首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An interesting aspect, when comparing athletes, is the effect of specialized training upon both physiological performance and perceptual responses. To study this, four groups (with six individuals each) served as subjects. Two of these consisted of highly specialized individuals (racing cyclists and marathon runners) and the other two of non-specialized individuals (sedentary and all-round trained). Cycling on a cycle ergometer and running on a treadmill were chosen as modes of exercise. Variables measured included heart rate, blood lactate and perceived exertion, rated on two different scales. Results show a linear increase of both heart rate and perceived exertion (rated on the RPE scale) in all four groups, although at different absolute levels. Blood lactate accumulation, during cycling and running, differentiates very clearly between the groups. When heart rate and perceived exertion were plotted against each other, the difference at the same subjective rating (RPE 15) between cycling and running amounted to about 15-20 beats.min-1 in the non-specialized groups. The cyclists exhibited almost no difference at all as compared to 40 beats.min-1 for the runners. It can be concluded that specialized training changes both the physiological as well as the psychological response to exercise.  相似文献   

2.
The aim of this study was to test the hypothesis that bicycle training may improve the relationship between the global SEMG energy and VO2. We already showed close adjustment of the root mean square (RMS) of the surface electromyogram (SEMG) to the oxygen uptake (VO2) during cycling exercise in untrained subjects. Because in these circumstances an altered neuromuscular transmission which could affect SEMG measurement occurred in untrained individuals only, we searched for differences in the SEMG vs. VO2 relationship between untrained subjects and well-trained cyclists. Each subject first performed an incremental exercise to determine VO2max and the ventilatory threshold, and second a constant-load threshold cycling exercise, continued until exhaustion. SEMG from both vastus lateralis muscles was continuously recorded. RMS was computed. M-Wave was periodically recorded. During incremental exercise: (1) a significant non-linear positive correlation was found between RMS increase and VO2 increase in untrained subjects, whereas the relationship was best fitted by a straight line in trained cyclists; (2) the RMS/VO2 ratio decreased progressively throughout the incremental exercise, its decline being significantly and markedly accentuated in trained cyclists; (3) in untrained subjects, significant M-wave alterations occurred at the end of the trial. These M-wave alterations could explain the non-linear RMS increase in these individuals. During constant-load exercise: (1) after an initial increase, the VO2 ratio decreased progressively to reach a plateau after 2 min of exercise, but no significant inter-group differences were noted; (2) no M-wave changes were measured in the two groups. We concluded that the global SEMG energy recorded from the vastus lateralis muscle is a good estimate of metabolic energy expenditure during incremental cycling exercise only in well-trained cyclists.  相似文献   

3.
Oxygen dissociation curves (ODC) in whole blood and organic phosphate concentrations in red cells were determined in 10 highly trained male athletes (TR), 6 semitrained subjects (ST) who played sports regularly at low intensities and 8 untrained people (UT). In all groups standard ODCs (37 degrees C, pH 7.40, PCO2 approximately 43 Torr) at rest and after a short exhaustive exercise were nearly identical, but PO2 values measured immediately after blood sampling and corrected to standard conditions tended to fall to the right of the in vitro ODC. Elevated P50 in the physically active [28.65 +/- 1.4 Torr (3.81 +/- 0.18 kPa) in ST, 28.0 +/- 1.1 Torr (3.73 +/- 0.15 kPa) in TR, but 26.5 +/- 1.1 Torr (3.53 +/- 0.15 kPa) in UT] were partly caused by different [DPG] (11.9 +/- 1.3 mumol/GHb in UT, 13.3 +/- 1.5 mumol/GHb in TR, 13.8 +/- 2.2 mumol/gHb in ST). There were remarkable differences in the shape of the curves between the groups. The slope "n" in the Hill plot amounted to 2.65 +/- 0.12 in UT, 2.74 +/- in ST and 2.90 +/- 0.11 in the TR (2 p against UT less than 0.001), leading to an elevated oxygen pressure of about 2 Torr (0.27 kPa) at 20% saturation and an augmented oxygen extraction of 5--7 SO2 at a PO2 of about 15 Torr (2kPa), which might be favorable at high workloads. The reason for the phenomenon could be an increased amount of young red cells in the blood of TR, caused by exercise induced hemolysis.  相似文献   

4.
The purpose of the present study was to comprehensively examine oxygen consumption (VO(2)) kinetics during running and cycling through mathematical modeling of the breath-by-breath gas exchange responses to moderate and heavy exercise. After determination of the lactate threshold (LT) and maximal oxygen consumption (VO(2 max)) in both cycling and running exercise, seven subjects (age 26.6 +/- 5.1 yr) completed a series of "square-wave" rest-to-exercise transitions at running speeds and cycling power outputs that corresponded to 80% LT and 25, 50, and 75%Delta (Delta being the difference between LT and VO(2 max)). VO(2) responses were fit with either a two- (LT) exponential model. The parameters of the VO(2) kinetic response were similar between exercise modes, except for the VO(2) slow component, which was significantly (P < 0.05) greater for cycling than for running at 50 and 75%Delta (334 +/- 183 and 430 +/- 159 ml/min vs. 205 +/- 84 and 302 +/- 154 ml/min, respectively). We speculate that the differences between the modes are related to the higher intramuscular tension development in heavy cycle exercise and the higher eccentric exercise component in running. This may cause a relatively greater recruitment of the less efficient type II muscle fibers in cycling.  相似文献   

5.
6.
Resting pulmonary plasma and blood volumes (PPV and PBV), interventricular circulation time (IVCT), cardiac and stroke index (CI and SI), heart rate (HR), total plasma and blood volumes (PV and BV) were determined in athletes (two male groups representing different types of sport activities, and one female group) and compared with those of non-athletes (one male and one female group). In addition to high maximal aerobic power, the athletes were characterized by greater SI, BV and PV and lower resting HR than non-athletes, PPV and PBV were significantly larger and IVCT significantly longer in the trained than in the untrained groups, probably reflecting an improved capacity of the pulmonary circulation. PPV as per cent of PV was almost equal in all the groups, indicating the same distribution of plasma between the pulmonary and systemic circulation. The data also indicate that total blood volume is an important determinant of the magnitude of the pulmonary vascular bed. The increased volume of flowing blood and increased stroke volume in athletes probably allows for a reduction in flow velocity and thereby a reduction in kinetic energy.  相似文献   

7.
8.
Oxygen uptake kinetics in trained athletes differing in VO2max   总被引:1,自引:0,他引:1  
Previous work has shown that when VO2 kinetics are compared for endurance trained athletes and untrained subjects, the highly trained athletes have a faster response time. However, it remains to be determined whether the more rapid adjustment of VO2 toward steady state in athletes is due to VO2max differences or training adaptation alone. One approach to this problem is to study the time course of VO2 kinetics at the onset of work in athletes who differ in VO2max but have similar training habits. Therefore, the purpose of these experiments was to compare the time course of VO2 kinetics at the onset of exercise in athletes with similar training routines but who differ in VO2max. Ten subjects (VO2max range 50-70 ml . kg-1 . min-1) performed 6-minutes of cycle ergometer exercise at approximately 50% VO2max. Ventilation and gas exchange were monitored by open circuit techniques. The data were modeled with a single component exponential function incorporating a time delay, (TD); delta VO2t = delta VO2ss (1-e-t-TD/tau), where tau is the time constant delta VO2t is the increase in VO2 at time t and delta VO2ss is the steady-rate increment above resting VO2. Kinetic analysis revealed a range of VO2 half times from 21.6 to 36.0 s across subjects with a correlation coefficient of r = -0.80 (p less than 0.05) between VO2max and VO2 half time. These data suggest that in highly trained individuals with similar training habits, those with a higher VO2max achieve a more rapid VO2 adjustment at the onset of work.  相似文献   

9.
The purpose of this study was to compare the kinetics of the oxygen uptake (VO(2)) response of boys to men during treadmill running using a three-phase exponential modeling procedure. Eight boys (11-12 yr) and eight men (21-36 yr) completed an incremental treadmill test to determine lactate threshold (LT) and maximum VO(2). Subsequently, the subjects exercised for 6 min at two different running speeds corresponding to 80% of VO(2) at LT (moderate exercise) and 50% of the difference between VO(2) at LT and maximum VO(2) (heavy exercise). For moderate exercise, the time constant for the primary response was not significantly different between boys [10.2 +/- 1.0 (SE) s] and men (14.7 +/- 2.8 s). The gain of the primary response was significantly greater in boys than men (239.1 +/- 7.5 vs. 167.7 +/- 5.4 ml. kg(-1). km(-1); P < 0.05). For heavy exercise, the VO(2) on-kinetics were significantly faster in boys than men (primary response time constant = 14.9 +/- 1.1 vs. 19.0 +/- 1.6 s; P < 0.05), and the primary gain was significantly greater in boys than men (209.8 +/- 4.3 vs. 167.2 +/- 4.6 ml. kg(-1). km(-1); P < 0.05). The amplitude of the VO(2) slow component was significantly smaller in boys than men (19 +/- 19 vs. 289 +/- 40 ml/min; P < 0.05). The VO(2) responses at the onset of moderate and heavy treadmill exercise are different between boys and men, with a tendency for boys to have faster on-kinetics and a greater initial increase in VO(2) for a given increase in running speed.  相似文献   

10.
To compare physiological responses and propulsion technique of able bodied subjects with no prior experience of wheelchairs (AB) and wheelchair dependent subjects (WD), ten AB and nine WD performed a 30-s sprint test in a wheelchair ergometer. The WD had spinal cord injuries with a lesion at T8 or lower. The WD and AB did not show significantly different physiological responses. The power values averaged for the right wheel over the 30 s of the test were 50.2 (SD 14.7) W and 48.0 (SD 4.4) W for WD and AB, respectively. No significant differences in torque application could be discerned, although WD subjects seemed to have a more flattened torque curve with a smaller negative deflection at the beginning of the push. The WD applied a significantly higher horizontal propulsive force to the handrims but did not apply force more effectively. The percentages of effective force to total propulsive force were 61 (SD 16)% for WD and 57 (SD 4)% for AB. With regard to the kinematic parameters, AB followed the handrims significantly longer than WD (end angle AB 65°, WD 44°), started the push phase with their arms more in retroflexion and flexed their trunks further forward. The AB did however show a movement pattern comparable to that of wheelchair athletes measured in a comparable experiment. It could not be decided conclusively that inexperience in wheelchair propulsion led to a less effective propulsion technique. Despite the selection of WD with respect to lesion level, interindividual differences in terms of level of training may have been responsible for the absence of significant results.  相似文献   

11.
12.
To study the cause of the increased blood volume of endurance-trained athletes we assessed the renal blood volume regulating mechanisms in eight untrained (UT) and eight endurance-trained (TR) male subjects during a 4 h head-out immersion. In TR plasma volume remained constant whereas it decreased in UT by 2.4 ml/kg (p less than 0.025). Immersion diuresis of TR was only half as high as in UT (peak values: 3.22 ml/min in UT, 1.60 ml/min in TR). Free water clearance remained approximately constant in UT but temporarily decreased in TR (p less than 0.001). This points to poor or even absent inhibition of antidiuretic hormone secretion in the latter group. Osmolar clearance increased less in TR than in UT (p less than 0.02) which was partly due to a delayed increase of glomerular filtration rate. Plasma osmolality, creatinine, and protein concentrations as well as hematocrit values were reduced during immersion to a similar extent in both groups. The results indicate a reduced renal response of endurance-trained subjects to congestion of the low-pressure system resulting in an increase in blood volume.  相似文献   

13.
14.
15.
Short, Kevin R., and Darlene A. Sedlock. Excesspostexercise oxygen consumption and recovery rate in trained anduntrained subjects. J. Appl. Physiol.83(1): 153-159, 1997.The purpose of this study was todetermine whether aerobic fitness level would influence measurements ofexcess postexercise oxygen consumption (EPOC) and initial rate ofrecovery. Twelve trained [Tr; peak oxygen consumption(O2 peak) = 53.3 ± 6.4 ml · kg1 · min1]and ten untrained (UT;O2 peak = 37.4 ± 3.2 ml · kg1 · min1)subjects completed two 30-min cycle ergometer tests on separate days inthe morning, after a 12-h fast and an abstinence from vigorous activityof 24 h. Baseline metabolic rate was established during the last 10 minof a 30-min seated preexercise rest period. Exercise workloads weremanipulated so that they elicited the same relative, 70%O2 peak (W70%), orthe same absolute, 1.5 l/min oxygen uptake(O2) (W1.5), intensity forall subjects, respectively. RecoveryO2, heart rate (HR), andrespiratory exchange ratio (RER) were monitored in a seated positionuntil baseline O2 wasreestablished. Under both exercise conditions, Tr had shorter EPOCduration (W70% = 40 ± 15 min, W1.5 = 21 ± 9 min) than UT(W70% = 50 ± 14 min; W1.5 = 39 ± 14 min), but EPOC magnitude(Tr: W70% = 3.2 ± 1.0 litersO2, W1.5 = 1.5 ± 0.6 liters O2; UT: W70% = 3.5 ± 0.9 liters O2, W1.5 = 2.4 ± 0.6 liters O2) was not different between groups. The similarity of Tr and UT EPOCaccumulation in the W70% trial is attributed to the parallel declinein absolute O2 during mostof the initial recovery period. Tr subjects had faster relative declineduring the fast-recovery phase, however, when a correction for theirhigher exerciseO2 was taken.Postexercise O2 was lowerfor Tr group for nearly all of the W1.5 trial and particularly duringthe fast phase. Recovery HR kinetics were remarkably similar for bothgroups in W70%, but recovery was faster for Tr during W1.5. RER valueswere at or below baseline throughout much of the recovery period in both groups, with UT experiencing larger changes than Tr in both trials. These findings indicate that Tr individuals have faster regulation of postexercise metabolism when exercising at either thesame relative or same absolute work rate.

  相似文献   

16.
17.
Despite many reports of long-lasting elevation of metabolism after exercise, little is known regarding the effects of exercise intensity and duration on this phenomenon. This study examined the effect of a constant duration (30 min) of cycle ergometer exercise at varied intensity levels [50 and 70% of maximal O2 consumption (VO2max)] on 3-h recovery of oxygen uptake (VO2). VO2 and respiratory exchange ratios were measured by open-circuit spirometry in five trained female cyclists (age 25 +/- 1.7 yr) and five untrained females (age 27 +/- 0.8 yr). Postexercise VO2 measured at intervals for 3 h after exercise was greater (P less than 0.01) after exercise at 50% VO2max in trained (0.40 +/- 0.01 l/min) and untrained subjects (0.39 +/- 0.01 l/min) than after 70% VO2max in (0.31 +/- 0.02 l/min) and untrained subjects (0.29 +/- 0.02 l/min). The lower respiratory exchange ratio values (P less than 0.01) after 50% VO2max in trained (0.78 +/- 0.01) and untrained subjects (0.80 +/- 0.01) compared with 70% VO2max in trained (0.81 +/- 0.01) and untrained subjects (0.83 +/- 0.01) suggest that an increase in fat metabolism may be implicated in the long-term elevation of metabolism after exercise. This was supported by the greater estimated fatty acid oxidation (P less than 0.05) after 50% VO2max in trained (147 +/- 4 mg/min) and untrained subjects (133 +/- 9 mg/min) compared with 70% VO2max in trained (101 +/- 6 mg/min) and untrained subjects (85 +/- 7 mg/min).  相似文献   

18.
19.
The effects of carbohydrate and fat intake on exercise-induced fatigue was investigated in 30 untrained--(VO2max of 40.6 +/- 2.7 ml X kg-1 X min-1) and 24 trained-subjects (VO2max of 52.3 +/- 2.7 ml X kg-1 X min-1) performing a 34 km march with a 25 kg backpack. Marching time was 8 1/2 h and 6 1/3 h in the untrained and trained-subjects respectively. The subjects were divided into 3 dietary groups. One group had free access to sugar cubes, the second group was offered almonds and the third one served as a control. Triglyceride levels decreased by 65 mg X dl-1 in untrained, and by 115 mg X dl-1 in trained subjects, while blood glucose remained at normal levels. In the untrained subjects, ingestion of almonds delayed the subjective sensation of exhaustion, while 50% of the controls and the sugar consuming subjects complained of exhaustion. The data suggest that ingestion of food containing fat delays exercise induced exhaustion or fatigue to a greater extent than does carbohydrate ingestion.  相似文献   

20.
The kinetics underlying plasma epinephrine concentrations were studied. Six athletes (T) and six sedentary males (C) were given intravenous infusions of 3H-labeled epinephrine, after which arterial blood was drawn. They rested sitting and bicycled continuously to exhaustion (60 min at 125 W, 60 min at 160 W, 40 min at 200 W, and 240 W to the end). Work time was 154 +/- 13 (SE) (T) and 75 +/- 6 (C) min. At rest, epinephrine clearance was identical [28.4 +/- 1.3 (T) vs. 29.2 +/- 1.8 (C) ml . kg-1 . min-1], but plasma concentration [1.42 +/- 0.27 (T) vs. 0.71 +/- 0.16 (C) nmol . l-1] and, accordingly, secretion [2.9 +/- 0.7 vs. 1.5 +/- 0.4 nmol . min-1] were higher (P less than 0.05) in T than C subjects. Epinephrine clearance was closely related to relative work load, decreasing from 15% above the basal level at 30% of maximal O2 uptake (VO2 max) to 22% below at 76% of VO2 max. Epinephrine concentrations increased much more with work intensity than could be accounted for by changes in clearance and were, at exhaustion, higher (P less than 0.05) in T (7.2 +/- 1.6) than in C (2.5 +/- 0.7 nmol . l-1) subjects despite similar glucose, heart rate, and hematocrit values. At a given load, epinephrine clearance rapidly became constant, whereas concentration increased continuously. Forearm extraction of epinephrine invalidated use of blood from a cubital vein or a hand vein arterialized by hot water in turnover measurements. During exercise, changes in epinephrine concentrations reflect changes in secretion rather than in clearance. Training may increase adrenal medullary secretory capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号