首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PINCH is a recently identified adaptor protein that comprises an array of five LIM domains. PINCH functions through LIM-mediated protein-protein interactions that are involved in cell adhesion, growth, and differentiation. The LIM1 domain of PINCH interacts with integrin-linked kinase (ILK), thereby mediating focal adhesions via a specific integrin/ILK signaling pathway. We have solved the NMR structure of the PINCH LIM1 domain and characterized its binding to ILK. LIM1 contains two contiguous zinc fingers of the CCHC and CCCH types and adopts a global fold similar to that of functionally distinct LIM domains from cysteine-rich protein and cysteine-rich intestinal protein families with CCHC and CCCC zinc finger types. Gel-filtration and NMR experiments demonstrated a 1:1 complex between PINCH LIM1 and the ankyrin repeat domain of ILK. A chemical shift mapping experiment identified regions in PINCH LIM1 that are important for interaction with ILK. Comparison of surface features between PINCH LIM1 and other functionally different LIM domains indicated that the LIM motif might have a highly variable mode in recognizing various target proteins.  相似文献   

2.
PINCH is a widely expressed and evolutionarily conserved protein comprising primarily five LIM domains, which are cysteine-rich consensus sequences implicated in mediating protein-protein interactions. We report here that PINCH is a binding protein for integrin-linked kinase (ILK), an intracellular serine/threonine protein kinase that plays important roles in the cell adhesion, growth factor, and Wnt signaling pathways. The interaction between ILK and PINCH has been consistently observed under a variety of experimental conditions. They have interacted in yeast two-hybrid assays, in solution, and in solid-phase-based binding assays. Furthermore, ILK, but not vinculin or focal adhesion kinase, has been coisolated with PINCH from mammalian cells by immunoaffinity chromatography, indicating that PINCH and ILK associate with each other in vivo. The PINCH-ILK interaction is mediated by the N-terminal-most LIM domain (LIM1, residues 1 to 70) of PINCH and multiple ankyrin (ANK) repeats located within the N-terminal domain (residues 1 to 163) of ILK. Additionally, biochemical studies indicate that ILK, through the interaction with PINCH, is capable of forming a ternary complex with Nck-2, an SH2/SH3-containing adapter protein implicated in growth factor receptor kinase and small GTPase signaling pathways. Finally, we have found that PINCH is concentrated in peripheral ruffles of cells spreading on fibronectin and have detected clusters of PINCH that are colocalized with the alpha5beta1 integrins. These results demonstrate a specific protein recognition mechanism utilizing a specific LIM domain and multiple ANK repeats and suggest that PINCH functions as an adapter protein connecting ILK and the integrins with components of growth factor receptor kinase and small GTPase signaling pathways.  相似文献   

3.
Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.  相似文献   

4.
Hic-5 is a focal adhesion LIM protein serving as a scaffold in integrin signaling. The protein comprises four LD domains in its N-terminal half and four LIM domains in its C-terminal half with a nuclear export signal in LD3 and is shuttled between the cytoplasmic and nuclear compartments. In this study, immunoprecipitation and in vitro cross-linking experiments showed that Hic-5 homo-oligomerized through its most C-terminal LIM domain, LIM4. Strikingly, paxillin, the protein most homologous to Hic-5, did not show this capability. Gel filtration analysis also revealed that Hic-5 differs from paxillin in that it has multiple forms in the cellular environment, and Hic-5 but not paxillin was capable of hetero-oligomerization with a LIM-only protein, PINCH, another molecular scaffold at focal adhesions. The fourth LIM domain of Hic-5 and the fifth LIM domain region of PINCH constituted the interface for the interaction. The complex included integrin-linked kinase, a binding partner of PINCH, which also interacted with Hic-5 through the region encompassing the pleckstrin homology-like domain and LIM domains of Hic-5. Of note, Hic-5 marginally affected the subcellular distribution of PINCH but directed its shuttling between the cytoplasmic and nuclear compartments in the presence of integrin-linked kinase. Uncoupling of the two signaling platforms of Hic-5 and PINCH through interference with the hetero-oligomerization resulted in impairment of cellular growth. Hic-5 is, thus, a molecular scaffold with the potential to dock with another scaffold through the LIM domain, organizing a mobile supramolecular unit and coordinating the adhesion signal with cellular activities in the two compartments.  相似文献   

5.
The interaction of cells with extracellular matrix recruits multiple proteins to cell-matrix contact sites (e.g. focal and fibrillar adhesions), which connect the extracellular matrix to the actin cytoskeleton and regulate cell shape change, migration, and other cellular processes. We previously identified PINCH, an adaptor protein comprising primarily five LIM domains, as a binding protein for integrin-linked kinase (ILK). In this study, we show that PINCH co-localizes with ILK in both focal adhesions and fibrillar adhesions. Furthermore, we have investigated the molecular basis underlying the targeting of PINCH to the cell-matrix contact sites and the functional significance of the PINCH-ILK interaction. We have found that the N-terminal LIM1 domain, which mediates the ILK binding, is required for the targeting of PINCH to the cell-matrix contact sites. The C-terminal LIM domains, although not absolutely required, play an important regulatory role in the localization of PINCH to cell-matrix contact sites. Inhibition of the PINCH-ILK interaction, either by overexpression of a PINCH N-terminal fragment containing the ILK-binding LIM1 domain or by overexpression of an ILK N-terminal fragment containing the PINCH-binding ankyrin domain, retarded cell spreading, and reduced cell motility. These results suggest that PINCH, through its interaction with ILK, is crucially involved in the regulation of cell shape change and motility.  相似文献   

6.
Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways.  相似文献   

7.
Weak protein-protein interactions (PPIs) (K(D) > 10(-6) M) are critical determinants of many biological processes. However, in contrast to a large growing number of well-characterized, strong PPIs, the weak PPIs, especially those with K(D) > 10(-4) M, are poorly explored. Genome wide, there exist few 3D structures of weak PPIs with K(D) > 10(-4) M, and none with K(D) > 10(-3) M. Here, we report the NMR structure of an extremely weak focal adhesion complex (K(D) approximately 3 x 10(-3) M) between Nck-2 SH3 domain and PINCH-1 LIM4 domain. The structure exhibits a remarkably small and polar interface with distinct binding modes for both SH3 and LIM domains. Such an interface suggests a transient Nck-2/PINCH-1 association process that may trigger rapid focal adhesion turnover during integrin signaling. Genetic rescue experiments demonstrate that this interface is indeed involved in mediating cell shape change and migration. Together, the data provide a molecular basis for an ultraweak PPI in regulating focal adhesion dynamics during integrin signaling.  相似文献   

8.
Cell adhesion and migration are complex processes that require integrin activation, the formation and dissolution of focal adhesion (FAs), and linkage of actin cytoskeleton to the FAs. The IPP (ILK, PINCH, Parvin) complex regulates FA formation via binding of the adaptor protein ILK to β1 integrin, PINCH and parvin. The signaling protein Rsu1 is linked to the complex via binding PINCH1. The role of Rsu1 and PINCH1 in adhesion and migration was examined in non-transformed mammary epithelial cells. Confocal microscopy revealed that the depletion of either Rsu1 or PINCH1 by siRNA in MCF10A cells decreased the number of focal adhesions and altered the distribution and localization of β1 integrin, vinculin, talin and paxillin without affecting the levels of FA protein expression. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. In addition, constitutive phosphorylation of actin regulatory proteins occurred in the absence of PINCH1. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function by regulating levels of PINCH1. However, while both Rsu1- or PINCH1-depleted cells retained the ability to activate adhesion signaling in response to EGF stimulation, only Rsu1 was required for EGF-induced p38 Map Kinase phosphorylation and ATF2 activation, suggesting an Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with an Rsu1 mutant that does not bind to PINCH1 failed to restore FAs or migration but did promote spreading and constitutive p38 activation. These data show that Rsu1-PINCH1 association with ILK and the IPP complex is required for regulation of adhesion and migration but that Rsu1 has a critical role in linking integrin-induced adhesion to activation of p38 Map kinase signaling and cell spreading. Moreover, it suggests that Rsu1 may regulate p38 signaling from the IPP complex affecting other functions including survival.  相似文献   

9.
PINCH is a five LIM domain protein involved in the regulation of integrin-mediated cell adhesion. It has been shown that PINCH interacts with integrin-linked kinase and Nck2. Here we describe a new isoform of PINCH, which we call PINCH2. Therefore, we rename PINCH to PINCH1. PINCH2 has an overall similarity of 92% to PINCH1 and contains five LIM domains like PINCH1. While protein and gene structure of the PINCH homologues are very similar and well conserved during evolution, we observed differential expression pattern of the mRNAs. Based on northern hybridization of mouse embryo RNA, PINCH1 is already detectable at E8.5. It is highly expressed during later stages of development and in all adult mouse tissues analyzed, with the highest levels in heart, lung, bladder, skin, and uterus. In contrast, significant PINCH2 expression starts at E14.5. In adult mice it is widely expressed, similar to PINCH1, but absent from spleen and thymus. In situ hybridization confirmed the Northern data and showed differential expression of PINCH1 and PINCH2 in embryonic intestine. Finally, we demonstrate that PINCH2 localizes to focal adhesions in NIH 3T3 cells and to Z-disks in primary rat cardiomyocytes.  相似文献   

10.
The heterotrimeric protein complex containing the integrin linked kinase (ILK), parvin, and PINCH proteins, termed the IPP complex, is an essential component of focal adhesions, where it interacts with many proteins to mediate signaling from integrin adhesion receptors. Here we conduct a biochemical and structural analysis of the minimal IPP complex, comprising full-length human ILK, the LIM1 domain of PINCH1, and the CH2 domain of α-parvin. We provide a detailed purification protocol for IPP and show that the purified IPP complex is stable and monodisperse in solution. Using small-angle X-ray scattering (SAXS), we also conduct the first structural characterization of IPP, which reveals an elongated shape with dimensions 120×60×40 Å. Flexibility analysis using the ensemble optimization method (EOM) is consistent with an IPP complex structure with limited flexibility, raising the possibility that inter-domain interactions exist. However, our studies suggest that the inter-domain linker in ILK is accessible and we detect no inter-domain contacts by gel filtration analysis. This study provides a structural foundation to understand the conformational restraints that govern the IPP complex.  相似文献   

11.
12.
PINCH is a five LIM domain protein involved in the regulation of integrin-mediated cell adhesion. It has been shown that PINCH interacts with integrin-linked kinase and Nck2. Here we describe a new isoform of PINCH, which we call PINCH2. Therefore, we rename PINCH to PINCH1. PINCH2 has an overall similarity of 92% to PINCH1 and contains five LIM domains like PINCH1. While protein and gene structure of the PINCH homologues are very similar and well conserved during evolution, we observed differential expression pattern of the mRNAs. Based on northern hybridization of mouse embryo RNA, PINCH1 is already detectable at E8.5. It is highly expressed during later stages of development and in all adult mouse tissues analyzed, with the highest levels in heart, lung, bladder, skin, and uterus. In contrast, significant PINCH2 expression starts at E14.5. In adult mice it is widely expressed, similar to PINCH1, but absent from spleen and thymus. In situ hybridization confirmed the Northern data and showed differential expression of PINCH1 and PINCH2 in embryonic intestine. Finally, we demonstrate that PINCH2 localizes to focal adhesions in NIH 3T3 cells and to Z-disks in primary rat cardiomyocytes.  相似文献   

13.
UNC-97/PINCH is an evolutionarily conserved protein that contains five LIM domains and is located at cell-extracellular matrix attachment sites known as cell adhesion complexes. To understand the role of UNC-97/PINCH in cell adhesion, we undertook a combined genetic and cell biological approach to identify the steps required to assemble cell adhesion complexes in Caenorhabditis elegans. First, we have generated a complete loss of function mutation in the unc-97 coding region. unc-97 null mutants arrest development during embryogenesis and reveal that the myofilament lattice and its attachment structures, which include PAT-4/ILK (integrin-linked kinase) and integrin fail to assemble into properly organized arrays. Although in the absence of UNC-97/PINCH, PAT-4/ILK and integrin fail to organize normally, they are capable of colocalizing together at the muscle cell membrane. Alternatively, in integrin and pat-4 mutants, UNC-97/PINCH fails to localize to the muscle cell membrane and instead is found diffusely throughout the muscle cell cytoplasm. In agreement with mammalian studies, we show that LIM domain 1 of UNC-97/PINCH is required for its interaction with PAT-4/ILK in yeast two-hybrid assays. Additionally, we find, by LIM domain deletion analysis, that LIM1 is required for the localization of UNC-97/PINCH to cell adhesion complexes. Our results provide evidence that UNC-97/PINCH is required for the development of C. elegans and is required for the formation of integrin based adhesion structures.  相似文献   

14.
The ILK, PINCH, Parvin (IPP) complex regulates adhesion and migration via binding of ILK to β1 integrin and α?parvin thus linking focal adhesions to actin cytoskeleton. ILK also binds the adaptor protein PINCH which connects signaling proteins including Rsu1 to the complex. A recent study of Rsu1 and PINCH1 in non-transformed MCF10A human mammary epithelial cells revealed that the siRNA-mediated depletion of either Rsu1 or PINCH1 decreased the number of focal adhesions (FAs) and altered the distribution and localization of FA proteins. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function in part by regulating levels of PINCH1. However, Rsu1, but not PINCH1, was required for EGF-induced activation of p38 Map kinase and ATF2 phosphorylation, suggesting a Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with a Rsu1 mutant (N92D) that does not bind to PINCH1 failed to restore FAs or migration but did promote IPP-independent spreading and constitutive as well as EGF-induced p38 activation. In this commentary we discuss p38 activity in adhesion and how Rsu1 expression may be linked to Map kinase kinase (MKK) activation and detachment-induced stress kinase signaling.  相似文献   

15.
Zyxin is a versatile component of focal adhesions in eukaryotic cells. Here we describe a novel binding partner of zyxin, which we have named LIM-nebulette. LIM-nebulette is an alternative splice variant of the sarcomeric protein nebulette, which, in contrast to nebulette, is expressed in non-muscle cells. It displays a modular structure with an N-terminal LIM domain, three nebulin-like repeats, and a C-terminal SH3 domain and shows high similarity to another cytoskeletal protein, Lasp-1 (LIM and SH3 protein-1). Co-precipitation studies and results obtained with the two-hybrid system demonstrate that LIM-nebulette and Lasp-1 interact specifically with zyxin. Moreover, the SH3 domain from LIM-nebulette is both necessary and sufficient for zyxin binding. The SH3 domains from Lasp-1 and nebulin can also interact with zyxin, but the SH3 domains from more distantly related proteins such as vinexin and sorting nexin 9 do not. On the other hand, the binding site in zyxin is situated at the extreme N terminus as shown by site-directed mutagenesis. LIM-nebulette and Lasp-1 use the same linear binding motif. This motif shows some similarity to a class II binding site but does not contain the classical PXXP sequence. LIM-nebulette reveals a subcellular distribution at focal adhesions similar to Lasp-1. Thus, LIM-nebulette, Lasp-1, and zyxin may play an important role in the organization of focal adhesions.  相似文献   

16.
The ILK, PINCH, Parvin (IPP) complex regulates adhesion and migration via binding of ILK to β1 integrin and α−parvin thus linking focal adhesions to actin cytoskeleton. ILK also binds the adaptor protein PINCH which connects signaling proteins including Rsu1 to the complex. A recent study of Rsu1 and PINCH1 in non-transformed MCF10A human mammary epithelial cells revealed that the siRNA-mediated depletion of either Rsu1 or PINCH1 decreased the number of focal adhesions (FAs) and altered the distribution and localization of FA proteins. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function in part by regulating levels of PINCH1. However, Rsu1, but not PINCH1, was required for EGF-induced activation of p38 Map kinase and ATF2 phosphorylation, suggesting a Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with a Rsu1 mutant (N92D) that does not bind to PINCH1 failed to restore FAs or migration but did promote IPP-independent spreading and constitutive as well as EGF-induced p38 activation. In this commentary we discuss p38 activity in adhesion and how Rsu1 expression may be linked to Map kinase kinase (MKK) activation and detachment-induced stress kinase signaling.  相似文献   

17.
The contractile stimulation of smooth muscle tissues stimulates the recruitment of proteins to membrane adhesion complexes and the initiation of actin polymerization. We hypothesized that integrin-linked kinase (ILK), a beta-integrin-binding scaffolding protein and serine/threonine kinase, and its binding proteins, PINCH, and alpha-parvin may be recruited to membrane adhesion sites during contractile stimulation of tracheal smooth muscle to mediate cytoskeletal processes required for tension development. Immunoprecipitation analysis indicted that ILK, PINCH, and alpha-parvin form a stable cytosolic complex and that the ILK.PINCH.alpha-parvin complex is recruited to integrin adhesion complexes in response to acetylcholine (ACh) stimulation where it associates with paxillin and vinculin. Green fluorescent protein (GFP)-ILK and GFP-PINCH were expressed in tracheal muscle tissues and both endogenous and recombinant ILK and PINCH were recruited to the membrane in response to ACh stimulation. The N-terminal LIM1 domain of PINCH binds to ILK and is required for the targeting of the ILK-PINCH complex to focal adhesion sites in fibroblasts during cell adhesion. We expressed the GFP-PINCH LIM1-2 fragment, consisting only of LIM1-2 domains, in tracheal smooth muscle tissues to competitively inhibit the interaction of ILK with PINCH. The PINCH LIM1-2 fragment inhibited the recruitment of endogenous ILK and PINCH to integrin adhesion sites and prevented their association of ILK with beta-integrins, paxillin, and vinculin. The PINCH LIM1-2 fragment also inhibited tension development, actin polymerization, and activation of the actin nucleation initiator, N-WASp. We conclude that the recruitment of the ILK.PINCH.alpha-parvin complex to membrane adhesion complexes is required to initiate cytoskeletal processes required for tension development in smooth muscle.  相似文献   

18.
Tensin   总被引:1,自引:0,他引:1  
Tensin is a cytoplasmic phosphoprotein that localized to integrin-mediated focal adhesions. It binds to actin filaments and contains a phosphotyrosine-binding (PTB) domain, which interacts with the cytoplasmic tails of beta integrin. These interactions allow tensin to link actin filaments to integrin receptors. In addition, tensin has an Src Homology 2 (SH2) domain capable of interacting with tyrosine-phosphorylated proteins. Furthermore, several factors induce tyrosine phosphorylation of tensin. Thus, tensin functions as a platform for dis/assembly of signaling complexes at focal adhesions by recruiting tyrosine-phosphorylated signaling molecules through the SH2 domain, and also by providing interaction sites for other SH2-containing proteins. Analysis of knockout mice has demonstrated critical roles of tensin in renal function, muscle regeneration, and cell migration. Therefore, tensin and its downstream signaling molecules may be targets for therapeutic interventions in renal disease, wound healing and cancer.  相似文献   

19.
Requirements for localization of p130cas to focal adhesions.   总被引:8,自引:0,他引:8       下载免费PDF全文
p130cas (Cas) is an adapter protein that has an SH3 domain followed by multiple SH2 binding motifs in the substrate domain. It also contains a tyrosine residue and a proline-rich sequence near the C terminus, which are the binding sites for the SH2 and SH3 domains of Src kinase, respectively. Cas was originally identified as a major tyrosine-phosphorylated protein in v-Crk- and v-Src-transformed cells. Subsequently, Cas was shown to be inducibly tyrosine phosphorylated upon integrin stimulation; it is therefore regarded as one of the focal adhesion proteins. Using an immunofluorescence study, we examined the subcellular localization of Cas and determined the regions required for its localization to focal adhesions. In nontransformed cells, Cas was localized predominantly to the cytoplasm and partially to focal adhesions. However, in 527F-c-Src-transformed cells, Cas was localized mainly to podosomes, where the focal adhesion proteins are assembled. The localization of Cas to focal adhesions was also observed in cells expressing the kinase-negative 527F/295M-c-Src. A series of analyses with deletion mutants expressed in various cells revealed that the SH3 domain of Cas is necessary for its localization to focal adhesions in nontransformed cells while both the SH3 domain and the C-terminal Src binding domain of Cas are required in 527F-c-Src-transformed cells and fibronectin-stimulated cells. In addition, the localization of Cas to focal adhesions was abolished in Src-negative cells. These results demonstrate that the SH3 domain of Cas and the association of Cas with Src kinase play a pivotal role in the localization of Cas to focal adhesions.  相似文献   

20.
The LIM-only adaptor PINCH (the particularly interesting cysteine- and histidine-rich protein) plays a pivotal role in the assembly of focal adhesions (FAs), supramolecular complexes that transmit mechanical and biochemical information between extracellular matrix and actin cytoskeleton, regulating diverse cell adhesive processes such as cell migration, cell spreading, and survival. A key step for the PINCH function is its localization to FAs, which depends critically on the tight binding of PINCH to integrin-linked kinase (ILK). Here we report the solution NMR structure of the core ILK·PINCH complex (28 kDa, KD ∼ 68 nm) involving the N-terminal ankyrin repeat domain (ARD) of ILK and the first LIM domain (LIM1) of PINCH. We show that the ILK ARD exhibits five sequentially stacked ankyrin repeat units, which provide a large concave surface to grip the two contiguous zinc fingers of the PINCH LIM1. The highly electrostatic interface is evolutionally conserved but differs drastically from those of known ARD and LIM bound to other types of protein domains. Consistently mutation of a hot spot in LIM1, which is not conserved in other LIM domains, disrupted the PINCH binding to ILK and abolished the PINCH targeting to FAs. These data provide atomic insight into a novel modular recognition and demonstrate how PINCH is specifically recruited by ILK to mediate the FA assembly and cell-extracellular matrix communication.Cell-extracellular matrix (ECM)3 adhesion, migration, and survival are essential for the development and maintenance of tissues and organs in living organisms. They are mediated by integrin transmembrane receptors, which function by adhering to ECM proteins via their large extracellular domains while connecting to the actin cytoskeleton via their small cytoplasmic tails (20-70 residues) (1). The integrin-actin connection supports strong cell-ECM adhesion, and its alteration leads to dynamic cell shape change, migration, and survival (2). The molecular details of such connection, however, are highly complex, involving a large protein complex network called focal adhesions (FAs) (3, 4).Integrin-linked kinase (ILK) is a 50-kDa FA protein that contains an N-terminal ankyrin repeat domain (ARD), a middle pleckstrin homology domain, and a C-terminal kinase domain. Originally discovered as an integrin β cytoplasmic tail-binding protein (5), ILK has been established as a major regulator that controls the complex FA assembly and transmits many cell adhesive signals between integrins and actin (6-8). Soon after the discovery of ILK, Tu et al. (9) identified an ILK binding partner called PINCH that contains five LIM domains. Extensive studies have shown that the PINCH binding to ILK is essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between ECM and the actin cytoskeleton (9-11). Consistent with the importance of the ILK/PINCH association in almost all cellular behavior and fate, ablation of either ILK (12) or PINCH in mice is embryonically lethal (13, 14). PINCH also has a highly homologous isoform called PINCH-2. However, although complementary to PINCH in many cellular behaviors (for reviews, see Refs. 8 and 15), PINCH-2 appears to be involved at the later stage of development (16), and thus its ablation in mice is not embryonically lethal (17). At the clinical level, dysregulation of the ILK/PINCH interaction has been implicated in the development of numerous human disorders such as cancer (6, 18) and heart diseases (19, 20). A Phase I clinical trial is ongoing on a drug called thymosin β-4 (RegeneRx) that appears to specifically target ILK/PINCH for treating myocardial infarction, a major heart failure disorder (19).Despite the cellular, physiological, and pathological importance of the ILK/PINCH interaction, the structural basis for how exactly PINCH binds to ILK has not been well understood. Previous biochemical/structural analyses have indicated that ILK utilizes its N-terminal ARD to recognize the LIM1 domain of PINCH, and such binding may promote the targeting of PINCH to FAs (9, 21). However, the precise atomic basis for such targeting process is elusive. No structure of any ARD·LIM complex has been reported. Using a combination of NMR-based techniques, we have solved the solution structure of the ILK ARD·PINCH LIM1 complex that revealed an interface that is distinct from other ARD and LIM bound to non-ARD/LIM domains. Structure-based mutation of a hot spot in PINCH LIM1, which is not conserved in other LIM domains, abolished the PINCH binding to ILK and its localization to FAs. These results not only reveal a unique LIM/ARD recognition mode but also provide a definitive functional basis for how PINCH is recruited by ILK to focal adhesion site, a major step toward the dynamic cell adhesion and migration processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号