首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable genetic transformation represents the gold standard approach to the detailed elucidation of plant gene functions. This is particularly relevant in barley, an important experimental model widely employed in applied molecular, genetic and cell biological research, and biotechnology. Presented are details of the establishment of a protocol for Agrobacterium-mediated gene transfer to immature embryos, which enables the highly efficient generation of transgenic barley. Advancements were achieved through comparative experiments on the influence of various explant treatments and co-cultivation conditions. The analysis of representative numbers of transgenic lines revealed that the obtained T-DNA copy numbers are typically low, the generative transmission of the recombinant DNA is in accordance with the Mendelian rules and the vast majority of the primary transgenics produce progeny that expresses the respective transgene product. Moreover, the newly established protocol turned out to be useful to transform not only the highly amenable cultivar (cv.) ‘Golden Promise’ but also other spring and winter barley genotypes, albeit with substantially lower efficiency. As a major result of this study, a very useful tool is now available for future functional gene analyses as well as genetic engineering approaches. With the aim to modify the expression of barley genes putatively involved in plant–fungus interactions, numerous transgenic plants have been generated using diverse expression cassettes. These plants represent an example of how transformation technology may contribute to further our understanding of important biological processes.  相似文献   

2.
植物遗传转化表达载体是植物转基因研究中非常重要的一个环节,外源基因在转基因植物中的高效表达是转基因研究成功的关键。综述了植物遗传转化表达载体近年来的研究进展情况,着重介绍了在转基因植物中实现外源基因高效表达的多种途径和策略,旨在提高转基因植物中外源基因的表达水平和生物安全性,并展望了今后植物转基因研究及商业化发展方向。  相似文献   

3.
麦类作物包括小麦(Triticum aestivum L.)、硬粒小麦(Triticum turgidum con v.durum Dest.e.m)、大麦(Hordeum vulgare L.)、黑麦(Secale cereal L.)、燕麦(Avena sativa L.)及小大麦(×Tritordeum Ascherson et Graebuer.).自从基因枪被发明以来,科学家们已经利用来自麦类作物的幼胚、 盾片、成熟种子胚、花粉粒、花药、幼穗、叶基组织、发芽种子幼苗的顶端分生组织及其愈伤组织或培养物作为外植体,通过基因枪、农杆菌介导、 PEG法、电激法、微注射法、硅化纤维素介导、幼穗注射法等技术先后将一些选择标记基因、报告基因和有用的目的基因如抗真菌、抗虫、 籽粒品质、抗干旱基因等转化到麦类作物中.转基因植物表现为抗性增强或籽粒的加工品质提高和营养成份增加.被转化的基因通常以单位点多拷贝的形式随机整合到受体细胞的基因组中,并以孟德尔规律遗传.整合位点一般分布在染色体的近端粒区域,整合的拷贝数大多为5~10个拷贝,最高可达到50个拷贝.在转化过程中,被转化的质粒上的片段包括选择标记基因、目标基因、甚至质粒的抗生素基因和其他无关序列,随机地连接并形成多个分子量大小不等,组成成分不同的分子簇,或首先由其中一个分子簇整合到植物基因组中,这会导致在整合位点附近产生"热点",易于其他分子簇在此处整合,从而完成两期整合;或被转化的质粒上的选择标记基因、目标基因、质粒的抗生素基因和其他无关序列、植物基因组DNA等片段共同形成各种不同类型的分子簇,当植物细胞染色体复制时,在复制叉处整合到植物基因组中.转基因可以在各种水平上表达,也会时常发生基因沉默,这会导致转基因植物DNA水平上表达但在蛋白质水平上不表达,后代偏向分离,沉默的转基因重新表达.转基因的位置效应、甲基化和启动子都会诱发转基因沉默.在麦类作物中,35S启动子易于导致转基因沉默,应尽量减少使用.转基因还导致被转化麦类作物在农艺性状和细胞学上的变异.目前,麦类作物遗传转化已经成为一种常规的技术,转基因麦类作物正开始进入商业应用阶段.相信多种转化新技术的应用和发展将会培育出高产、稳产、优质、低投入的各类品种和种质.  相似文献   

4.
麦类作物遗传转化(英)   总被引:2,自引:0,他引:2  
麦类作物包括小麦 (TriticumaestivumL .)、硬粒小麦 (Triticumturgidumconv .durumDest.e.m)、大麦 (HordeumvulgareL .)、黑麦 (SecalecerealL .)、燕麦 (AvenasativaL .)及小大麦 (×TritordeumAschersonetGraebuer.)。自从基因枪被发明以来 ,科学家们已经利用来自麦类作物的幼胚、盾片、成熟种子胚、花粉粒、花药、幼穗、叶基组织、发芽种子幼苗的顶端分生组织及其愈伤组织或培养物作为外植体 ,通过基因枪、农杆菌介导、PEG法、电激法、微注射法、硅化纤维素介导、幼穗注射法等技术先后将一些选择标记基因、报告基因和有用的目的基因如抗真菌、抗虫、籽粒品质、抗干旱基因等转化到麦类作物中。转基因植物表现为抗性增强或籽粒的加工品质提高和营养成份增加。被转化的基因通常以单位点多拷贝的形式随机整合到受体细胞的基因组中 ,并以孟德尔规律遗传。整合位点一般分布在染色体的近端粒区域 ,整合的拷贝数大多为 5~ 10个拷贝 ,最高可达到 5 0个拷贝。在转化过程中 ,被转化的质粒上的片段包括选择标记基因、目标基因、甚至质粒的抗生素基因和其他无关序列 ,随机地连接并形成多个分子量大小不等 ,组成成分不同的分子簇 ,或首先由其中一个分子簇整合到植物基因组中 ,这会导致在整合位点附近产生“热点  相似文献   

5.
Transgenic lines of the spring barley variety Golden Promise containing the firefly luciferase gene were produced by particle bombardment of immature embryos. Non-destructive analysis of luciferase gene expression was used to monitor the transformation process. This revealed that transformation efficiency, in terms of the percentage of bombarded immature embryos giving rise to transformed callus lines, was very high, up to 40%. Following the expression of the luciferase gene provided a method for the sensitive, non-destructive, real-time monitoring of gene expression throughout the transformation process. Luciferase expression could also be used to easily identify transgenic plants and to identify homozygous transgenic plants at an early stage. The production of transgenic barley by selecting for luciferase-positive material, without an additional selection system, was possible but technically difficult.  相似文献   

6.
Agrobacterium-mediated barley transformation promises many advantages compared to alternative gene transfer methods, but has so far been established in only a few laboratories. We describe a protocol that facilitates rapid establishment and optimisation of Agrobacterium-mediated transformation for barley by instant monitoring of the transformation success. The synthetic green fluorescent protein (sgfpS65T) reporter gene was introduced in combination with thehpt selectable marker gene into immature embryos of barley (Hordeum vulgare L.) by cocultivation with Agrobacterium tumefaciens strain AGLO harboring binary vector pYF133. Using green fluorescent protein (GFP) as a non-destructive visual marker allowed us to identify single-cell recipients of T-DNA at an early stage, track their fate and evaluate factors that affect T-DNA delivery. GFP screening was combined with a low level hygromycin selection. Consequently, transgenic plantlets ready to transfer to soil were obtained within 50 days of explant culture. Southern blot- and progeny segregation analyses revealed a single copy T-DNA insert in more than half of the transgenic barley plants. T-DNA/barley genomic DNA junctions were amplified and sequenced. The right T-DNA ends were highly conserved and clustered around the first 4 nucleotides of the right 25 bp border repeat, while the left T-DNA ends were more variable, located either in the left 25 bp border repeat or within 13 bp from the left repeat. T-DNAs were transferred from Agrobacterium to barley with exclusion of vector sequence suggesting a similar molecular T-DNA transfer mechanism as in dicotyledonous plants.  相似文献   

7.
A protocol is described that supports the production of transgenic sugarcane plants ready for transfer to soil within 3 mo from culture initiation. Biolistic gene transfer into cross-sections of immature leaf whorl explants followed by direct somatic embryogenesis resulted in the stable genetic transformation of the commercially important sugarcane cultivar CP 88-1762. Accelerating the production of transgenic sugarcane plants not only saves time and effort but will likely also minimize somaclonal variation. Southern blot analysis revealed simple transgene integration patterns ranging from one to five hybridization products. NPTII-ELISA confirmed that most of the transgenic plants expressed the transgene stably in vegetative progeny. Using a minimal, linear expression cassette (MC) without vector backbone sequences for the biolistic gene transfer and reducing the amount of MC to 10 ng per shot may have led to simple transgene integration and stable transgene expression. Therefore, this protocol has great potential for the generation of commercial transgenic sugarcane events.  相似文献   

8.
Barley, an important member of the cereals, has been successfully transformed through various methods such as particle bombardment, Agrobacterium tumefaciens, DNA uptake, and electroporation. Initially, the transformation in barley concentrated on developing protocols using marker genes such as gus, bar, and hpt. Immature embryos and callus derived from immature embryos were targeted for transformation. Subsequently, genes of agronomic and malting importance have been deployed in barley. Particle bombardment appears to be the preferred choice for barley transformation in the majority of the reports, although Agrobacterium-mediated transformation is being used more often. The current review focuses on the challenges encountered in barley transformation such as somaclonal variation, development of transformation systems for commercial cultivars, gene expression, stability and inheritance, and gene flow. Newer markers such as the green fluorescent protein (gfp), firefly luciferase, and phosphomannose isomerase were found to be useful in the selection of transgenic plants. Tissue-specific promoters such as those for B1-hordein and D-hordein genes, and spike-specific promoters, are increasingly used to drive gene expression. The review also describes recent research on gene-tagging through transformation, insertion of disease resistance, and abiotic stress resistance genes, transformation with genes for improved malting quality, nutrient content, feed quality, and the production of feed enzymes and pharmaceutical compounds.  相似文献   

9.
Transgenic plants of strawberry cultivar Totem were developed by Agrobacterium-mediated transformation using a plasmid vector containing gus and nptII genes. Parallel experiments were carried out with and without repeated subculturing (iterative cultures) for generation of transgenic shoots on selection medium. The selection levels in the non-iterative pathway were kept constant, while in the iterative protocol, stepwise increase of selection pressure was applied at different stages of tissue growth. Rooted transgenic plants obtained via both protocols were outplanted in soil. Random leaf samples of greenhouse-grown transgenics were analysed for the presence of gus gene sequences by Southern hybridization as well as gus expression on leaf and petiole tissues by X-Gluc histological assay. Random leaf samples analysed from individual transgenic events developed under iterative culture were positive for the gus insert as verified by Southern analysis confirming the presence of transgenes and lack of chimaeras. Leaf samples of the transgenic events from the non-iterative protocol were either positive or negative on Southern analysis indicating the chimaeric nature of the transgenic plants. The absence of gus sequences in the transgenic plants grown under the non-iterative protocol reinforced the necessity of iterative cultures along with stepwise increase in selection levels for generating non-chimaeric transgenics in strawberry. The gus expression was highly variable, irrespective of the iterative or non-iterative protocol used for transformation. We conclude that strawberry is highly prone to develop chimaeric transgenics if derived from primary regenerants and that the iterative culture technique effectively converts chimaeras to pure line transgenic plants  相似文献   

10.
Coping with different kinds of biotic and abiotic stresses is the foundation of sustainable agriculture. Although conventional breeding and marker-assisted selection are being employed in mulberry (Morus indica L.) to develop better varieties, nonetheless the longer time periods required for these approaches necessitates the use of precise biotechnological approaches for sustainable agriculture. In an attempt to improve stress tolerance of mulberry, an important plant of the sericulture industry, an encoding late embryogenesis abundant gene from barley (HVA1) was introduced into mulberry plants by Agrobacterium-mediated transformation. Transgenic mulberry with barley Hva1 under a constitutive promoter actin1 was shown to enhance drought and salinity tolerance. Here, we report that overexpression of barley Hva1 also confers cold tolerance in transgenic mulberry. Further, barley Hva1 gene under control of a stress-inducible promoter rd29A can effectively negate growth retardation under non-stress conditions and confer stress tolerance in transgenic mulberry. Transgenic lines display normal morphology to enhanced growth and an increased tolerance against drought, salt and cold conditions as measured by free proline, membrane stability index and PSII activity. Protein accumulation was detected under stress conditions confirming inductive expression of HVA1 in transgenics. Investigations to assess stress tolerance of these plants under field conditions revealed an overall better performance than the non-transgenic plants. Enhanced expression of stress responsive genes such as Mi dnaJ and Mi 2-cysperoxidin suggests that Hva1 can regulate downstream genes associated with providing abiotic stress tolerance. The investigation of transgenic lines presented here demonstrates the acquisition of tolerance against drought, salt and cold stress in plants overexpressing barley Hva1, indicating that Arabidopsis rd29A promoter can function in mulberry.  相似文献   

11.
Xu D  Duan X  Wang B  Hong B  Ho T  Wu R 《Plant physiology》1996,110(1):249-257
A late embryogenesis abundant (LEA) protein gene, HVA1, from barley (Hordeum vulgare L.) was introduced into rice suspension cells using the Biolistic-mediated transformation method, and a large number of independent transgenic rice (Oryza sativa L.) plants were generated. Expression of the barley HVA1 gene regulated by the rice actin 1 gene promoter led to high-level, constitutive accumulation of the HVA1 protein in both leaves and roots of transgenic rice plants. Second-generation transgenic rice plants showed significantly increased tolerance to water deficit and salinity. Transgenic rice plants maintained higher growth rates than nontransformed control plants under stress conditions. The increased tolerance was also reflected by delayed development of damage symptoms caused by stress and by improved recovery upon the removal of stress conditions. We also found that the extent of increased stress tolerance correlated with the level of the HVA1 protein accumulated in the transgenic rice plants. Using a transgenic approach, this study provides direct evidence supporting the hypothesis that LEA proteins play an important role in the protection of plants under water-or salt-stress conditions. Thus, LEA genes hold considerable potential for use as molecular tools for genetic crop improvement toward stress tolerance.  相似文献   

12.
小麦抗白粉病相关基因的转化   总被引:7,自引:0,他引:7  
王华忠  邢丽萍  陈佩度 《遗传》2007,29(2):243-249
利用玉米花青素苷合成调节基因C1-Lc作为报告基因, 通过瞬间表达后愈伤组织表面红色斑点的统计分析, 优化了小麦幼胚愈伤组织的基因枪转化参数。小麦Beclin1类似基因TaTBL和硫代硫酸硫转移酶基因TaTST是2个在白粉菌诱导条件下具有增强表达特性的抗病相关基因。本实验进一步利用基因枪将ubi强启动子控制下的2个基因导入到小麦品种扬麦158的幼胚愈伤组织细胞中, 使用除草剂经两轮选择培养基上的筛选和再生获得抗性植株, 进一步通过抗性植株的PCR分析获得转TaTBL基因植株5株, 转TaTST基因植株6株。转基因植株离体叶片的人工接种实验表明, 外源基因的导入不同程度上增强了植株的白粉病抗性, 表现为延缓了白粉菌的发育。利用玉米花青素苷合成调节基因C1-Lc作为报告基因,通过瞬间表达后愈伤组织表面红色斑点的统计分析,优化了小麦幼胚愈伤组织的基因枪转化参数。小麦Beclin1类似基因TaTBL和硫代硫酸硫转移酶基因TaTST是两个在白粉菌诱导条件下具有增强表达特性的抗病相关基因。本实验进一步利用基因枪将ubi强启动子控制下的两个基因导入到小麦品种扬麦158的幼胚愈伤组织细胞中,使用除草剂经两轮选择培养基上的筛选和再生获得抗性植株,进一步通过抗性植株的PCR分析获得转TaTBL基因植株5株,转TaTST基因植株6株。转基因植株离体叶片的人工接种实验表明,外源基因的导入不同程度上增强了植株的白粉病抗性,表现为延缓了白粉菌的发育。  相似文献   

13.
近年来,植物遗传转化研究有了长足的发展。已经达到能够通过简单的遗传控制手段研究具有新表现型的植物,甚至达到进入商业化的程度。这些手段包括植物生物学的主要研究技术以及植物组织培养和树种改良的一些实用方法。尽管采用农瘤杆菌和鸟枪法等技术的植物遗传转化系统已经得到了广泛的应用,但是在如何开发具有能够得到控制表达的转基因高产植物方面,在如何使所得到的转基因植物远离遗传危害等方面,目前的转化系统遇到了极大的技术挑战。已经提出了各种各样的方法用于将新基因稳定地导入120多种不同植物的核基因组。本文将讨论这些遗传转化系统所需的生物学要求和实际应用方面的需求、基因转化和转基因表达的研究策略、遗传转化植物的鉴定以及转基因植物与大众的认可。本文将分为七个部分加以讨论:一、导言;二 、基因转化到细胞里的方法;三、植物遗传转化策略;四、植物遗传转化的鉴定;五、植物遗传转化的实际应用;六、转基因植物与环境;七、未来植物遗传转化的需求与发展方向。  相似文献   

14.
A rapid and highly efficient method for transformation of sugarcane callus   总被引:1,自引:0,他引:1  
Modern sugarcane cultivars have complex genetic characteristics and low fertility that render their genetic improvement through traditional breeding difficult. Genetic engineering methodology to introduce foreign genes provides new opportunities for the genetic improvement of sugarcane cultivars. One of prerequisites for successful insertion of a gene cassette into the plant genome is the availability of an efficient transformation protocol. An improved protocol for Agrobacterium-mediated transformation of sugarcane is described. Between 85 and 100% of calli transformed using this procedure produced new calli, and 100% of them were positive for the inserted gene. The whole procedure permitted the production of transgenic calli in a short time (1.5 mo). The transformed calli can be cultured further for the production of the inserted gene-encoded enzyme by using cell culture, or they can be regenerated into transgenic plants. This protocol may be implemented also for the generation of transgenic plants from other species.  相似文献   

15.
Advances in cereal protoplast research   总被引:5,自引:0,他引:5  
Beginning in 1986, plants have been regenerated from protoplasts of all of the important cereal species, including wheat, rice, maize, and barley, and grasses such as sugarcane. In addition, somatic hybrids/cybrids as well as transgenic plants with introduced useful agronomic traits have been obtained in several instances. This rapid and impressive progress in the genetic manipulation of cereals has been made possible by two critical technical advances during the past decade: the establishment of embryogenic suspension cultures as a source of totipotent protoplasts and the direct delivery of DNA into protoplasts for genetic transformation.  相似文献   

16.
Summary Transfer of genes from heterologous species provides the means of selectively introducing new traits into crop plants and expanding the gene pool beyond what has been available to traditional breeding systems. With the recent advances in genetic engineering of plants, it is now feasible to introduce into crop plants, genes that have previously been inaccessible to the conventional plant breeder, or which did not exist in the crop of interest. This holds a tremendous potential for the genetic enhancement of important food crops. However, the availability of efficient transformation methods to introduce foreign DNA can be a substantial barrier to the application of recombinant DNA methods in some crop plants. Despite significant advances over the past decades, development of efficient transformation methods can take many years of painstaking research. The major components for the development of transgenic plants include the development of reliable tissue culture regeneration systems, preparation of gene constructs and efficient transformation techniques for the introduction of genes into the crop plants, recovery and multiplication of transgenic plants, molecular and genetic characterization of transgenic plants for stable and efficient gene expression, transfer of genes to elite cultivars by conventional breeding methods if required, and the evaluation of transgenic plants for their effectiveness in alleviating the biotic and abiotic stresses without being an environmental biohazard. Amongst these, protocols for the introduction of genes, including the efficient regeneration of shoots in tissue cultures, and transformation methods can be major bottlenecks to the application of genetic transformation technology. Some of the key constraints in transformation procedures and possible solutions for safe development and deployment of transgenic plants for crop improvement are discussed.  相似文献   

17.
The utility of artificial microRNAs (amiRNAs) to induce loss of gene function has been reported for many plant species, but expression efficiency of the different amiRNA constructs in different transgenic plants was less predictable. In this study, expressions of amiRNAs through the gene backbone of Arabidopsis miR168a were examined by both Agrobacterium-mediated transient expression and stable plant genetic transformation. A corresponding trend in expression of amiRNAs by the same amiRNA constructs between the transient and the stable expression systems was observed in the experiments. Plant genetic transformation of the constructs that were highly expressible in amiRNAs in the transient agro-infiltration assays resulted in generation of transgenic lines with high level of amiRNAs. This provides a simple method for rapid and effective selection of amiRNA constructs used for a time-consuming genetic transformation in plants.  相似文献   

18.
Establishment of an efficient protocol for regeneration and genetic transformation is required in banana for the incorporation of useful traits. Therefore an efficient method has been developed for somatic embryogenesis, plant regeneration and transformation of Cavendish banana cultivar Robusta (AAA). Embryogenic cell suspension culture (ECS) was established using immature male flowers. Percentage appearance of embryogenic callus and distinct globular embryos was 10.3 and 11.1, respectively. ECS obtained was cocultivated under different cocultivation conditions with Agrobacterium tumefaciens strain EHA105 harboring pCAMBIA 1301 plant expression vector. Up to 30 transgenic plants/50 mg settled cell volume (SCV) was obtained with cocultivation in semisolid medium whereas no transgenics could be obtained with parallel experiments carried out in liquid medium. Histochemical GUS assay in different tissues of putatively transformed plants demonstrated expression of uidA gene. Among the putatively transformed plants obtained, a set of 4 were confirmed by PCR analysis and stable integration of the transgene by Southern analysis. GUS specific activity measured by a MUG (4-methylumbelliferyl-β-d-glucuronide) based flourometric assay revealed increase in transient GUS expression in semisolid as well as liquid cocultivation with centrifugation. This is the first report showing somatic embryogenesis and Agrobacterium tumefaciens mediated transformation using embryogenic cell suspension cultures in an important Cavendish banana cultivar Robusta. The present protocol will make possible agronomic improvement of this important commercially grown cultivar by introduction of disease resistance characteristics and antisense-mediated delayed fruit ripening strategies. Further, it will also assist in functional characterization of new gene or promoter elements isolated from this or other cultivars of banana.  相似文献   

19.
20.
Rhodes grass (Chloris gayana) is one of the most important warm-season forage grasses. It is cultivated in tropical and subtropical parts of the world and is mostly used for grazing and hay production. We have established a particle-bombardment transformation protocol for rhodes grass using multiple-shoot clumps (MSCs) as the target tissue. A vector pAHC25 containing a herbicide-resistance gene (bar) together with the beta-glucuronidase (GUS) gene was used in transformation experiments. The most efficient recovery of bialaphos-resistant tissue was achieved when the bombarded MSCs were first cultured for 15 d on bialaphos-free medium before being subjected to selection pressure. The resistant tissues regenerated transgenic plants that displayed GUS gene expression. Under optimized conditions, 251 target pieces yielded 46 transgenic plants from 4 independent transgenic lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号