首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Although renal pathology is highly predictive of the disease course in lupus nephritis, it cannot be performed serially because of its invasive nature and associated morbidity. The goal of this study is to investigate whether urinary levels of CXC ligand 16 (CXCL16), monocyte chemotactic protein-1 (MCP-1) or vascular cell adhesion molecule-1 (VCAM-1) in patients with lupus nephritis are predictive of particular features of renal pathology in renal biopsies obtained on the day of urine procurement.

Methods

CXCL16, MCP-1, and VCAM-1 levels were measured in urine samples from 74 lupus nephritis patients and 13 healthy volunteers. Of the patients enrolled, 24 patients had a concomitant kidney biopsy performed at the time of urine collection. In addition, patients with other renal diatheses were also included as controls.

Results

All three molecules were elevated in the urine of systemic lupus erythematosus patients, although VCAM-1 (area under curve = 0.92) and MCP-1 (area under curve = 0.87) were best at distinguishing the systemic lupus erythematosus samples from the healthy controls, and were also most strongly associated with clinical disease severity and active renal disease. For patients in whom concurrent renal biopsies had also been performed, urine VCAM-1 exhibited the strongest association with the renal pathology activity index and glomerulonephritis class IV, although it correlated negatively with the chronicity index. Interestingly, urinary VCAM-1 was also elevated in anti-neutrophil cytoplasmic antibodies-associated glomerulonephritis, focal segmental glomerulosclerosis and membranous nephropathy but not in minimal-change disease.

Conclusion

Urinary VCAM-1 emerges as a reliable indicator of the activity:chronicity ratios that mark the underlying renal pathology in lupus nephritis. Since VCAM-1 is involved in the acute phase of inflammation when leukocytic infiltration is ongoing, longitudinal studies are warranted to establish whether tracking urine VCAM-1 levels may help monitor clinical and pathological disease activity over time.  相似文献   

2.

Introduction

Although renal pathology is highly predictive of the disease course in lupus nephritis, it cannot be performed serially because of its invasive nature and associated morbidity. The goal of this study is to investigate whether urinary levels of CXC ligand 16 (CXCL16), monocyte chemotactic protein-1 (MCP-1) or vascular cell adhesion molecule-1 (VCAM-1) in patients with lupus nephritis are predictive of particular features of renal pathology in renal biopsies obtained on the day of urine procurement.

Methods

CXCL16, MCP-1, and VCAM-1 levels were measured in urine samples from 74 lupus nephritis patients and 13 healthy volunteers. Of the patients enrolled, 24 patients had a concomitant kidney biopsy performed at the time of urine collection. In addition, patients with other renal diatheses were also included as controls.

Results

All three molecules were elevated in the urine of systemic lupus erythematosus patients, although VCAM-1 (area under curve = 0.92) and MCP-1 (area under curve = 0.87) were best at distinguishing the systemic lupus erythematosus samples from the healthy controls, and were also most strongly associated with clinical disease severity and active renal disease. For patients in whom concurrent renal biopsies had also been performed, urine VCAM-1 exhibited the strongest association with the renal pathology activity index and glomerulonephritis class IV, although it correlated negatively with the chronicity index. Interestingly, urinary VCAM-1 was also elevated in anti-neutrophil cytoplasmic antibodies-associated glomerulonephritis, focal segmental glomerulosclerosis and membranous nephropathy but not in minimal-change disease.

Conclusion

Urinary VCAM-1 emerges as a reliable indicator of the activity:chronicity ratios that mark the underlying renal pathology in lupus nephritis. Since VCAM-1 is involved in the acute phase of inflammation when leukocytic infiltration is ongoing, longitudinal studies are warranted to establish whether tracking urine VCAM-1 levels may help monitor clinical and pathological disease activity over time.  相似文献   

3.
The selectins and their ligands mediate leukocyte rolling on endothelial cells, the initial step in the emigration cascade leading to leukocyte infiltration of tissue. These adhesion molecules have been shown to be key promoters of acute leukocyte emigration events; however, their roles in the development of long-term inflammatory responses, including those that occur during chronic inflammatory diseases such as systemic lupus erythematosus, are unclear. To assess participation of P-selectin in such disorders, we studied the progression of systemic lupus erythematosus-like disease in P-selectin-deficient and control MRL/MpJ-Fas(lpr) (Fas(lpr)) mice. Surprisingly, we found that P-selectin deficiency resulted in significantly earlier mortality, characterized by a more rapid development of glomerulonephritis and dermatitis. Expression of CCL2 (MCP-1) was increased in the kidneys of P-selectin mutant mice and in supernatants of LPS-stimulated primary renal endothelial cell cultures from these mice. A closely similar phenotype, including elevated renal expression of CCL2, was also observed in Fas(lpr) mice deficient in the major P-selectin ligand, P-selectin glycoprotein ligand-1. These results indicate that P-selectin and P-selectin glycoprotein ligand-1 are not required for leukocyte infiltration and the development of autoimmune disease in Fas(lpr) mice, but rather expression of these adhesion molecules is important for modulating the progression of glomerulonephritis, possibly through down-regulation of endothelial CCL2 expression.  相似文献   

4.
MRL/lpr mice develop spontaneous glomerulonephritis that is essentially identical with diffuse proliferative glomerulonephritis (World Health Organization class IV) in human lupus nephritis. Lupus nephritis is one of the most serious complications of systemic lupus erythematosus. Diffuse proliferative glomerulonephritis is associated with autoimmune responses dominated by Th1 cells producing high levels of IFN-gamma. The initial mounting of Th1 responses depends on the function of the WSX-1 gene, which encodes a subunit of the IL-27R with homology to IL-12R. In mice deficient for the WSX-1 gene, proper Th1 differentiation was impaired and abnormal Th2 skewing was observed during infection with some intracellular pathogens. Disruption of the WSX-1 gene dramatically changed the pathophysiology of glomerulonephritis developing in MRL/lpr mice. WSX-1-/- MRL/lpr mice developed disease resembling human membranous glomerulonephritis (World Health Organization class V) with a predominance of IgG1 in glomerular deposits, accompanied by increased IgG1 and IgE in the sera. T cells in WSX-1-/- MRL/lpr mice displayed significantly reduced IFN-gamma production along with elevated IL-4 expression. Loss of WSX-1 thus favors Th2-type autoimmune responses, suggesting that the Th1/Th2 balance may be a pivotal determinant of human lupus nephritis development.  相似文献   

5.
To investigate the physiologic significance of enhanced renal thromboxane production in murine lupus nephritis, we measured renal hemodynamics and eicosanoid production in MRL-lpr/lpr mice from 8 to 20 weeks of age. Over this age range, MRL-lpr/lpr mice develop an autoimmune disease with nephritis similar to human systemic lupus erythematosus (SLE). In these studies, glomerular filtration rate (GFR) and PAH clearance (CPAH) decreased progressively with age in MRL-lpr/lpr mice, but not in controls. This impairment of renal hemodynamics was associated with increased renal thromboxane production, as well as increased excretion of both thromboxane B2 (TxB2) and 2,3-dinor TxB2 in urine. There was an inverse correlation between renal thromboxane production in MRL-lpr/lpr mice and both GFR and CPAH. Furthermore, there were positive correlations between thromboxane production by the kidney and both the severity of renal histopathology and serum anti-DNA antibody levels measured in individual animals. Enhanced urinary excretion of TxB2 and the development of renal dysfunction also coincided temporally with the appearance of increased levels of interleukin 1 beta (IL-1 beta) mRNA in renal cortex. Acute administration of the specific thromboxane receptor antagonist GR32191 to MRL-lpr/lpr mice restored GFR to normal in early stages of the autoimmune disease. However, in animals with more advanced nephritis, the effect of acute thromboxane receptor blockade on renal hemodynamics was less marked. We conclude that thromboxane A2 is an important mediator of reversible renal hemodynamic impairment in murine lupus, especially in the early phase of disease.  相似文献   

6.
Although renal biopsy is the most accurate way of assessing renal inflammation in patients with lupus nephritis (LN), the technique is invasive and cannot be performed frequently. Currently used blood and urine biomarkers have limited utility in monitoring the activity of nephritis. In a previous issue of Arthritis Research and Therapy, Singh and colleagues showed that measuring urinary levels of vascular cell adhesion molecule 1 could be useful in both diagnosing and monitoring LN. These levels are higher in patients with lupus than controls, are higher in lupus patients who have active renal disease compared with those who do not, and correlate significantly with the histological activity index in renal biopsies of patients with LN.Lupus nephritis (LN) is one of the most severe forms of systemic lupus erythematosus (SLE). If not treated adequately, the disease can result in renal failure or death. In its early stages, LN may be almost asymptomatic and picked up only by carrying out routine blood and urine tests. Measurements of urine protein are especially helpful in this regard. In a previous issue of Arthritis Research and Therapy, Singh and colleagues described tests for three different urinary biomarkers in patients with SLE, investigating which is likely to be most helpful for monitoring renal disease activity [1].Treatment of LN was revolutionized by the introduction of combined corticosteroid/cyclophosphamide regimes and has advanced more recently with the replacement of cyclophosphamide by mycophenolate in many cases [2]. Early diagnosis and treatment has a major impact on clinical outcomes in patients with LN [3], but can also cause treatment-related adverse effects. Being able to identify exactly when treatment is needed during the course of the disease and when maintenance treatment needs to be increased is therefore important. The most accurate way to assess nephritis in patients with SLE is by carrying out a renal biopsy. The histological type of nephritis can be defined and the degree of inflammation can be quantified using an activity index [4]. A high activity index signifies active yet reversible disease, whereas the chronicity index shows irreversible damage.Renal biopsy is an invasive procedure, however, which cannot be repeated whenever a flare of renal lupus is suspected. We would therefore like to have biomarkers, measurable in blood or urine, which rise and fall with renal disease activity and are closely associated with the degree of inflammation in the kidney. Blood markers such as anti-double-stranded DNA, anti-nucleosome and anti-α-actinin antibodies have been studied. There is some evidence that increases in these markers are associated with renal disease activity [5], as measured by indices such as blood albumin and urine protein, but very little evidence for their association with renal biopsy scores.Given that the kidney is the main site of inflammation in LN, however, biomarkers in urine may reflect this inflammation more closely than those in the blood. There has been some interest in using urinary neutrophil gelatinase-associated lipocalin as a marker of renal inflammation in SLE. Studies have shown that urinary (but not serum) neutrophil gelatinase-associated lipocalin levels correlate with measures of renal disease activity and that a rise in urinary neutrophil gelatinase-associated lipocalin at one visit predicts flare of nephritis at the next visit [6,7]. These studies were cross-sectional and did not look at the association between urinary neutrophil gelatinase-associated lipocalin and renal histology.The current paper by Singh and colleagues is also a cross-sectional study but includes data on renal histology and compares three different urinary assays; CXCL16, monocyte chemoattractant protein 1 (MCP-1) and vascular cell adhesion molecule 1 (VCAM-1) [1]. Since all three of these molecules can play a role in the recruitment of inflammatory cells to the nephritic kidney, it would be entirely reasonable to predict that their levels would rise in the urine when active renal inflammation is at its height. The authors review both clinical and murine evidence supporting this prediction for each of these markers [8]. In this study they report creatinine-normalized urinary CXCL16, MCP-1 and VCAM-1 levels in 73 patients with SLE, 13 healthy volunteers and 22 patients with other forms of glomerulonephritis.The study results showed some evidence of utility for all three of these urinary markers. All markers were elevated in patients with SLE compared to healthy controls and correlated with the level of proteinuria. However, the comparison with healthy controls is complicated by the fact that 92% of these controls were Asian whereas none of the patients were. Disease activity in the study was assessed using the Systemic Lupus Erythematosus Disease Activity Index and correlated with MCP-1 and VCAM-1 but not CXCL16. When patients were defined as having active or inactive renal disease, on the basis of the renal components of the Systemic Lupus Erythema tosus Disease Activity Index score alone, MCP-1 and VCAM-1 but not CXCL16 distinguished those two groups. However, this result was based on a relatively small number of patients with inactive renal disease (n = 14), probably because there was a low threshold for considering a patient to have active renal disease - being positive for any single criterion of hematuria, pyuria, proteinuria or casts was sufficient. This difficulty in defining active LN based on disease activity measures is common to many papers of this type and is a major reason why the availability of renal biopsy data from the date of the urine sample in 24 of these patients is so important. These histological data provide a direct objective measure of nephritis and particularly support the utility of urinary VCAM-1 as a biomarker, since only VCAM-1 was significantly correlated with the activity index and also differentiated class IV LN from the other histological types.This study thus provides compelling evidence that measuring urinary VCAM-1 could be an important new biomarker in patients with LN, and some evidence supporting urinary CXCL16 and MCP-1. Investigation into whether an index combining the values of all three markers, along the lines of the serum chemokine index reported by Bauer and colleagues [9], would have more potential to distinguish active LN from inactive LN would be interesting. As suggested by the authors, however, the most important thing is to study levels of these urinary markers longitudinally in patients with LN to see whether they predict changes in activity of nephritis in individual patients over time.  相似文献   

7.
Renal involvement is common in systemic lupus erythematosus. Early diagnosis of lupus nephritis (LN), allowing the instigation of appropriate therapy, remains an important clinical challenge. Current biomarkers in clinical practice are less than ideal, lacking both sensitivity and specificity. In the previous issue of Arthritis Research & Therapy, Schwartz and colleagues demonstrated the potential value of urinary TNF-like weak inducer of apoptosis (uTWEAK) as a biomarker for LN. They showed that uTWEAK is elevated in subjects with LN at diagnosis compared with those with systemic lupus erythematosus but no renal disease, and correlates with the degree of clinical disease activity. These data are thought-provoking and provide the platform for future longer-term studies.  相似文献   

8.
MRL/MP-lpr/lpr (MRL/lpr) mice spontaneously develop an autoimmune syndrome closely resembling systemic lupus erythematosus (SLE) in humans, characterized by hypergammaglobulinemia, various autoantibody production, and the development of fatal glomerulonephritis. We have previously demonstrated that systemic administration of soluble form of CTLA4IgG prevented autoantibody-related diseases in MRL/lpr mice. To test the potential protective effects of CTLA4IgG gene delivery on the development of lupus nephritis, we injected MRL/lpr mice with a recombinant adenovirus vector containing CTLA4IgG gene, Adex1CACTLA4IgG (AdCTLA4IgG). It was demonstrated that a single administration of intravenous injection of AdCTLA4IgG into MRL/lpr mice resulted in almost complete amelioration of lupus nephritis.  相似文献   

9.
B cells are required for both the expression of lupus nephritis and spontaneous T cell activation/memory cell accumulation in MRL-Faslpr mice (MRL/lpr). Autoimmunity in the MRL/lpr strain is the result of Fas-deficiency and multiple background genes; however, the precise roles of background genes vs Fas-deficiency have not been fully defined. Fas-deficiency (i.e., the lpr defect) is required in B cells for optimal autoantibody expression, raising the possibility that the central role for B cells in MRL/lpr mice may not extend to MRL/+ mice and, thus, to lupus models that do not depend on Fas-deficiency ("polygenic lupus"). To address this issue, B cell-deficient, Fas-intact MRL/+ mice (JHd-MRL/) were created; and disease was evaluated in aged animals (>9 mo). The JHd-MRL/+ animals did not develop nephritis or vasculitis at a time when the B cell-intact littermates had severe disease. In addition, while activated/memory CD4+ and CD8+ T cells accumulated in B cell-intact mice, such accumulation was substantially inhibited in the absence of B cells. This effect appeared to be restricted to the MRL strain because it was not seen in B cell-deficient BALB/c mice (JHd-BALB) of similar ages. The results indicate that B cells are essential in promoting systemic autoimmunity in a Fas-independent model. Therefore, B cells have an important role in pathogenesis, generalizable to lupus models that depend on multiple genes even when Fas expression is intact. The results provide further rationale for B cell suppression as therapy for systemic lupus erythematosus.  相似文献   

10.
Dysfunctional leukocyte-endothelial interactions are thought to play a key role in systemic lupus erythematosus pathogenesis. We questioned the importance of TNF-alpha and IL-1 for endothelial activation in MRL/lpr lupus-prone mice. Endothelial ICAM-1 and VCAM-1 expression increased significantly with disease evolution in kidney, heart, and brain, as shown by i.v. injected radiolabeled Ab uptake. Lung endothelial VCAM-1 also increased, while lung endothelial ICAM-1 did not rise above a high basal level. Immunoassays showed a significantly raised circulating level of TNF-alpha by 14 wk, with levels of circulating IL-1alpha and IL-1beta being additionally raised by 20 wk. With 14-wk-old MRL/lpr, anti-TNF-alpha antiserum inhibited expression of ICAM-1 and VCAM-1 by endothelial cells cultured with sera in vitro, and uptake of anti-ICAM-1 and anti-VCAM-1 mAb in lung, kidney, brain, and heart in vivo. In contrast, both anti-TNF-alpha and anti-IL-1 antisera were required for maximal inhibition in vitro and in vivo at 20 wk. These data indicate that TNF-alpha is largely responsible for the early up-regulation of endothelial ICAM-1 and VCAM-1, but that IL-1 enhances expression in late disease. Our observations provide novel insights of possible relevance to understanding endothelial activation in systemic lupus erythematosus, and highlight an approach that can be extended to dissecting other chronic inflammatory diseases.  相似文献   

11.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease leading to inflammatory tissue damage in multiple organs (e.g., lupus nephritis). Current treatments including steroids, antimalarials, and immunosuppressive drugs have significant side effects. Activated protein C is a natural protein with anticoagulant and immunomodulatory effects, and its recombinant version has been approved by the U.S. Food and Drug Administration to treat severe sepsis. Given the similarities between overshooting immune activation in sepsis and autoimmunity, we hypothesized that recombinant activated protein C would also suppress SLE and lupus nephritis. To test this concept, autoimmune female MRL-Fas(lpr) mice were injected with either vehicle or recombinant human activated protein C from week 14-18 of age. Activated protein C treatment significantly suppressed lupus nephritis as evidenced by decrease in activity index, glomerular IgG and complement C3 deposits, macrophage counts, as well as intrarenal IL-12 expression. Further, activated protein C attenuated cutaneous lupus and lung disease as compared with vehicle-treated MRL-Fas(lpr) mice. In addition, parameters of systemic autoimmunity, such as plasma cytokine levels of IL-12p40, IL-6, and CCL2/MCP-1, and numbers of B cells and plasma cells in spleen were suppressed by activated protein C. The latter was associated with lower total plasma IgM and IgG levels as well as lower titers of anti-dsDNA IgG and rheumatoid factor. Together, recombinant activated protein C suppresses the abnormal systemic immune activation in SLE of MRL-Fas(lpr) mice, which prevents subsequent kidney, lung, and skin disease. These results implicate that recombinant activated protein C might be useful for the treatment of human SLE.  相似文献   

12.
The long pentraxin PTX3 has multiple roles in innate immunity. For example, PTX3 regulates C1q binding to pathogens and dead cells and regulates their uptake by phagocytes. It also inhibits P-selectin-mediated recruitment of leukocytes. Both of these mechanisms are known to be involved in autoimmunity and autoimmune tissue injury, e.g. in systemic lupus erythematosus, but a contribution of PTX3 is hypothetical. To evaluate a potential immunoregulatory role of PTX3 in autoimmunity we crossed Ptx3-deficient mice with Fas-deficient (lpr) C57BL/6 (B6) mice with mild lupus-like autoimmunity. PTX3 was found to be increasingly expressed in kidneys and lungs of B6lpr along disease progression. Lack of PTX3 impaired the phagocytic uptake of apoptotic T cells into peritoneal macrophages and selectively expanded CD4/CD8 double negative T cells while other immune cell subsets and lupus autoantibody production remained unaffected. Lack of PTX3 also aggravated autoimmune lung disease, i.e. peribronchial and perivascular CD3+ T cell and macrophage infiltrates of B6lpr mice. In contrast, histomorphological and functional parameters of lupus nephritis remained unaffected by the Ptx3 genotype. Together, PTX3 specifically suppresses autoimmune lung disease that is associated with systemic lupus erythematosus. Vice versa, loss-of-function mutations in the Ptx3 gene might represent a genetic risk factor for pulmonary (but not renal) manifestations of systemic lupus or other autoimmune diseases.  相似文献   

13.
Accumulating evidence suggests that autoreactive plasma cells play an important role in systemic lupus erythematosus (SLE). In addition, several proinflammatory cytokines promote autoreactive B cell maturation and autoantibody production. Hence, therapeutic targeting of such cytokine pathways using a selective JAK2 inhibitor, CEP-33779 (JAK2 enzyme IC(50) = 1.3 nM; JAK3 enzyme IC(50)/JAK2 enzyme IC(50) = 65-fold), was tested in two mouse models of SLE. Age-matched, MRL/lpr or BWF1 mice with established SLE or lupus nephritis, respectively, were treated orally with CEP-33779 at 30 mg/kg (MRL/lpr), 55 mg/kg or 100 mg/kg (MRL/lpr and BWF1). Studies included reference standard, dexamethasone (1.5 mg/kg; MRL/lpr), and cyclophosphamide (50 mg/kg; MRL/lpr and BWF1). Treatment with CEP-33779 extended survival and reduced splenomegaly/lymphomegaly. Several serum cytokines were significantly decreased upon treatment including IL-12, IL-17A, IFN-α, IL-1β, and TNF-α. Anti-nuclear Abs and frequencies of autoantigen-specific, Ab-secreting cells declined upon CEP-33779 treatment. Increased serum complement levels were associated with reduced renal JAK2 activity, histopathology, and spleen CD138(+) plasma cells. The selective JAK2 inhibitor CEP-33779 was able to mitigate several immune parameters associated with SLE advancement, including the protection and treatment of mice with lupus nephritis. These data support the possibility of using potent, orally active, small-molecule inhibitors of JAK2 to treat the debilitative disease SLE.  相似文献   

14.
15.
Abstract Background aims. Mesenchymal stromal cells (MSC) are pluripotent adult stem cells capable of osteogenesis and chondrogenesis to form bone and cartilage. This characteristic gives them the potential for bone and cartilage regeneration. Synthetic polymers have been studied to examine whether they could be used as a scaffold for tissue engineering. In the current study a two-dimensional (2-D) poly(l-lactic acid) (PLLA) scaffold was treated with chemokine, adhesion and extracellular matrix molecules with the aim of using biologic molecules to improve the attachment of human MSC. Methods. MSC were isolated from human bone marrow and applied to a 2-D PLLA scaffold. Chemokines ligand (CXCL12 and CXCL13), adhesion molecules [P-selectin, vascular cell adhesion molecule (VCAM)-1 and heparin] and extracellular matrix molecules (fibronectin and type IV collagen) were coated on the scaffold and their effects on the number of MSC that adhered were recorded. Results. When used alone CXCL12 and CXCL13 enhanced MSC adhesion, as did VCAM-1, P-selectin, fibronectin and collagen, but not heparin. The effects of VCAM-1, P-selectin and heparin were enhanced by the addition of CXCL12. Incubation of MSC with antibodies to integrins α4 and α5β1 inhibited their adhesion to VCAM-1 and fibronectin-treated PLLA respectively, suggesting that these integrins were involved in the MSC interactions. Conclusions. The use of certain chemokines and adhesion and extracellular matrix molecules, alone or in combination, is beneficial for the attachment of MSC to PLLA, and may be helpful as natural molecules in scaffolds for regenerative medicine.  相似文献   

16.
IL-10 regulates murine lupus   总被引:13,自引:0,他引:13  
MRL/MpJ-Tnfrsf6(lpr) (MRL/MpJ-Fas(lpr); MRL-Fas(lpr)) mice develop a spontaneous lupus syndrome closely resembling human systemic lupus erythematosus. To define the role of IL-10 in the regulation of murine lupus, IL-10 gene-deficient (IL-10(-/-)) MRL-Fas(lpr) (MRL-Fas(lpr) IL-10(-/-)) mice were generated and their disease phenotype was compared with littermates with one or two copies of an intact IL-10 locus (MRL-Fas(lpr) IL-10(+/-) and MRL-Fas(lpr) IL-10(+/+) mice, respectively). MRL-Fas(lpr) IL-10(-/-) mice developed severe lupus, with earlier appearance of skin lesions, increased lymphadenopathy, more severe glomerulonephritis, and higher mortality than their IL-10-intact littermate controls. The increased severity of lupus in MRL-Fas(lpr) IL-10(-/-) mice was closely associated with enhanced IFN-gamma production by both CD4(+) and CD8(+) cells and increased serum concentration of IgG2a anti-dsDNA autoantibodies. The protective effect of IL-10 in this lupus model was further supported by the observation that administration of rIL-10 reduced IgG2a anti-dsDNA autoantibody production in wild-type MRL-Fas(lpr) animals. In summary, our results provide evidence that IL-10 can down-modulate murine lupus through inhibition of pathogenic Th1 cytokine responses. Modulation of the level of IL-10 may be of potential therapeutic benefit for human lupus.  相似文献   

17.
Twenty patients with nephritis due to systemic lupus erythematosus were followed up for a mean of 34 months after renal biopsy with serial determinations of total serum complement and C3 and C4 concentrations, binding of deoxyribonucleic acid (DNA), antinuclear antibody pattern and platelet count. There were 25 episodes of nonhematologic observed disease activity in 16 of the 20 patients; elevated DNA binding and thrombocytopenia correlated well with these episodes. The mean platelet count during episodes of observed disease activity was 96 +/- 42 X 10(9)/L, which was significantly different from the mean count of 248 +/- 90 X 10(9)/L during disease quiescence. The proportion of false-positive results with the immunologic tests varied from 25% to 67% and with platelet counts it was 11%. It is suggested that thrombocytopenia may be a simple and accurate index of disease activity in lupus nephritis.  相似文献   

18.
Increased oxidative stress is a hallmark of the autoimmune disease systemic lupus erythematosus (SLE). This study compares serum protein oxidation levels in SLE patients without and with renal involvement (lupus nephritis); the latter have a significantly poorer prognosis. Similar increases in protein carbonyls and decreases in protein thiols were observed in both SLE groups compared to controls. Protein carbonyl distribution, determined by Western blotting of 2D gels, was similar in both SLE groups, suggesting factors other than oxidation also play a role in SLE complications. 2D electrophoresis examined the serum proteome further. Six proteins were significantly decreased in non-renal SLE patients compared to controls; five were identified by mass spectrometry, including one isoform of pro-atherogenic apoCIII. Total apoCIII levels (assessed by ELISA) in lupus nephritis patients were significantly elevated compared to controls or non-renal SLE patients. Thus, levels of oxidized proteins and apoCIII may be useful biomarkers in SLE studies.  相似文献   

19.
20.
When mutations that inactivate molecules that function in the immune system have been crossed to murine lupus strains, the result has generally been a uniform up-regulation or down-regulation of autoimmune disease in the end organs. In the current work we report an interesting dissociation of target organ disease in beta(2)-microglobulin (beta(2)m)-deficient MRL-Fas(lpr) (MRL/lpr) mice: lupus skin lesions are accelerated, whereas nephritis is ameliorated. beta(2)m deficiency affects the expression of classical and nonclassical MHC molecules and thus prevents the normal development of CD8- as well as CD1-dependent NK1(+) T cells. To further define the mechanism by which beta(2)m deficiency accelerates skin disease, we studied CD1-deficient MRL/lpr mice. These mice do not have accelerated skin disease, excluding a CD1 or NK1(+) T cell-dependent mechanism of beta(2)m deficiency. The data indicate that the regulation of systemic disease is not solely governed by regulation of initial activation of autoreactive lymphocytes in secondary lymphoid tissue, as this is equally relevant to renal and skin diseases. Rather, regulation of autoimmunity can also occur at the target organ level, explaining the divergence of disease in skin and kidney in beta(2)m-deficient mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号