首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for ether phospholipid analysis has been devised, based on the selective destruction of diacyl phospholipids by guinea pig phospholipase A1 and of plasmalogens by acidolysis. The paper describes optimal conditions allowing a specific degradation of diacyl phospholipids by the enzyme(s). This requires the incubation of a total lipid extract in the presence of 2.4 mM sodium deoxycholate, at pH 8.0, at a temperature of 42 degrees C. As shown with various radioactive markers, all the diacyl phospholipids become degraded, whereas sphingomyelin and ether phospholipids remain refractory to phospholipase A1 attack. Phospholipids are then separated by a bidimensional thin-layer chromatography involving the exposure of the plates to HCl fumes between the two runs, in order to hydrolyse plasmalogens. Selectivity of both hydrolytic procedures is further demonstrated upon analysis of acetyl diacylglycerol derived from phospholipids. Various phospholipids can thus be determined by phosphorus measurement using sphingomyelin as an internal standard. By this way, it is shown that Krebs II cells present a very high content of ether phospholipid species (around 25% of total). Among these, about 50% are alkyl forms in ethanolamine phosphoglycerides, whereas this value reaches 70% in choline phosphoglycerides.  相似文献   

2.
The metabolism of 20:4 (arachidonic acid) in alkenylacyl, alkylacyl and diacyl lipid classes in choline glycerophospholipids (CGP) and ethanolamine glycerophospholipids (EGP) in rabbit alveolar macrophages was examined. [3H]20:4 was very rapidly incorporated into diacyl glycerophosphocholine (GPC). After the removal of free 20:4, the radioactivity was gradually lost from diacyl GPC. Concomitantly, the radioactivities in alkylacyl GPC and alkenylacyl glycerophosphoethanolamine (GPE) were increased, indicating that 20:4 was mobilized from diacyl GPC to alkylacyl GPC and alkenylacyl GPE. The mobilization was considered to be a 20:4-specific event. The gradual accumulation of 20:4 in ether phospholipids leads to a high abundance of 20:4 in these lipids. These results suggest metabolic relationships between 20:4 and ether phospholipids, including platelet-activating factor (PAF).  相似文献   

3.
The present experiments characterized the incorporation and redistribution of arachidonic acid in diacyl and ether phospholipids of bovine aortic endothelial cells. Confluent cultures were either continuously labeled or pulse labeled with [14C]arachidonic acid. Major lipid classes and ether-linked subclasses of phosphatidyl-ethanolamine (PE) and phosphatidylcholine (PC) were separated by high-performance liquid chromatography and thin-layer chromatography. During continuous labeling, total incorporation of arachidonic acid reached a peak at 8 h and was essentially constant up to 24 h. After 8 h, net label in total PC declined, whereas that in total PE continued to rise. In pulse labeling experiments radioactivity in diacyl PC continuously declined with concomitant increases in both diacyl- and alkenylacyl PE. The data demonstrate that transfer of arachidonic acid from diacyl PC to both diacyl- and alkenylacyl PE occurs in endothelial cells. In contrast to previous observations in platelets, transfer of arachidonic acid to alkenylacyl PE did not require agonist stimulation. This pathway may contribute to the enrichment of endothelial cell PE with arachidonic acid with the potential for subsequent metabolism to prostacyclin.  相似文献   

4.
The common mobile phase hexane/isopropanol/water used for separation of phospholipids on high-performance liquid chromatography silica columns poses several problems, such as incomplete separation and rapid column deterioration. By inclusion of 5 mM ammonium sulfate in the aqueous phase, we were able to substantially improve the chromatographic resolution and obtain complete separation of phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, lysophosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, cardiolipin, phosphatidylglycerol, and sphingomyelin. In addition, ammonium sulfate prevented column degeneration and greatly improved reproducibility. A new quantitation method for alkenylacyl, alkylacyl, and diacyl forms of phospholipids was also developed based on derivatization with [(3)H]acetic anhydride. Separation and quantitation of the radioactive acetyl diradylglycerols were performed by straight-phase HPLC coupled to a radioactive flow detector and enabled detection of the various ether analogues at the picomole level with high reproducibility. The described methods are mild and nondestructive and can therefore be easily combined with analysis of either molecular species or fatty acid and aldehyde composition of the individual phospholipids.  相似文献   

5.
The thrombin-dependent enrichment of alkenylacyl ethanolamine phosphoglyceride in [14C]eicosapentaenoic acid [( 14C]EPA) was demonstrated and compared with [3H]arachidonic acid [( 3H]AA) following the simultaneous prelabelling of individual human platelet phospholipids with these two fatty acids. The alkenylacyl, diacyl, and alkylacyl classes of ethanolamine phosphoglycerides (PE) were separated by thin-layer chromatography as their acetylated derivatives after hydrolysis of the parent phospholipid with phospholipase C. The ratios of [3H]/[14C] for the increased radioactivity appearing in alkenylacyl PE following 60 and 120 s of thrombin stimulation were the same as the corresponding ratio (2.0) found in the choline phosphoglycerides (PC) from control (unstimulated) platelets. These results suggest no significant selectivity between EPA and AA in the thrombin-stimulated transfer of these fatty acids from diacyl PC to alkenylacyl PE. The present findings may possibly bear some relevance to the altered platelet reactivity and (or) decreased thromboxane A2 formation observed in human subjects following the ingestion of marine lipid containing EPA.  相似文献   

6.
A study of the polar lipids of Clostridium novyi NT has revealed the presence of phosphatidylethanolamine (PE) and cardiolipin as major phospholipids with smaller amounts of phosphatidylglycerol (PG), lysyl-PG and alanyl-PG. Other minor phospholipids included phosphatidic acid, CDP-diacylglycerol, phosphatidylserine (PS) and phosphatidylthreonine (PT). PE, PG and amino acyl PG were present in both the diacyl and alk-1'-enyl acyl (plasmalogen) forms and cardiolipin plasmalogens were found to contain one or two alk-1'-enyl chains. In contrast, the precursor lipids phosphatidic acid, CDP-diacylglycerol and PS were present almost exclusively as diacyl phospholipids. These findings are consistent with the hypothesis that plasmalogens are formed from diacylated phospholipids at a late stage of phospholipid formation in Clostridium species. This novel pathway contrasts with the route in animals in which a saturated ether bond is formed at an early stage of plasmalogen biosynthesis and the alk-1-enyl bond is formed by an aerobic mechanism.  相似文献   

7.
(1) Krebs II ascites cells were taken as a model of the neoplastic cells to investigate the transverse distribution of phospholipids in the plasma membrane. The experimental procedure was based on non-lytic degradation of phospholipids in the intact cell by Naja naja phospholipase A2 and Staphylococcus aureus sphingomyelinase C and on phospholipid analysis of purified plasma membranes. It was shown that the three major phospholipids, i.e., phosphatidylcholine, phosphatidylethanolamine and sphingomyelin, are randomly distributed between the two halves of the membranes, whereas phosphatidylserine remains located in the inner leaflet. (2) The membrane localization of phosphatidylcholine and phosphatidylethanolamine subclasses (diacyl, alkylacyl and alkenylacyl) was also examined, using a new procedure of ether-phospholipid determination. The method involves a selective removal of diacyl species by guinea pig pancreas phospholipase A1 and of alkenylacyl species by acidolysis. This analysis revealed a 50% increase of ether phospholipids in the plasma membrane as compared to the whole cell (36.5 and 23.1% of total phospholipid, respectively). Furthermore, a strong membrane asymmetry was demonstrated for the three phosphatidylcholine subclasses, since 1-alkyl-2-acyl-sn-glycerol-3-phosphocholine (alkylacyl-GPC) was entirely found in the inner leaflet, whereas both diacyl- and alkenylacyl-GPC displayed an external localization. The same pattern was observed for phosphatidylethanolamine subclasses, except for 1-alkenyl-2-acyl-sn-glycero-3-phosphoethanolamine, which was found randomly distributed. These results are discussed in relation to the process of cell malignant transformation and to the biosynthesis of platelet-activating factor (PAF-acether or 1-alkyl-2-acetyl-GPC).  相似文献   

8.
Plasmalogens are a unique subclass of glycerophospholipids characterized by the presence of a vinyl ether bond at the sn-1 position of the glycerol backbone, and they are found in high concentration in cellular membranes of many mammalian tissues. However, separation of plasmalogens as intact phospholipids has not been reported. This article describes a high-performance liquid chromatographic method that can separate intact ethanolamine plasmalogens (pl-PEs) and choline plasmalogens (pl-PCs) as well as all other phospholipid classes usually found in mammalian tissues by a single chromatographic run. The separation was obtained using an HPLC diol column and a gradient of a hexane/isopropanol/water system containing 1% acetic acid and 0.08% triethylamine. The HPLC method allowed a clear separation of plasmalogens from their diacyl analogues. The HPLC method, as applied to the study of peroxidation in human erythrocytes by a hydroperoxide, demonstrated that pl-PEs were targeted twice as much as their diacyl analogues.  相似文献   

9.
It has been demonstrated that the alkenylacyl class of ethanolamine phospholipid (PE) represents one of the major forms of eicosapentaenoic acid (EPA)-containing phospholipid in the circulating platelets isolated from human subjects consuming a fish oil concentrate. Since the alkenylacyl PE from human platelets is enriched in the eicosanoid precursor arachidonic acid (AA) and the n-6 polyunsaturate adrenic acid (AdA), it was of interest to study changes in alkenylacyl PE fatty acid composition upon fish oil supplementation. Healthy volunteers were given 20 capsules of MaxEPA daily (3.6 g of EPA plus 2.4 g of docosahexaenoic acid, DHA) for 6 weeks followed by a 6-week recovery period. Washed platelet suspensions were prepared and the fatty acid compositions of the phospholipid components were evaluated by thin-layer and gas-liquid chromatography at weeks 0, 3, 6, 9, and 12. Fatty acid composition changes were more pronounced in the alkenylacyl PE than in other platelet phospholipids as a result of fish oil consumption. The alkenylacyl PE exhibited a greater drop (by 20.3 mol%, i.e., from 72.0 to 51.7 mol%) in AA than diacyl PE (by 1.6 mol%) or total (predominantly diacyl) choline phospholipids (PC) (by 4.5 mol%). In alkenylacyl PE, the predominant reservoir of AdA in human platelet phospholipid, a dramatic reduction in the level of AdA also resulted with MaxEPA supplementation (from 7.9 to 3.1 mol%); diacyl PE and total PC decreased by 0.6 and 0.3 mol%, respectively. With respect to the n-3 fatty acids, EPA rose by 12.5 mol% in alkenylacyl PE, compared to only 3.8 and 2.5 mol% in diacyl PE and total PC, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In rabbit platelet membranes, the contents of alkenylacyl phospholipids (plasmalogen) were 56% of phosphatidylethanolamine and 3% of phosphatidylcholine. This uneven distribution of plasmalogens in each phospholipid class could be attributed to the different substrate specificity of ethanolaminephosphotransferase (EC 2.7.8.1) and cholinephosphotransferase (EC 2.7.8.2). The properties of the enzymes were studied, using endogenous diglycerides and CDP-[3H]ethanolamine or CDP-[14C]choline as substrates. The newly formed phospholipids were mainly diacyl and alkenylacyl and only rarely alkylacyl type. The ratios of the labeled alkenylacyl to diacyl type of phospholipids clearly varied with the concentrations of CDP-ethanolamine or CDP-choline. When 1, 10, and 30 microM CDP-[3H]ethanolamine were used, the labeled phospholipids contained 53, 37, and 27% of the alkenylacyl type, respectively. The apparent Km for CDP-ethanolamine to synthesize alkenylacyl and diacyl types were 2.2 and 8.1 microM. On the other hand, when 1, 10, and 30 microM CDP-[14C]choline were used, the labeled lipids contained 10, 17, and 24% alkenylacyl type, respectively. The apparent Km for CDP-choline to synthesize alkenylacyl and diacyl types were 24 and 4.3 microM. Further, the syntheses of diacyl type of phosphatidylethanolamine and the alkenylacyl type of phosphatidylcholine were markedly inhibited by unlabeled CDP-choline and CDP-ethanolamine, respectively. The two enzymes had opposite substrate specificities, and ethanolaminephosphotransferase showed a high preference to plasmalogen synthesis, especially in the presence of CDP-choline.  相似文献   

11.
(1) Krebs II ascites cells were taken as a model of the neoplastic cells to investigate the transverse distribution of phospholipids in the plasma membrane. The experimental procedure was based on non-lytic degradation of phospholipids in the intact cell by Naja naja phospholipase A2 and Staphylococcus aureus sphingomyelinase C and on phopholipid analysis of purified plasma membranes. It was shown that the three major phospholipids, i.e., phosphatidylcholine, phosphatidylethanolamine and sphingomyelin, are randomly distributed between the two halves of the membranes, whereas phosphatidylserine remains located in the inner leaflet. (2) The membrane localization of phosphatidylcholine and phosphatidylethanolamine subclasses (diacyl, alkylacyl and alkenylacyl) was also examined, using a new procedure of ether-phospholipid determination. The method involves a selective removal of diacyl species by guinea pig pancreas phospholipase A1 and of alkenylacyl species by acidolysis. This analysis revealed a 50% increase of ether phospholipids in the plasma membrane as compared to the whole cell (36.5 and 23.1% of total phospholipid, respectively). Furthermore, a strong membrane asymmetry was demonstrated for the three phosphatidylcholine subclasses, since 1-alkyl-2-acyl-sn-glycerol-3-phosphocholine (alkylacyl-GPC) was entirely found in the inner leaflet, whereas both diacyl- and alkenylacyl-GPC displayed an external localization. The same pattern was observed for phosphatidylethanolamine subclasses, except for 1-alkenyl-2-acyl-sn-glycero-3-phosphoethanolamine, which was found randomly distributed. These results are discussed in relation to the process of cell malignant transformation and to the biosynthesis of platelet-activating factor (PAF-acether or 1-alkyl-2-acetyl-GPC).  相似文献   

12.
1. Alkenylacyl, alkylacyl and diacyl phospholipids were analyzed in the spermatozoa of the sea urchin, Hemicentrotus pulcherrimus. 2. Choline phosphoglycerides (CPG) contained alkylacyl component (19%) in addition to the diacyl component (81%), and alkenylacyl analog was present in a trace amount. The ethanolamine phosphoglycerides (EPG) contained alkenylacyl (51%), alkylacyl (2%) and diacyl (47%) components and the serine phosphoglycerides (SPG), alkylacyl (9%) and diacyl (91%) derivatives. 3. Analysis by gas-liquid chromatography indicated that the fatty chain at the 1-position in alkenylacyl, alkylacyl and diacyl compounds of CPG, EPG and SPG was mainly composed of saturated and monoenoic types (16:0, 18:0, 18:1 and 20:1). In contrast, considerable amounts of polyunsaturated types (20:4 and 20:5) were noted at the 2-position.  相似文献   

13.
High levels of ether phospholipids were found in rat platelets. Alkylacyl compounds constituted 18 and 29% of glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE). Alkenylacyl compounds, not detected in GPC, represented 40% of GPE. Arachidonate comprised 60%, 42% and 26% of the acyl residues in the sn-2 position of alkenylacyl-GPE, alkylacyl-GPE and alkylacyl-GPC respectively. Based on all arachidonate being linked to the sn-2 position of the diacyl species, the arachidonate level was 47% in diacyl-GPE and 30% in diacyl-GPC. The incorporation and metabolic fate of arachidonate in various phospholipid classes of resting platelets was examined. Arachidonate was essentially recovered in the diacyl phospholipids and very poorly in alkylacyl- and alkenylacyl-GPE and GPC after 30 min incubation in the presence of [14C]arachidonic acid. Upon reincubation of the platelets after removal of free arachidonate, the radioactivity was gradually lost from diacyl-GPC. Concomitantly, the radioactivities in alkylacyl-GPC, alkylacyl-GPE, alkenylacyl-GPE and to a lower extent in diacyl-GPE were increased. Labelling of glycerophosphoinositol was not changed. This labelling transfer was linear up to 5-6 h, except for alkylacyl-GPC; then labelling remained constant. These data strongly suggest that free arachidonate incorporation through the Lands pathway occurs only for diacyl species and that arachidonate incorporation into the ether phospholipids is achieved by exchange from diacyl-GPC. Based on specific activities related to phosphorus content, the arachidonate incorporation rates into diacyl-GPE and diacyl-GPC were approximately equivalent. The very large differences between specific radioactivities related to arachidonate observed at the starting reincubation time were strongly attenuated when labelling equilibrium was reached. The turnover rate by this exchange pathway was higher in alkylacyl-GPC than in alkyl- and alkenylacyl-GPE. This finding agrees with the selectivity for arachidonate observed in the acylation of PAF-acether in human neutrophils [Chilton, O'Flaherty, Ellis, Swendsen & Wykle (1983) J. Biol. Chem. 258, 7268-7271].  相似文献   

14.
To investigate the stimulus-linked metabolism of platelet phosphatidylethanolamine plasmalogen (PEP) which is not separable from diacyl PE by conventional methods, phospholipids extracted from stimulated platelets prelabelled with 3H-arachidonate (AA) were analyzed by high performance liquid chromatography (HPLC) reported by us (Thrombos. Res. 36, 335, 1984 & 42, 461, 1986). When washed human platelets were stimulated by thrombin or A23187, the amount of PEP monitored by optical density was significantly decreased in consort with phosphatidylcholine (PC), indicating an active participation of PEP in the liberation of AA. Unlike other major phospholipids, PEP hardly incorporated 3H-AA in the resting state but upon stimulation gradual but significant uptake of 3H-AA by PEP was observed. The amount of uptake was not affected by the level of cytosolic free Ca2+ or by the amount of liberated AA, ruling out a direct participation of this unique reacylation process as negative feed back system.  相似文献   

15.
The principal lipids associated with the electron transport membrane of Haemophilus parainfluenzae are phosphatidylethanolamine (78%), phosphatidylmonomethylethanolamine (0.4%), phosphatidylglycerol (18%), phosphatidylcholine (0.4%), phosphatidylserine (0.4%), phosphatidic acid (0.2%), and cardiolipin (3.0%). Phospholipids account for 98.4% of the extractible fatty acids. There are no glycolipids, plasmalogens, alkyl ethers, or lipo amino acid esters in the membrane lipids. Glycerol phosphate esters derived from the phospholipids by mild alkaline methanolysis were identified by their staining reactions, mobility on paper and ion-exchange column chromatography, and by the molar glycerol to phosphate ratios. Eleven diacyl phospholipids can be separated by two-dimensional thin-layer chromatography. Each lipid served as a substrate for phospholipase D, and had a fatty acid to phosphate ratio of 2:1. Each separated diacyl phospholipid was deacylated and the glycerol phosphate ester was identified by paper chromatography in four solvent systems. Of the 11 separated phospholipids, 3 were phosphatidylethanolamines, 2 were phosphatidylserines, and 2 were phosphatidylglycerols. Phosphatidylcholine, cardiolipin, and phosphatidic acid were found at a single location. Phosphatidylmonomethylethanolamine was found with the major phosphatidylethanolamine. Three distinct classes of phospholipids are separable according to their relative fatty acid compositions. (i) The trace lipids consist of two phosphatidylethanolamines, two phosphatidylserines, phosphatidylcholine, phosphatidic acid, and a phosphatidylglycerol. Each lipid represents less than 0.3% of the total lipid phosphate. These lipids are characterized by high proportions of the short (C(10) to C(14)) and long (C(19) to C(22)) fatty acids with practically no palmitoleic acid. (ii) The major phospholipids (93% of the lipid phosphate) are phosphatidylethanolamine, phosphatidylmonomethylethanolamine, and phosphatidylglycerol. These lipids contain a low proportion of the short (C(19)) fatty acids. Palmitic and palmitoleic acids represent over 80% of the total fatty acids. (iii) The fatty acid composition of the cardiolipin is intermediate between the other two classes. Both palmitoleic and the longer fatty acids represent a significant proportion of the total fatty acid.  相似文献   

16.
The effect of blood serum on the stability of small unilamellar vesicles consisting of 1-O-(1'-alkenyl)-2-acyl-sn-glycerophosphocholine (choline plasmalogen) or of the alkylacyl-, dialkyl- and diacyl analogs was evaluated by measuring either release of entrapped calcein or transfer of phospholipids from vesicles to serum high-density lipoproteins. The following order of stability was found: alkenyloleoylGPC greater than dioleoylGPC greater than di-O-octadecenylGPC greater than acyloleoylGPC = egg phosphatidylcholine = alkyloleoylGPC. AlkyloleoylGPC and acyloleoylGPC had aliphatic chain compositions similar to that of alkenyloleoylGPC. From the results obtained it is concluded that stability of vesicles in the presence of serum depends on vesicle size (larger vesicles are more stable) and on the type of bond (ether or ester) in position 2 of glycerol. Dioctadecenyl vesicles are about the same size as alkylacylGPC vesicles, but are significantly more stable in the presence of serum. Thus, it appears that an ester bond in position 2 of glycerol (which is replaced by an ether bond in dioctadecenylglycerol) favors the interaction of phospholipids with serum high-density lipoproteins or lipid-exchange proteins. The addition of cholesterol greatly enhances vesicle stability; among the vesicles used in this study those composed of alkenylacylGPC plus 30 mol% cholesterol were most resistant to disruption by serum. Experiments with sn-1 and sn-3 enantiomers of alkylacylGPC and diacylGPC have shown that interaction of vesicle membranes with serum components is independent of the steric configuration of vesicle phospholipids.  相似文献   

17.
A highly sensitive method for the separation and quantitative measurement of phospholipids containing primary amino groups, such as phosphatidylethanolamine, phosphatidylserine and lysophosphatidylethanolamine, is described. The method involves a simple and quantitative derivative formation of the phospholipids containing amino groups to their u.v.-absorbing biphenylcarbonyl derivatives. These have molar extinction coefficients of about 23,000 at 268nm. The phospholipid derivatives are then separated and non-destructively determined by high-performance liquid chromatography. The amino phospholipids containing vinyl ether bonds (plasmalogens) can be determined separately from the diacyl- and alkylacyl-amino phospholipids. The lower limit of detection by high-performance liquid-chromatographic analysis of the phospholipid derivatives is about 10-13pmol or 0.3-0.4ng of phospholipid P. The quantitative range of derivative formation and analysis by high-performance liquid chromatography of the phospholipids containing amino groups was shown to be 10-500nmol. The method was shown to be applicable to the analysis of phospholipids containing amino groups in tissue samples.  相似文献   

18.
Phosphatidylethanolamines in which the polar headgroup is N-acylated by a long-chain fatty acid (N-acyl PEs) are present in many plasma membranes under normal conditions, and their content increases dramatically in response to membrane stress in a variety of organisms. The thermotropic phase behavior of a homologous series of saturated N-acyl PEs, in which the length of the N-acyl chain is equal to that of the O-acyl chains attached at the glycerol backbone, has been investigated by differential scanning calorimetry (DSC). All fully hydrated N-acyl PEs with even chain lengths from C-12 to C-18 exhibit sharp endothermic chain-melting phase transitions in the absence of salt and in 1 M NaCl. Cooperative chain-melting is demonstrated directly by the temperature dependence of the electron spin resonance spectra from probe phospholipids bearing a spin label group in the acyl chain. The calorimetric transition enthalpy and the transition entropy obtained from DSC depend approximately linearly on the chain length with incremental values per CH2 group that exceed those of normal diacyl phosphatidylethanolamines, but to an extent that underrepresents the additional N-acyl chain. A thermodynamic model is constructed for the chain-length dependences and end effects of the calorimetric quantities, which includes a deficit proportional to the difference in O-acyl and N-acyl chain lengths for nonmatched chains, as is found and justified structurally for mixed-chain diacyl phospholipids. From data on the chain-length dependence of N-acyl diC16PEs, it is then deduced that the N-acyl chains are less well packed than the O-acyl chains and, from the data on the matched-chain N-acyl PEs, that the O-acyl chain packing is similar to that in normal diacyl PEs. The gel-to-fluid phase transition temperatures of the N-acyl PEs in the absence of salt are practically the same as those of the normal diacyl PEs of the corresponding chain lengths, although the transition enthalpies and entropies are appreciably greater, indicating entropy-enthalpy compensation. In 1 M NaCl, the transition temperatures are 3-4.5 degrees higher than in the absence of salt, representing the contribution of the electrostatic surface potential of the N-acyl PEs.  相似文献   

19.
Abstract The Antarctic methanogen Methanococcoides burtonii contained only diether phospholipids. These membrane components were analysed by gas chromatography and gas chromatography mass spectrometry. Of particular interest was the occurrence of unsaturated diether lipids in M. burtonii ; unsaturated ether lipids accounted for 57% of the diether phospholipids. To our knowledge, unsaturated ether lipids have not been previously reported in a methanogen. The presence of the unsaturated ether lipids in M. burtonii is probably the result of temperature adaptation by the bacterium. It may be possible to use these components as a chemical signature for methanogens in Antarctic and Southern Ocean environments.  相似文献   

20.
Selected molecular species of rat testicular 1,2-diradyl-sn-glycero-3-phosphocholines and 1,2-diradyl-sn-glycero-3-phosphoethanolamines were quantitated as their diradylglycerobenzoate derivatives, using a recently developed high-performance liquid chromatographic method. Increased amounts of docosapentaenoic acid were found in glycerophospholipids containing ether moieties compared with the diacyl phospholipids (e.g., docosapentaenoate-containing species comprised more than 80% of the alkylacyl subclass of the ethanolamine phosholipids as opposed to 29.3% of the diacyl subclass). Within 2 h after intratesticular injections of [5,6,8,9,11,12,14,15-3H]arachidonic acid, the 20:4-20:4 and 18:2-20:4 molecular species of the diacyl subclass of both the choline and ethanolamine glycerophosphatides had the highest specific radioactivities. These unique molecular species (20:4-20:4 and 18:2-20:4) also exhibited the largest percentage decrease in specific radioactivity 24 h after the intratesticular injections of [3H]arachidonic acid, which indicates these two species possess a high metabolic turnover. Two of the arachidonate-containing molecular species (18:1-20:4 and 18:0-20:4) in the ethanolamine plasmalogens showed only a small decrease in specific radioactivity, whereas a third species (16:0-20:4) actually had a 44% increase in specific radioactivity 24 h after the intratesticular injections of [3H]arachidonate. These data indicate that the 20:4-20:4, 18:2-20:4 and 18:1-20:4 species of phosphatidylcholine and/or phosphatidylethanolamine are most rapidly labeled after administration of [3H]arachidonic acid and that they appear to serve as the source of the [3H]arachidonate that is ultimately transferred to ethanolamine plasmalogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号