpA plug with mutated sequence (NEIEYEN → NEIAAAN) shows no evidence of Fe(3+) binding under our experimental set up. Interestingly, in silico modeling with the wild-type plug also predicts a flexible loop structure for the EIEYE sequence under native conditions which once again supports the Fe(3+) binding hypothesis. These in vitro observations are consistent with the hypothesis that the EIEYE sequence in the wild-type TbpA plug binds Fe(3+) during the outer membrane transport process in vivo.  相似文献   

18.
Mouse intestinal brush-border membrane vesicles take up iron from media containing 59Fe3 +-nitrilotriacetic acid. The iron uptake by the vesicles represents accumulation of iron which relates to an osmotically active space. Uptake is linearly related to vesicle protein concentration and is inhibited by low incubation temperature and low medium free Fe3+ concentrations. Experiments with the lipid soluble iron ligand 8-hydroxyquinoline and with Triton X-100 imply that the uptake is rate limited by membrane transport.  相似文献   

19.
The effect of the known inhibitors of iron uptake, n-butylamine and NH4Cl, was examined at the molecular level to more precisely define the mechanisms by which these lysosomotropic agents block iron uptake by rabbit reticulocytes. Utilizing a rapid pulse-chase technique to follow the handling of a cohort of 59Fe, 125I-transferrin bound to rabbit reticulocytes, both amines were observed to have no effect on the cell-mediated release of 59Fe from internalized transferrin. The results indicated, however, that both agents acted to 1) retard the internalization of transferrin bound to transferrin receptors on the plasma membrane of reticulocytes, 2) retard the externalization of internalized transferrin, and 3) block the transport into the cytosol of iron released from transferrin.  相似文献   

20.
Reticulocytes suspended in low ionic strength media such as isotonic sucrose solution efficiently take up non-transferrin-bound iron and utilize it for heme synthesis. The present study was undertaken to determine how such media facilitate iron utilization by the cells. The effects of changes in membrane surface potential, membrane permeability, cell size, transmembrane potential difference, oxidation state of the iron, and lipid peroxidation were investigated. Iron uptake to heme, cytosol, and stromal fractions of cells was measured using rabbit reticulo-cytes incubated with 59Fe-labelled Fe(II) in 0.27 M sucrose, pH 6.5. Suspension of the cells in sucrose led to increased membrane permeability, loss of intracellular K+, decreased cell size, and increased transmembrane potential difference. However, none of these changes could account for the high efficiency of iron uptake which was observed. The large negative membrane surface potential which occurs in sucrose was modified by the addition of mono-, di-, tri-, and polyvalent cations to the solution. This inhibited iron uptake to a degree which for many cations varied with their valency. Other cations (Mn2+, Co2+, Ni2+, Zn2+) were also very potent inhibitors, probably due to direct action on the transport process. Ferricyanide inhibited iron uptake, while ferrocyanide and ascorbate increased the uptake of Fe(III) but not Fe(II). It is concluded that the high negative surface potential of reticulocytes suspended in sucrose solution facilitates iron uptake by aiding the approach of iron to the transport site on the cell membrane. The iron is probably transported into the cell in the ferrous form. © 1994 wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号