首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An alkaline α‐amylase gene from alkaliphilic Alkalimonas amylolytica was synthesized based on the preferred codon usage of Escherichia coli and Pichia pastoris, respectively, and then was expressed in the according heterologous host, E. coli BL21 (DE3) and P. pastoris GS115. The alkaline α‐amylase expressed in E. coli was designated AmyA, whereas that produced by P. pastoris was designated AmyB. The specific activity of AmyA and AmyB was 16.0 and 16.6 U/mg at pH 9.5 and 50°C, respectively. The optimal pH and pH stability of AmyA and AmyB were similar, whereas the optimum temperature and thermal stability of AmyB were slightly enhanced compared with those of AmyA. The AmyA and AmyB had a similar melting temperature of 64°C and the same catalytic efficiency (kcat/Km) of 2.0 × 106 L/(mol min). AmyA and AmyB were slightly activated by 1 mM Co2+, Ca2+, or Na+, but inhibited by all other metal ions (K+, Mg2+, Fe3+, Fe2+, Zn2+, Mn2+, and Cu2+). Tween 80 or Tween 60 (10% (w/v)) had little influence on the stability of AmyA and AmyB, while the 10% (w/v) sodium dodecyl sulfate caused the complete loss of AmyA and AmyB activities. The AmyA and AmyB were stable in the presence of solid detergents (washing powder), while were less stable in liquid detergents. Under the optimal conditions in 3‐L bioreactor, the extracellular AmyB activity reached 600 U/mL, which was about 10 times as that of AmyA. These results indicated that P. pastoris was a preferable host for alkaline α‐amylase expression and the produced alkaline α‐amylase had a certain application potential in solid detergents. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

2.
The K+ uptake pathways in yeast mitochondria are still undefined. Nonetheless, the K+-mediated mitochondrial swelling observed in the absence of phosphate (PO4) and in the presence of a respiratory substrate has led to propose that large K+ movements occur in yeast mitochondria. Thus, the uptake of K+ by isolated yeast mitochondria was evaluated. Two parallel experiments were conducted to evaluate K+ transport; these were mitochondrial swelling and the uptake of the radioactive K+ analog 86Rb+. The opening of the yeast mitochondrial unspecific channel (YMUC) was regulated by different PO4 concentrations. The high protein concentrations used to measure 86Rb+ uptake resulted in a slight stabilization of the transmembrane potential at 0.4 mM PO4 but not at 0 or 4 mM PO4. At 4 mM PO4 swelling was inhibited while, in contrast, 86Rb+ uptake was still observed. The results suggest that an energy-dependent K+ uptake mechanism was unmasked when the YMUC was closed. To further analyze the properties of this K+ uptake system, the Mg2+ and quinine sensitivity of both swelling and 86Rb+ uptake were evaluated. Under the conditions where the unspecific pore was closed, K+ transport sensitivity to Mg2+ and quinine increased. In addition, when Zn2+ was added as an antiport inhibitor, uptake of 86Rb+ increased. It is suggested that in yeast mitochondria, the K+ concentration is highly regulated by the equilibrium of uptake and exit of this cation through two specific transporters.  相似文献   

3.
Enterococcus hirae grows in a broad pH range from 5 to 11. An E. hirae mutant 7683 lacking the activities of two sodium pumps, Na+-ATPase and Na+/H+ antiporter, does not grow in high Na+ medium at pH above 7.5. We found that 7683 grew normally in high Na+ medium at pH 5.5. Although an energy-dependent sodium extrusion at pH 5.5 was missing, the intracellular levels of Na+ and K+ were normal in this mutant. The Na+ influx rates of 7683 and two other strains at pH 5.5 were much slower than those at pH 7.5. These results suggest that Na+ elimination of this bacterium at acid pH is achieved by a decrease in Na+ entry and a normal K+ uptake.  相似文献   

4.
Sod2 is the sodium-proton antiporter on the plasma membrane of the fission yeast Schizosaccharomyces pombe. It is vitally important for sodium export and pH homeostasis in this organism. Recently, the sod2 gene has been cloned and sequenced. However, initial attempts to express sod2 in Escherichia coli using the T7 promoter failed. In the present work we examined physiological consequences of expression of sod2 in E. coli. To alleviate problems caused by expression of sod2 we: (i) used sodium-free media at all steps; (ii) used the moderate tac promoter for expression and; (iii) used E. coli strain MH1 which has impaired sodium exchange. The effect of sod2 expression on E. coli varied depending on the E. coli genotype. When sod2 was expressed in BL21 cells which have normal N a+/H+ antiporters, the result was a Li+ sensitive phenotype. LiCl completely arrested or prevented growth of BL21 E. coli transformed with the sod2 gene. The effect on growth was pronounced in media of low external pH. Sod2 was then expressed in E. coli MH1 which is devoid of endogenous Na+/H+ antiporters. These cells became more resistant to external LiCl, but only in Na+ containing media. In the absence of external Na+, the presence of sod2 reduced growth. The results are explained in a model which demonstrates the physiological consequences of interference by expression of a foreign electroneutral Na+/H+ antiporter in conjunction with different housekeeping systems of E. coli host cells.  相似文献   

5.
Previous results with potato tuber discs showed that a treatment with abscisic acid stimulated K+ uptake. In this investigation, we determine the relationship between increased K' uptake and H+extrusion, and Ca2+ fluxes by treating tissues with specific Ca2+ channel blocker (La3+), calmodulin (CaM) inhibitors (chlorpromazine and W7), and with Ca2+ ionophore (A23187). K+ uptake increased with increasing external pH whether tissues were treated with ABA or not. Treatment of tissues with La3+ inhibited K+ uptake, whereas CaM inhibitors have no effect. By contrast ABA and A23187 produced a synergistic effect, suggesting that ABA may act in part, on K+ uptake, like a Ca2+ agonist, in accord with Huddart's hypothesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K+, Na+, Ca2+, Mg2+, Fe2+, Cu2+, Co2+, Cd2+, Mn2+, Ba2+, Ni2+, Zn2+, and Li+) were analyzed. AtCCX5 expression was found to affect the response to K+ and Na+ in yeast. The AtCCX5 transformant also showed a little better growth to Zn2+. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K+ (0.5 mM), and also suppressed its Na+ sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K+ uptake and was also involved in Na+ transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K+ uptake and Na+ transport in yeast.  相似文献   

7.
In the search of Na+,K+-ATPase modulators, we have reported the isolation by gel filtration and HPLC of a brain fraction, termed endobain E, which highly inhibits Na+,K+-ATPase activity. In the present study we compared some properties of endobain E with those of ascorbic acid. Kinetic experiments assaying synaptosomal membrane K+-p-nitrophenylphosphatase (K+-p-NPPase) activity in the presence of endobain E or ascorbic acid showed that in neither case did enzyme inhibition prove competitive in nature versus K+ or p-NPP concentration. At pH 5.0, endobain E and ascorbic acid maximal UV absorbance was 266 and 258 nm, respectively; alkalinization to pH 14.0 led to absorption drop and shift for endobain E but to absorbance disappearance for ascorbic acid. After cysteine treatment, endobain E absorbance decreased, whereas that of ascorbic acid remained unaltered; iodine treatment led to absorbance drop and shift for endobain E but to absorbance disappearance for ascorbic acid. HPLC analysis of endobain E disclosed the presence of two components: one eluting with retention time and UV spectrum indistinguishable from those of ascorbic acid and a second, as yet unidentified, both exerting Na+,K+-ATPase inhibition.  相似文献   

8.
Four Na+/H+ antiporters, Mrp, TetA(L), NhaC, and MleN have so far been described in Bacillus subtilis 168. We identified an additional Na+/H+ antiporter, YvgP, from B. subtilis that exhibits homology to the cation: proton antiporter-1 (CPA-1) family. The yvgP-dependent complementation observed in a Na+(Ca2+)/H+ antiporter-defective Escherichia coli mutant (KNabc) suggested that YvgP effluxed Na+ and Li+. In addition, effects of yvgP expression on a K+ uptake-defective mutant of E. coli indicated that YvgP also supported K+ efflux. In a fluorescence-based assay of everted membrane vesicles prepared from E. coli KNabc transformants, YvgP-dependent Na+ (K+, Li+, Rb+)/H+ antiport activity was demonstrated. Na+ (K+, Li+)/H+ activity was higher at pH 8.5 than at pH 7.5. Mg2+, Ca2+ and Mn2+ did not serve as substrates but they inhibited YvgP antiport activities. Studies of yvgP expression in B. subtilis, using a reporter gene fusion, showed a significant constitutive level of expression that was highest in stationary phase, increasing as stationary phase progressed. In addition, the expression level was significantly increased in the presence of added K+ and Na+.  相似文献   

9.
Succinate, malate and fumarate uptake in purple sulfur bacterium Ectothiorhodospira shaposhnikovii, strain 1 K MSU, obligatorily depends on the presence of Na+. Other monovalent cations such as K+, Li+, NH4+ could not replace Na+. Experiments with energy-depleted cells have shown that succinate uptake against its concentration gradient can be energized by artificially imposed sodium gradients (ΔpNa).An artificial membrane potential (inside negative) inhibited ΔpNa-driven succinate uptake at pH 7.0 but stimulated it at pH 9.0.The results confirm the suggestion that succinate uptake in E. shaposhnikovii is carried out in symport with Na+.  相似文献   

10.
Summary The effect of extracellular and intracellular Na+ (Na o + , Na i + ) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na++1 K++2 Cl) cotransport system operates in two different modes: modei) promoting bidirectional 11 (Na+–K+) cotransport, and modeii) a Na o + -independent 11 K o + /K i + exchange requiring Na i + which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rb o + /K i + exchange contributes about 25% to total Rb+ uptake in 145mm NaCl media containing 5mm RbCl at normal Na i + (pH 7.4). Na+–K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+–Rb+ cotransport exhibits a substrate inhibition at high Rb o + . With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparentK m Rb o + of Na+–K+ cotransport is low (2mm) and almost independent of pH, and high for K+/K+ exchange (10 to 15mm), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na++1 K++2 Cl) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987,Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl-dependent K+ transport pathway that is independent of both Na o + and Na i + . This pathway differs in many properties from the basal, Na o + -independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Na o + -independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. K o + o +
  • o + o 2+ reduce furosemide-resistant Rb+ inward leakage relative to choline o + .  相似文献   

  • 11.
    Zhai  Lei  Xie  Jiuyan  Lin  Yafang  Cheng  Kun  Wang  Lijiang  Yue  Feng  Guo  Jingyan  Liu  Jiquan  Yao  Su 《Extremophiles : life under extreme conditions》2018,22(2):221-231

    Halomonas alkalicola CICC 11012s is an alkaliphilic and halotolerant bacterium isolated from a soap-making tank (pH > 10) from a household-product plant. This strain can propagate at pH 12.5, which is fatal to most bacteria. Genomic analysis revealed that the genome size was 3,511,738 bp and contained 3295 protein-coding genes, including a complete cell wall and plasma membrane lipid biosynthesis pathway. Furthermore, four putative Na+/H+ and K+/H+ antiporter genes, or gene clusters, designated as HaNhaD, HaNhaP, HaMrp and HaPha, were identified within the genome. Heterologous expression of these genes in antiporter-deficient Escherichia coli indicated that HaNhaD, an Na+/H+ antiporter, played a dominant role in Na+ tolerance and pH homeostasis in acidic, neutral and alkaline environments. In addition, HaMrp exhibited Na+ tolerance; however, it functioned mainly in alkaline conditions. Both HaNhaP and HaPha were identified as K+/H+ antiporters that played an important role in high alkalinity and salinity. In summary, genome analysis and heterologous expression experiments demonstrated that a complete set of adaptive strategies have been developed by the double extremophilic strain CICC 11012s in response to alkalinity and salinity. Specifically, four antiporters exhibiting different physiological roles for different situations worked together to support the strain in harsh surroundings.

      相似文献   

    12.
    Summary Using intracellular microelectrode technique, we investigated the changes in membrane voltage (V) of cultured bovine pigmented ciliary epithelial cells induced by different extracellular solutions. (1)V in 213 cells under steady-state conditions averaged –46.1±0.6 mV (sem). (2) Increasing extracellular K+ concentration ([K+] o ) depolarizedV. Addition of Ba2+ could diminish this response. (3) Depolarization on doubling [K+] o was increased at higher [K+] o (or low voltage). (4) Removing extracellular Ca2+ decreasedV and reduced theV amplitude on increasing [K+] o . (5)V was pH sensitive. Extra-and intracellular acidification depolarizedV; alkalinization induced a hyperpolarization.V responses to high [K+] o were reduced at acidic extracellular pH. (6) Removing K o + depolarized, K o + readdition after K+ depletion transiently hyperpolarizedV. These responses were insensitive to Ba2+ but were abolished in the presence of ouabain or in Na+-free medium. (7) Na+ readdition after Na+ depletion transiently hyperpolarizedV. This reaction was markedly reduced in the presence of ouabain or in K+-free solution but unchanged by Ba2+. It is concluded that in cultured bovine pigmented ciliary epithelial cells K+ conductance depends on Ca2+, pH and [K+] o (or voltage). An electrogenic Na+/K+-transport is present, which is stimulated during recovery from K+ or Na+ depletion. This transport is inhibited by ouabain and in K+-or Na+-free medium.  相似文献   

    13.
    Abstract

    The performance of the Kent K+-selective glass electrode in several biological buffers at neutral pH was evaluated in terms of Nernstian response, repeatability, response time and selectivity. The electrode exhibited a linear response between 2 times 10?5 to 5 times 10?4 and 10?2 M K+, with a slope of 54.9–63.1 mV per decade change in K+ activity. In successive calibrations in the range of 10?5 to 10?2 M K+, the coefficient of variation of the potential in a given K+ concentration decreased with increasing K+ concentration, and was lower than 5%, indicating that in this range of concentrations, the electrode exhibited good repeatability. The response time for a sudden tenfold increase in K+ concentration was 1.3–3.6 min for 10?5 M, and 0.5–1 min for 10?4 M K+. The influence of Ca2+ and Mg2+ on electrode, potential was very small, but Na+ and H+ strongly interfered with electrode response. The selectivity coefficient K+/Na+ was 0.11 and K+/H+ 3.8. The results suggested that in several biological buffers containing no Na+ and with neutral pH, the K+-selective glass electrode can be used to assay with accuracy and rapidity free potassium in the range of 10?5 to 10?2 M, being therefore an alternative to valinomycin-based electrodes.  相似文献   

    14.
    Plant roots accumulate K+ over a range of external concentrations. Root cells have evolved at least two parallel plasma-membrane K+ transporters which operate at millimolar and micromolar external [K+]: high-affinity K+ uptake is energised by symport with H+, while low-affinity uptake is assumed to occur via ion channels. To determine the role of ion channels in low-affinity K+ uptake, a characterisation of the principal K+-selective ion channels in the plasma membrane of Arabidopsis thaliana (L.) Heynh. cv. Columbia roots was undertaken. Two classes of K+-selective channels were frequently observed: one inward (IRC) and one outward (ORC) rectifying with unitary conductances of 5 pS, 20 pS (IRCs) and 15 pS (ORC), measured in symmetrical 10 mM KCl. The dominant IRC (5 pS) and ORC (15 pS) were highly cation-selective (PCl PK < 0.025) but less selective amongst monovalent cations (PNaPK0.17–0.3). Both the IRC and the ORC were blocked by Ba2+, Cs+ and tetra-ethyl-ammonium, whereas 4-aminopyridine and quinidine selectively inhibited the ORC. The ORC open probability was steeply voltage-dependent and ORC activation potentials were close to the potassium equilibrium potential (EK+), enabling ORCs to conduct mainly outward, but occasionally inward, K+ current. By contrast, gating of the 5-pS IRC was weakly voltageependent and IRC gating was invariably restricted to membrane potentials more negative than EK+, ensuring K+ transport was always inwardly directed. Studies on channel activity were conducted for a large number of root cells grown at two levels of external [K+], one where K+ uptake is likely to be principally through channels (6 mM K+) and one where it must be energised (100 M K+). Shifting growth conditions from high to low K+ did not affect single-channel properties such as conductance and selectivity, nor the manifestation of the ORC and 20-pS IRC, but led to enhanced activity of the 5-pS IRC. The enhanced activity of the 5-pS IRC was mirrored by a parallel increase in unidirectional 86Rb+ influx after low-K+ growth, clearly indicating a dominant role of this particular channel in K+ uptake at supra millimolar external [K+].Abbreviations EK+ potassium equilibrium potential - Em membrane potential - HK high [K+] - IRC inward rectifying channel - LK low [K+] - ORC outward rectifying channel - TEA tetra-ethyl-ammonium Financial support was provided by the Biotechnology and Biological Sciences Research Council (Grant PG87/529) and by the European Union (Framework III, Biotechnology Programme).  相似文献   

    15.
    These experiments examined effects of several ligands on the K+ p-nitrophenylphosphatase activity of the (Na+,K+)-ATPase in membranes of a rat brain cortex synaptosomal preparation. K+-independent hydrolysis of this substrate by the synaptosomal preparation was studied in parallel; the rate of hydrolysis in the absence of K+ was approximately 75% less than that observed when K+ was included in the incubation medium. The response to the H+ concentrations was different: K+-independent activity showed a pH optimum around 6.5–7.0, while the K+-dependent activity was relatively low at this pH range. Ouabain (0.1 mM) inhibited K+-dependent activity 50%; a concentration 10 times higher did not produce any appreciable effect on the K+-independent activity. Na+ did not affect K+-independent activity at all, while the same ligand concentration inhibited sharply the K+-dependent activity; this inhibition was not competitive with the substrate,p-nitrophenyl phosphate. K+-dependent activity was stimulated by Mg2+ with low affinity (millimolar range), and 3 mM Mg2+ produced a slight stimulation of the activity in absence of K+, which could be interpreted as Mg2+ occupying the K+ sites. Ca2+ had no appreciable effect on the activity in the absence of K+. However, in the presence of K+ a sharp inhibition was found with all Ca2+ concentrations studied. ATP (0.5 mM) did not affect the K+-independent activity, but this nucleotide behaved as a competitive inhibitor top-nitrophenylphosphate. Pi inhibited activity in the presence of K+, competively to the substrate, so it could be considered as the second product of the reaction sequence.Abbreviations used p-NPP p-nitrophenylphosphate - p-NPPase rho-nitrophenylphosphatase activity  相似文献   

    16.
    As part of the enterohepatic circulation, taurocholate is taken up by hepatocytes by a Na+-gradient-dependent, carrier-mediated process. The dependence of taurocholate uptake on the presence of a Na+ gradient, outside greater than inside, has been studied in isolated rat liver plasma membranes. The uptake is specific for sodium, and a cotransport stoichiometry of 2 Na+ per taurocholate taken up was found. The presence of K+ ions inside the vesicles was also found to be essential for maximum Na+-stimulated uptake of taurocholate, although a K+ gradient is not required. Mg2+ was almost as effective as K+ in this regard. The symport of Na+ and taurocholate during uptake was shown to be electrogenic, so that K+ may act as an exchange counterion preventing the accumulation of positive charge within the vesicles.Dedicated to the memory of Prof. David E. Green, friend, mentor, and colleague.  相似文献   

    17.
    Escherichia coli accumulates K+ by means of multiple transportsystems, of which TrkA is the most prominent at neutral and alkalinepH while Kup is major at acidic pH. In the present study, K+ uptakewas observed with cells grown under fermentative conditions at an initialpH of 9.0 and 7.3 (the medium pH decreased to 8.4 and 6.8, respectively,during the mid-logarithmic growth phase), washed with distilled water andresuspended in a K+ containing medium at pH 7.5 in the presence ofglucose. The kinetics for this K+ uptake and the amount of K+accumulated by the wild type and mutants having a functional TrkA orKup could confirm that K+ uptake by E. coli grown either at pH 9.0or pH 7.3 occurs mainly through TrkA. The following results distinguishpH dependent mode of TrkA operating: (1) K+ uptake was inhibited byDCCD in cells grown either at pH 9.0 or pH 7.3, although the stoichiometryof K+ influx to DCCD-inhibited H+ efflux for bacteria grownat pH 9.0 varied with external K+ concentration, but remained constantfor cells grown at pH 7.3; (2) K+ uptake was observed with an atpDmutant grown at pH 9.0 but not at pH 7.3; (3) The DCCD-inhibited H+efflux was increased 8-fold less by 5 mM K+ added into a K+ freemedium for bacteria grown at pH 9.0 than that for cells grown at pH 7.3;(4) the DCCD-inhibited ATPase activity of membrane vesicles from bacteriagrown at pH 9.0 was reduced a little in the presence of 100 mM K+,but stimulated more than 2.4-fold at pH 7.3.  相似文献   

    18.
    An ATPase whose activity was stimulated by K+ was identified in Rhizobium sp. UMKL 20. The synthesis of the ATPase was repressed by high levels of K+. The enzyme had a pH optimum of about 8.0. It was highly specific for cations and only K+ appeared to be able to stimulate the enzyme. In terms of divalent cation specificity, both Mn2+ and Mg2+ stimulated K+-ATPase activity. ATP was the only nucleotide capable of supporting substantial activity. Vanadate was an inhibitor of the enzyme.Abbreviations K+-ATPase K+-stimulated ATPase - DCCD N,N1-dichlorohexylcarbodiimide - HEPES N-2-hydroxyethylpiperazine-N1-2-ethanesulfonic acid - PMSF phenylmethylsulfonyl fluoride - TCA trichloroacetic aci  相似文献   

    19.
    Summary A simple procedure was developed for the isolation of a sarcolemma-enriched membrane preparation from homogenates of bullfrog (Rana catesbeiana) heart. Crude microsomes obtained by differential centrifugation were fractionated in Hypaque density gradients. The fraction enriched in surface membrane markers consisted of 87% tightly sealed vesicles. The uptake of86Rb+ by the preparation was measured in the presence of an opposing K+ gradient using a rapid ion exchange technique. At low extravesicular Rb+ concentrations, at least 50% of the uptake was blocked by addition of 1mm ouabain to the assay medium. Orthovanadate (50 m), ADP (2.5mm), or Mg (1mm) were also partial inhibitors of Rb+ uptake under these conditions, and produced a complete block of Rb+ influx in the presence of 1mm ouabain. When86Rb+ was used as a tracer of extravesicular K+ (Rb 0 + 40 m K 0 + =0.1–5mm) a distinct uptake pathway emerged, as detected by its inhibition by 1mm Ba2+ (K 0.5=20 m). At a constant internal K+ concentration (K in + =50mm) the magnitude of the Ba2+-sensitive K+ uptake was found to depend on K 0 + in a manner that closely resembles the K+ concentration dependence of the background K+ conductance (I Kl) observed electrophysiologically in intact cardiac cells. We conclude that K+ permeates passively this preparation through two distinct pathways, the sodium pump and a system identifiable as the background potassium channel.  相似文献   

    20.
    Summary The cellular mechanisms by which nephrotoxic heavy metals injure the proximal tubule are incompletely defined. We used extracellular electrodes to measure the early effects of heavy metals and other sulfhydryl reagents on net K+ and Ca2+ transport and respiration (QO2) of proximal tubule suspensions. Hg2+, Cu2+, and Au3+ (10–4 m) each caused a rapid net K+ efflux and a delayed inhibition of QO2. The Hg2+-induced net K+ release represented passive K+ transport and was not inhibited by barium, tetraethylammonium, or furosemide. Both Hg2+ and Ag+ promoted a net Ca2+ uptake that was nearly coincident with the onset of the net K+ efflux. A delayed inhibition of ouabainsensitive QO2 and nystatin-stimulated QO2, indicative of Na+, K+-ATPase inhibition, was observed after 30 sec of exposure to Hg2+. More prolonged treatment (2 min) of the tubules with Hg2+ resulted in a 40% reduction in the CCCP-uncoupled QO2, indicating delayed injury to the mitochondria. The net K+ efflux was mimicked by the sulfhydryl reagents pCMBS and N-ethylmaleimide (10–4 m) and prevented by dithiothreitol (DTT) or reduced glutathione (GSH) (10–4 m). In addition, both DTT and GSH immediately reversed the Ag+-induced net Ca2+ uptake. Thus, sulfhydryl-reactive heavy metals cause rapid, dramatic changes in the membrane ionic permeability of the proximal tubule before disrupting Na+, K+-ATPase activity or mitochondrial function. These alterations appear to be the result of an interaction of the metal ions with sulfhydryl groups of cell membrane proteins responsible for the modulation of cation permeability.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号