首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post-translational modifications can have a signification effect on antibody stability. A comprehensive approach is often required to best understand the underlying reasons the modification affects the antibody's potency or aggregation state. Monoclonal antibody 001 displayed significant variation in terms of potency, as defined by surface plasmon resonance testing (Biacore), from lot to lot independent of any observable aggregation or degradation, suggesting that a post-translational modification could be driving this variability. Analysis of different antibody lots using analytical hydrophobic interaction chromatography (HIC) uncovered multiple peaks of varying size. Electrospray ionization mass spectrometry (ESI-MS) indicated that the antibody contained a cysteinylation post-translational modification in complementarity-determining region (CDR) 3 of the antibody light chain. Fractionation of the antibody by HIC followed by ESI-MS and Biacore showed that the different peaks were antibody containing zero, one, or two cysteinylation modifications, and that the modification interferes with the ability of the modified antibody arm to bind antigen. Molecular modeling of the modified region shows that this oxidation of an unpaired cysteine in the antibody CDR would block a potential antigen binding pocket, suggesting an inhibition mechanism.  相似文献   

2.
7H2HM is a new humanized recombinant monoclonal antibody (MAb) directed against insulin-like growth factor-1 receptor and produced in CHO cells. Homogeneity of intact antibody, reduced light and heavy chains, Fab and Fc fragments were investigated by analytical methods based on mass (SDS-PAGE, SEC), charge (IEF, C-IEX) and hydrophobicity differences (RP-HPLC, HIC) and compared side-by-side with A2CHM, produced in NS0 cells. Primary structures and disulfide bridge pairing were analyzed by microsequencing (Edman degradation), mass spectrometry (MALDI-TOF, ES-TOF) and peptide mapping after enzymatic digestion (Trypsin, endoprotease Lys-C, papain). The light chains demonstrated the expected sequences. The heavy chains yielded post-translational modifications previously reported for other recombinant humanized or human IgG1 such as N-terminal pyroglutamic acid, C-terminal lysine clipping and N-glycosylation for asparagine 297. More surprisingly, two-thirds of the 7H2HM heavy chains were shown to contain an additional 24-amino-acid sequence, corresponding to the translation of an intron located between the variable and the constant domains. Taken together these data suggest that 7H2HM is a mixture of three families of antibodies corresponding (i) to the expected structure (17%; 14,9297 Da; 1330 amino acids), (ii) a variant with a translated intron in one heavy chains (33%; 15,2878 Da; 1354 amino acids) and (iii) a variant with translated introns in two heavy chains (50%; 15,4459 Da; 1378 amino acids), respectively. RP-HPLC is not a commonly used chromatographic method to assess purity of monoclonal antibodies but unlike to SEC and SDS-PAGE, was able to show and to quantify the family of structures present in 7H2HM, which were also identified by peptide mapping, mass spectrometry and microsequencing.  相似文献   

3.
It has been well documented that papain cleaves an IgG1 molecule to release Fab and Fc domains; however, papain was found unable to release such domains from an IgG2. Here we present a new combinatory strategy to analyze the heterogeneity of the light chain (LC), single chain Fc (sFc), and Fab portion of the heavy chain (Fd) of an IgG2 molecule released by papain cleavage under mild reducing conditions. These domains were well separated on reversed-phase high performance liquid chromatography (RP-HPLC) and analyzed by in-line liquid chromatography time-of-flight mass spectrometry (LC–TOF/MS). In addition, some modifications of these domains were revealed by in-line mass spectrometry, and confirmed by the peptide mapping on LC–MS/MS analysis. This same strategy was proven suitable for IgG1 molecules as well. This procedure provides a simplified approach for the characterization of antibody biomolecules by facilitating the detection of low-level modifications in a domain. In addition, the technique offers a new strategy as an identification assay to distinguish IgG2 molecules on RP-HPLC, by which highly conserved Fc domains remain at a constant retention time (RT) unique to its subisotype, while varying RTs of the light chain and the Fd distinguish the monoclonal antibody from other molecules of the same isotype based on the underlying characteristics of each antibody.  相似文献   

4.
About two-thirds of the hexose of human and rabbit immunoglobulin G (IgG) was located in the Fc fragment and one-third in the `hinge' region of the γ (heavy) polypeptide chain at the junction of the Fab and Fc fragments. In contrast, bovine IgG contained more hexose in the `hinge' region than in the Fc fragment. The initial cleavage of susceptible IgG molecules into Fab and Fc fragments by papain under the conditions given by Porter (1959) had reached completion after digestion for 2hr., though bovine IgG was digested somewhat more slowly than human or rabbit IgG. The release of `hinge' peptides from human and rabbit IgG had also reached completion by 2hr., but was slower from bovine IgG and continued for several hours longer. Since bovine IgG molecules contained on the average a greater amount of hexose in the `hinge' region, carbohydrate on this part of the γ-chain may influence not only the initial rate of enzymic hydrolysis into Fab and Fc fragments, but also, and to a greater extent, the rate of further limited hydrolysis of the N-terminal regions of the Fc fragment. The presence of carbohydrate in the `hinge' region does not appear to account for the resistance of some IgG molecules to papain digestion and of some Fc fragments to N-terminal degradation.  相似文献   

5.
A new cation-exchange high-performance liquid chromatography (HPLC) method that separates fragment antigen-binding (Fab) and fragment crystallizable (Fc) domains generated by the limited proteolysis of monoclonal antibodies (mAbs) was developed. This assay has proven to be suitable for studying complex degradation processes involving various immunoglobulin G1 (IgG1) molecules. Assignment of covalent degradations to specific regions of mAbs was facilitated by using Lys-C and papain to generate Fab and Fc fragments with unique, protease-dependent elution times. In particular, this method was useful for characterizing protein variants formed in the presence of salt under accelerated storage conditions. Two isoforms that accumulated during storage were readily identified as Fab-related species prior to mass-spectrometric analysis. Both showed reduced biological activity likely resulting from modifications within or in proximity of the complementarity-determining regions (CDRs). Utility of this assay was further illustrated in the work to characterize light-induced degradations in mAb formulations. In this case, a previously unknown Fab-related species which populated upon light exposure was observed. This species was well resolved from unmodified Fab, allowing for direct and high-purity fractionation. Mass-spectrometric analysis subsequently identified a histidine-related degradation product associated with the CDR2 of the heavy chain. In addition, the method was applied to assess the structural organization of a noncovalent IgG1 dimer. A new species corresponding to a Fab–Fab complex was found, implying that interactions between Fab domains were responsible for dimerization. Overall, the data presented demonstrate the suitability of this cation-exchange HPLC method for studying a wide range of covalent and noncovalent degradations in IgG1 mAbs.  相似文献   

6.
Human immunoglobulin A (IgA) is an abundant antibody that mediates immune protection at mucosal surfaces as well as in plasma. The IgA1 isotype contains two four-domain Fab fragments and a four-domain Fc fragment analogous to that in immunoglobulin G (IgG), linked by a glycosylated hinge region made up of 23 amino acid residues from each of the heavy chains. IgA1 also has two 18 residue tailpieces at the C terminus of each heavy chain in the Fc fragment. X-ray scattering using H2O buffers and neutron scattering using 100 % 2H2O buffers were performed on monomeric IgA1 and a recombinant IgA1 that lacks the tailpiece (PTerm455). The radii of gyration RG from Guinier analyses were similar at 6.11-6.20 nm for IgA1 and 5.84-6.16 nm for PTerm455, and their cross-sectional radii of gyration RXS were also similar. The similarity of the RG and RXS values suggests that the tailpiece of IgA1 is not extended outwards in solution. The IgA1 RG values are higher than those for IgG, and the distance distribution function P(r) showed two distinct peaks, whereas a single peak was observed for IgG. Both results show that the hinge of IgA1 results in an extended Fab and Fc arrangement that is different from that in IgG. Automated curve-fit searches constrained by homology models for the Fab and Fc fragments were used to model the experimental IgA1 scattering curves. A translational search to optimise the relative arrangement of the Fab and Fc fragments held in a fixed orientation resembling that in IgG was not successful in fitting the scattering data. A new molecular dynamics curve-fit search method generated IgA1 hinge structures to which the Fab and Fc fragments could be connected in any orientation. A search based on these identified a limited family of IgA1 structures that gave good curve fits to the experimental data. These contained extended hinges of length about 7 nm that positioned the Fab-to-Fab centre-to-centre separation 17 nm apart while keeping the corresponding Fab-to-Fc separation at 9 nm. The resulting extended T-shaped IgA1 structures are distinct from IgG structures previously determined by scattering and crystallography which have Fab-to-Fab and Fab-to-Fc centre-to-centre separations of 7-9 nm and 6-8 nm, respectively. It was concluded that the IgA1 hinge is structurally distinct from that in IgG, and this results in a markedly different antibody structure that may account for a unique immune role of monomeric IgA1 in plasma and mucosa.  相似文献   

7.
The binding of Gd(III) to rabbit IgG (immunoglobulin G) and the Fab (N-terminal half of heavy and light chain), (Bab')2 (N-terminal half of heavy and light chains joined by inter-chain disulphide bond), Fc (C-terminal half of heavy-chain dimer)and pFc' (C-terminal quarter of heavy-chain dimer) fragments was demonstrated by measurements of the enhancement of the solvent-water proton relaxation rates in the appropriate Gd(III) solutions. At pH 5.5 there are six specific Gd(III)-binding sites on the IgG. These six sites can be divided into two classes; two very 'tight' sites on the Fc fragment (Kd approx. 5 muM) and two weaker sites on each Fab region (Kd approx. 140 muM). Ca(II) does not apparently compete for these metal-binding sites. The metal-binding parameters for IgG can be explained as the sum of the metal binding to the isolated Fab and Fc fragments, suggesting that there is no apparent interaction between the Fab and Fc regions in the IgG molecule. The binding of Gd(III) to Fab and Fc fragments was also monitored by measuring changes in the electron-spin-resonance spectrum of Gd(III) in the presence of each fragment and also by monitoring the effects of Gd(III) on the protein fluorescence at 340 nm (excitation 295 nm). The fluorescence of Tb(III) solutions of 545 nm (excitation 295 nm) is enhanced slightly on addition of Fab or Fc.  相似文献   

8.
9.
The electrospray ionization-mass spectrometry (ESI-MS) analysis of three sets of monoclonal antibody-acridinium-9-carboxamide conjugates is described. The conjugates (nine total) were enzymatically digested using papain and the resulting fragments [Fc heavy chain, Fab, or F(ab')(2)] were analyzed using liquid chromatography/ESI-MS. The average number of labels per fragment were calculated using Sigma nx%, where n is the number of acridinium molecules covalently bound to the fragment and x% is the percent relative area of the corresponding peaks in the mass spectrum. When these values were normalized against the molecular weight of their respective region, antibody-dependent labeling patterns were observed. For antibodies T (anti-L-T(4)) and F (anti-FITC), there was a preference for conjugation of the Fab region over the Fc region. For antibody B (anti-biotin), the trend was reversed.  相似文献   

10.
In this communication we present the detailed disulfide structure of IgG2 molecules. The consensus structural model of human IgGs represents the hinge region positioned as a flexible linker connecting structurally isolated Fc and Fab domains. IgG2 molecules are organized differently from that model and exhibit multiple structural isoforms composed of (heavy chain-light chain-hinge) covalent complexes. We describe the precise connection of all the disulfide bridges and show that the IgG2 C H1 and C-terminal C L cysteine residues are either linked to each other or to the two upper hinge cysteine residues specific to the IgG2 subclass. A defined arrangement of these disulfide bridges is unique to each isoform. Mutation of a single cysteine residue in the hinge region eliminates these natural complexes. These results show that IgG2 structure is significantly different from the conventionally accepted immunoglobulin structural model and may help to explain some of the unique biological activity attributed only to this subclass.  相似文献   

11.
Monoclonal antibodies in liquid formulation undergo nonenzymatic hydrolysis when stored at 5 °C for extended periods. This hydrolysis is enhanced at extreme pH and high temperature. In this study we discover that iron in the presence of histidine also enhanced cleavage of human immunoglobulin gamma (IgG) molecules containing a lambda light chain when incubated at 40 °C. The level of cleavage was concentration dependent on both iron and histidine levels. Enhanced cleavage with iron and histidine was not observed on IgG molecules containing a kappa light chain. Using CE-SDS to quantify levels of Fab + Fc, the Fab arm, and free light chain (LC) and heavy chain (HC) fragments, we show that cleavage resulted in elevated levels of free light and heavy chain fragments. Using MS we find elevated scission between residues E/C on the LC resulting in LC fragment 1-215. We also observed enhanced cleavage between S/C residues of the HC resulting in HC fragment 1-217. The corresponding Fab + Fc fragment beginning with cys-218 was not found. Instead, we find elevation of a Fab + Fc fragment that began with aspartic acid (cleavage between C/D). Further studies to understand how iron and histidine enhance cleavage of lambda light chain IgG molecules are ongoing.  相似文献   

12.
Intact rabbit immunoglobulin G molecules (IgGs) and their papain or pepsin fragments were radio-iodinated and injected into HeLa cells. Whole IgGs, Fab2, and Fc fragments were degraded with half-lives of 60- 90 h, whereas half-lives of Fab fragments were 110 h. These results indicate that proteolytic cleavage in the hinge region of the IgG molecule is not the rate-limiting step in its intracellular degradation. The hingeless human myeloma protein, Mcg, was degraded at the same rate as bulk human IgG, providing further evidence that the proteolytically susceptible hinge region is not important for intracellular degradation of IgG molecules. SDS acrylamide gel analysis of injected rabbit IgG molecules revealed that heavy and light chains were degraded at the same rate. Injected rabbit IgGs and rabbit IgG fragments were also examined on isoelectric focusing gels. Fab, Fab2, and Fc fragments were degraded without any correlation with respect to isoelectric point. Positively charged rabbit IgGs disappeared more rapidly than their negative counterparts, contrary to the trend reported for normal intracellular proteins. The isoelectric points of two mouse monoclonal antibodies were essentially unchanged after injection into HeLa cells, suggesting that the altered isoelectric profile observed for intact rabbit IgG resulted from degradation and not protein modification. The intracellular distributions of IgG fragments and intact rabbit IgG molecules were determined by autoradiography of thin sections through injected cells. Intact IgG molecules were excluded from HeLa nuclei whereas both Fab and Fc fragments readily entered them. Thus, for some proteins, entry into the nuclear compartment is determined primarily by size.  相似文献   

13.
The light chain cysteine residue that forms an interchain disulfide bond with the cysteine residue in the heavy chain in IgG1κ is the last amino acid. The cysteine residue is followed by a serine residue in IgG1λ. Effect of the serine residue on the susceptibility of disulfide bonds to reduction was investigated in the current study using a method including reduction, differential alkylation using iodoacetic acid with either natural isotopes or enriched with carbon-13, and mass spectrometry analysis. This newly developed method allowed an accurate determination of the susceptibility of disulfide bonds in IgG antibodies. The effect of the serine residue on disulfide bond susceptibility was compared using three antibodies with differences only in the light chain last amino acid, which was either a serine residue, an alanine residue or deleted. The results demonstrated that the presence of the amino acid (serine or alanine) increased the susceptibility of the inter light and heavy chain disulfide bonds to reduction. On the other hand, susceptibility of the two inter heavy chain disulfide bonds and intrachain disulfide bonds was not changed significantly.  相似文献   

14.
In experiments to determine whether serum antibodies in patients with Crohn's disease could be used as probes for detecting potentially etiologic Ag in the patients' tissues, we found that peroxidase (HRP)-labeled IgG from healthy persons, as well as from the patients, bound to normal colonic and small intestinal epithelium, mostly or entirely to goblet cells. The binding was due to a reaction involving the Fc region of IgG because HRP-labeled Fc fragments of IgG bound, but HRP-Fab, HRP-IgA, and HRP-bovine albumin did not, and because binding of HRP-IgG was inhibited competitively by unlabeled IgG or Fc fragments but not by IgG Fab fragments or IgA. These immunohistochemical results were confirmed by ELISA with microtiter wells coated with a sonicated homogenate from human colonocytes. The epithelial IgG Fc binding site was characterized by SDS-PAGE as consisting of a high Mr (greater than 200,000 Da) and a 78,000-Da component. It bound all four subclasses of human IgG and bound aggregated as well as monomeric IgG. It is distinct from known human Fc-gamma R by lack of recognition by mAb to those receptors and differences in affinity for various subclasses of human and murine IgG. This unique IgG Fc binding site might be involved in immunologic defense of the gut, perhaps by mediating reactions between foreign Ag and the contents of goblet cells.  相似文献   

15.
The binding of gadolinium [Gd(III)] to a homogeneous rabbit anti-(type-III pneumococcal polysaccharide) IgG (immunoglobulin G) and its Fab (N-terminal half of heavy and light chain) and Fc (C-terminal half of heavy-chain dimer) fragments was demonstrated by measurements of solvent-water proton relaxation rates in the appropriate Gd(III) solutions. At pH 5.5 the binding of Gd(III) to the Fc fragment is much tighter (KD approx. 5 micronM) than binding to the Fab fragment (KD approx. 250 micronM). The binding of Gd(III) to the whole IgG molecule (KD approx. 4 micronM) is very similar to that for the Fc fragment alone. This specificity of binding to the Fc region allows the use of Gd(III) as a probe of the Fc conformation. The environment of the Gd(III) in the Fc region of whole IgG is not affected by the presence of octasaccharide derived by hydrolysis of type-III pneumococcal polysaccharide, but the corresponding 28-unit saccharide does cause detectable changes. The addition of 16-unit saccharide to anti-(SIII polysaccharide) IgG in the presence of Gd(III) does not change the solvent water proton relaxation rate, although aggregation does occur. The effects of the 28-unit saccharide may be explained therefore by a change in the tumbling time of the IgG. From a study of the effect of various antigen/antibody ratios, it is concluded that the 28-unit-saccharide-induced changes in the Gd(III) environment in the Fc region are caused by the specific geometrical structure of the antigen-antibody complexes formed, and not simply by occupancy of the combining sites on the antibody.  相似文献   

16.
We have found that tissue plasminogen activator catalyzes the binding of plasminogen (Pg) to immunoglobulin G (IgG) immobilized on a surface. This enhancement is due to the formation of plasmin, since plasmin treatment of immobilized IgG produced a 20-fold increase in Pg binding. Pg binding is lysine site dependent and reversible. The augmentation of Pg binding by plasmin is specific as other proteases produced significantly less or no effect. Immobilized plasmin-treated IgG also specifically binds Pg in plasma. IgG-immobilized Pg is activated by tissue plasminogen activator, and a significant portion of the plasmin formed remains bound to the IgG. The Pg reactive species in a plasmin-treated IgG digest was identified as the Fab fragment by chromatography utilizing the immobilized high affinity lysine-binding site of plasminogen. Specificity of the interaction was further demonstrated by immunoblot-ligand analysis which demonstrated that the plasmin-derived Fab fragment bound Pg whereas papain-derived Fab or plasmin-derived Fc fragments did not. These data suggest that Pg binds to the new COOH-terminal lysine residue of the plasmin-derived Fab. Pg also binds to an immobilized immune complex following plasmin treatment. These findings indicate that surface-bound IgG localizes plasminogen thus extending the spectrum of activity of the plasmin system to immunologic reactions.  相似文献   

17.
Concentration-dependent reversible self-association (RSA) of monoclonal antibodies (mAbs) poses a challenge to their pharmaceutical development as viable candidates for subcutaneous delivery. While the role of the antigen-binding fragment (Fab) in initiating RSA is well-established, little evidence supports the involvement of the crystallizable fragment (Fc). In this report, a variety of biophysical tools, including hydrogen exchange mass spectrometry, are used to elucidate the protein interface of such non-covalent protein-protein interactions. Using dynamic and static light scattering combined with viscosity measurements, we find that an IgG1 mAb (mAb-J) undergoes RSA primarily through electrostatic interactions and forms a monomer-dimer-tetramer equilibrium. We provide the first direct experimental mapping of the interface formed between the Fab and Fc domains of an antibody at high protein concentrations. Charge distribution heterogeneity between the positively charged interface spanning complementarity-determining regions CDR3H and CDR2L in the Fab and a negatively charged region in CH3/Fc domain mediates the RSA of mAb-J. When arginine and NaCl are added, they disrupt RSA of mAb-J and decrease the solution viscosity. Fab-Fc domain interactions between mAb monomers may promote the formation of large transient antibody complexes that ultimately cause increases in solution viscosity. Our findings illustrate how limited specific arrangements of amino-acid residues can cause mAbs to undergo RSA at high protein concentrations and how conserved regions in the Fc portion of the antibody can also play an important role in initiating weak and transient protein-protein interactions.  相似文献   

18.
Variable (Fv) domain N-glycosylation sites are found in approximately 20% of human immunoglobulin Gs (IgGs) in addition to the conserved N-glycosylation sites in the C(H)2 domains. The carbohydrate structures of the Fv glycans and their impact on in vivo half-life are not well characterized. Oligosaccharide structures in a humanized anti-Abeta IgG1 monoclonal antibody (Mab) with an N-glycosylation site in the complementary determining region (CDR2) of the heavy chain variable region were elucidated by LC/MS analysis following sequential exoglycosidase treatments of the endoproteinase Lys-C digest. Results showed that the major N-linked oligosaccharide structures in the Fv region have three characteristics (core-fucosylated biantennary oligosaccharides with one or two N-glycolylneuraminic acid [NeuGc] residues, zero or one alpha-linked Gal residue, and zero or one beta-linked GalNAc residue), whereas N-linked oligosaccharides in the Fc region contained typical Fc glycans (core-fucosylated, biantennary oligosaccharides with zero to two Gal residues). To elucidate the contribution of Fv glycans to the half-life of the antibody, a method that allows capture of the Mab and determination of its glycan structures at various time points after administration to mice was developed. Anti-Abeta antibody in mouse serum was immunocaptured by immobilized goat anti-human immunoglobulin Fc(gamma) antibody resin, and the captured material was treated with papain to generate Fab and Fc for LC/MS analysis. Different glycans in the Fc region showed the same clearance rate as demonstrated previously. In contrast to many other non-antibody glycosylated therapeutics, there is no strong correlation between oligosaccharide structures in the Fv region and their clearance rates in vivo. Our data indicated that biantennary oligosaccharides lacking galactosylation had slightly faster clearance rates than other structures in the Fv domain.  相似文献   

19.
Liquid formulations of monoclonal antibodies (MAbs) typically undergo fragmentation near the papain cleavage site in the hinge region, resulting in Fab and Fab+Fc forms. The purpose of this study was to investigate whether this fragmentation is due to proteases. Four closely-related MAbs were exchanged into a pH 5.2 acetate buffer with NaCl and stored at -20 degrees C, 5 degrees C, 30 degrees C, or 40 degrees C for 1 month. Fragmentation generated size-exclusion chromatography (SEC) peak fractions that were analyzed by electrospray mass spectrometry to identify the cleavage sites. The effects of protein inhibitors or host cell proteins on fragmentation were also studied. The extent of fragmentation was equivalent for all four antibodies, occurring in the heavy chain hinge region Ser-Cys-Asp-Lys-Thr-His-Thr sequence. The fragment due to cleavage of the Asp-Lys bond showed two forms that differ by 18 Da. A synthetic peptide with the hinge region sequence terminating with Asp did not show fragmentation or the loss of 18 Da after incubation. Protease inhibitors did not affect rates of cleavage or modify sites of fragmentation. Degradation was not affected by host cell protein content. Fragmentation appears to be a kinetic process that is not caused by low levels of host cell proteases.  相似文献   

20.
Allergies are caused by the immune reaction to commonly harmless proteins, allergens. This reaction is typified by immunoglobulin E (IgE) antibodies. We report the crystal structure of an IgE Fab fragment in complex with beta-lactoglobulin (BLG), one of the major allergens of bovine milk. The solved structure shows how two IgE/Fab molecules bind the dimeric BLG. The epitope of BLG consists of six different short fragments of the polypeptide chain, which are located especially in the beta strands, covering a flat area on the allergen surface. All six CDR (complementary-determining region) loops of the IgE Fab participate in the binding of BLG. The light chain CDR loops are responsible for the binding of the flat beta sheet region of BLG. The IgE epitope is different from common IgG epitopes that are normally located in the exposed loop regions of antigens and observed also in the two recently determined allergen-IgG complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号