首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal and bacterial substrate-induced respiratory activities have been distinguished in gray forest and chestnut soils in various ecosystems (forest, grassland, tillage, unused land, and shelterbelt) using the antibiotics cycloheximide and streptomycin. The optimal inhibitory concentrations of the antibiotics, added separately and in combination; the preincubation time of the antibiotics with the soil before glucose addition; and the mass of added inert material (talc) have been determined. Based on the results obtained, the inhibitor additivity ratio (IAR) has been calculated for the antibiotics. With the IAR differing from 1.0 by a value of more than 5%, the fungal and bacterial substrate-induced respiratory activities can not be distinguished reliably. Respiration measurements show that the microbial communities of natural ecosystems are dominated by fungi (81-95% on average). The smallest amount of fungi (54-59%) is found in the tillage ecosystem.  相似文献   

2.
Tundra, chernozem (virgin and arable), soddy-podzolic (coniferous forest, meadow, and arable), and grey forest (larch forest) soils were used to separate the contributions of fungi and bacteria to substrate-induced respiration (SIR) with the help of antibiotics. For soils with a high content of organic matter (tundra and chernozem: 12 and 8%, respectively), the procedure of selective inhibition of SIR has been optimized. This procedure consists in application of high concentrations of streptomycin (50–120 mg/g of soil) and cycloheximide (50–80 mg/g of soil) and decreasing the weight of the analyzed soil sample. Soils under study have shown the predominant contribution of fungi (63–82%) to the total SIR. The fungal-bacterial ratio in the soils of natural ecosystems (0–5 cm, without litter) was 4.3, 2.2, 1.5, and 1.5 for tundra soil, virgin chernozem, coniferous (soddy-podzolic soil), and larch (grey forest soil) forests, respectively. The lower layers of soddy-podzolic (5–10 cm) and grey forest (48–58 cm) soils showed a decrease in the fungal and increase in the bacterial component in the total SIR.  相似文献   

3.
Tundra, chernozem (virgin and arable), sod-podzolic (coniferous forest, meadow, and arable), and grey forest (larch forest) soils were used to separate the contributions of fungi and bacteria to substrate-induced respiration (SIR) with the help of antibiotics. For soils with a high content of organic matter (tundra and chernozem: 12 and 8%, respectively), the procedure of selective inhibition of SIR has been optimized. The optimized procedure includes the application of high concentrations of streptomycin (50-120 mg/g of soil) and cycloheximide (50-80 mg/g of soil) and decreasing the weight of the analyzed soil sample. Soils under study have shown the predominant contribution of fungi (63-82%) to the total SIR. The fungal-bacterial ratio in the soils of natural ecosystems (0-5 cm, without litter) was 4.32, 2.19, 1.5, and 1.5 for tundra soil, virgin chernozem, coniferous (sod-podzolic soil), and larch (grey forest soil) forests, respectively. The lower layers of sod-podzolic (5-10 cm) and grey forest (48-58 cm) soils showed a decrease in the fungal and increase in the bacterial component in the total SIR.  相似文献   

4.
Abstract The dynamics of fungal and bacterial potential physiological activities during leaf, branch, and bark litter decomposition along a gap size gradient in a subtropical forest was determined using substrate-induced respiration (SIR) with antibiotics selective for fungi and bacteria, respectively. A gap size gradient (1) was under closed canopy; (2) had small gaps with a diameter (≤5m); (3) had small to intermediate gaps (5–15 m diameter); (4) had intermediate to large gaps (15–30 m diameter); and (5) had large gaps (≥30 m diameter). Litter decomposition was studied using a litter bag technique. Fungi had higher SIR than bacteria for each type of litter in any size class of gaps. Gaps 1, 2, and 3 had higher fungal and bacterial SIRs than gaps 4 and 5. Moreover, decomposing leaf litter exhibited higher fungal and bacterial SIRs than branch, and branch higher than bark. Simple correlation analysis indicated that fungal SIR was a reliable index of decomposition rates. Fungal SIR was significantly and positively correlated with soil moisture, whereas bacterial SIR was not significantly correlated with soil moisture. The relationships among microclimatic factors, fungal and bacterial physiological activities, and rates of plant litter decomposition suggest that, in subtropical ecosystems, fungal community activities were strongly and directly regulated by the environmental heterogeneity within gaps, and an important regulator of rates of plant litter decomposition rates. Received: 13 January 1997; Accepted 28 March 1997  相似文献   

5.
Selective inhibition of substrate-induced respiration with antibiotics cycloheximide and streptomycin sulphate provided insight into eukaryotic versus prokaryotic activities in surface peat soil of three Canadian peatlands. Prokaryotic and eukaryotic communities in peatlands are important in the net sequestration of atmospheric carbon dioxide and therefore play a unique role in global carbon cycling. Selective inhibition techniques were generally successful, with a maximum non-target inhibition of only 17%. Assuming that eukaryotic and prokaryotic activities were dominated by fungi and bacteria respectively, across 3 ecologically and hydrologically diverse and spatially dispersed peatlands, we demonstrated bacterial dominance in a bog and a poor fen both with acidic and primarily Sphagnum derived peat soil and in a near pH neutral wetter rich fen with sedge peat (fungal to bacterial activity ratio = 0.31 to 0.68). These results differ in that in other acidic environments, such as conifer forest soils, fungal to bacterial activity ratios are mostly greater than 1 indicative of fungal dominance.  相似文献   

6.
The content of microbial biomass (MB) was determined in samples of gray forest, chestnut, and tundra soils with different physicochemical properties (0.4–22.7% Corg; 8.4–26.8% silt particles; pH 4.3–8.4) by the methods of substrate-induced respiration (MBSIR) and direct microscopy (MBM). The samples of two upper soil layers, 0–5 and 5–10 cm (without plant litter), from different ecosystems (forest, forest shelter belt, meadow, fallow, and arable) and elements of relief of interfluvial tundra (block/upper land plateau, depression between blocks) have been analyzed. The content of microbial biomass in the 0–5-cm soil layer was 216–8134 and 348–7513 μg C/g soil as measured by the methods of substrate-induced respiration and direct microscopy, respectively. The MBSIR and MBM values closely correlated with each other: r = 0.90 and 0.74 for 0–5 and 5–10 cm, respectively. The average MBSIR/MBM ratio was 90 and 60% for 0–5 and 5–10 cm, respectively. The portion of microbial carbon in total organic soil carbon was, on average, 4 and 3% (SIR) and 5 and 7% (direct microscopy) for 0–5 and 5–10 cm, respectively. Possible reasons for the differences between MBSIR and MBM values in the soils under study are discussed.  相似文献   

7.
To assess the relative influence of edaphoclimatic gradients and stand replacing disturbance on the soil respiration of Oregon forests, we measured annual soil respiration at 36 independent forest plots arranged as three replicates of four age classes in each of three climatically distinct forest types. Annual soil respiration for the year 2001 was computed by combining periodic chamber measurements with continuous soil temperature measurements, which were used along with site-specific temperature response curves to interpolate daily soil respiration between dates of direct measurement. Results indicate significant forest type, age, and type × age interaction effects on annual soil respiration. Average annual soil respiration was 1100–1600, 1500–2100, and 500–900 g C m−2 yr−1 for mesic spruce, montane Douglas-fir, and semi-arid pine forests respectively. Age related trends in annual soil respiration varied between forest types. The variation in annual soil respiration attributable to the climatic differences between forest types was 48%(CV). Once weighted by the age class distribution for each forest type, the variation in annual soil respiration attributable to stand replacing disturbance was 15%(CV). Sensitivity analysis suggests that the regional variation in annual soil respiration is most dependent on summer base rates (i.e. soil respiration normalized to a common temperature) and much less dependent on the site-specific temperature response curves (to which annual rates are relatively insensitive) and soil degree-days (which vary only 10% among plots).  相似文献   

8.
Litter inputs can influence soil respiration directly through labile C availability and, indirectly, through the activity of soil microorganisms and modifications in soil microclimate; however, their relative contributions and the magnitude of any effect remain poorly understood. We synthesized 66 recently published papers on forest ecosystems using a meta‐analysis approach to investigate the effect of litter inputs on soil respiration and the underlying mechanisms involved. Our results showed that litter inputs had a strong positive impact on soil respiration, labile C availability, and the abundance of soil microorganisms, with less of an impact related to soil moisture and temperature. Overall, soil respiration was increased by 36% and 55%, respectively, in response to natural and doubled litter inputs. The increase in soil respiration induced by litter inputs showed a tendency for coniferous forests (50.7%)> broad‐leaved forests (41.3%)> mixed forests (31.9%). This stimulation effect also depended on stand age with 30‐ to 100‐year‐old forests (53.3%) and ≥100‐year‐old forests (50.2%) both 1.5 times larger than ≤30‐year‐old forests (34.5%). Soil microbial biomass carbon and soil dissolved organic carbon increased by 21.0%‐33.6% and 60.3%‐87.7%, respectively, in response to natural and doubled litter inputs, while soil respiration increased linearly with corresponding increases in soil microbial biomass carbon and soil dissolved organic carbon. Natural and doubled litter inputs increased the total phospholipid fatty acid (PLFA) content by 6.6% and 19.7%, respectively, but decreased the fungal/bacterial PLFA ratio by 26.9% and 18.7%, respectively. Soil respiration also increased linearly with increases in total PLFA and decreased linearly with decreases in the fungal/bacterial PLFA ratio. The contribution of litter inputs to an increase in soil respiration showed a trend of total PLFA > fungal/bacterial PLFA ratio > soil dissolved organic carbon > soil microbial biomass carbon. Therefore, in addition to forest type and stand age, labile C availability and soil microorganisms are also important factors that influence soil respiration in response to litter inputs, with soil microorganisms being more important than labile C availability.  相似文献   

9.
The decline of methane oxidizing activities in gray forest soil upon its conversion into arable land was shown to be caused by major changes in biotic and physicochemical properties of soil. Using the method of immune serums, methane-oxidizing bacteria were detected in both forest and agricultural soils, but their populations differed significantly in both abundance and composition. In the forest soil, the number of methanotrophs was an order of magnitude higher than in arable soil, amounting to 3.5 × 108 and 0.24 × 108 cells/g soil, respectively. All methane-oxidizing bacteria identified in the forest soil belonged to the genus Methylocystis, and 94% of these were represented by a single species, M. parvus. The arable soil was dominated by type I methanotrophs (Methylobacter and Methylomonas, 67.6%), occurring along with bacteria of the genus Methylocystis. In addition, arable soil is characterized by a low content of microbial biomass, lower porosity and water resistance of soil aggregates, and the predominance of nitrogen mineralization processes over those of nitrogen immobilization. These factors can also contribute to lower rates of methane oxidation in arable soil as compared to forest soil.__________Translated from Mikrobiologiya, Vol. 74, No. 2, 2005, pp. 255–260.Original Russian Text Copyright © 2005 by Kravchenko, Semenov, Kuznetsova, Bykova, Dulov, Pardini, Gispert, Boeckx, Cleemput, Galchenko.  相似文献   

10.
The effects of nitrogen (N) fertilization (0-150 kg N ha?1 year?1 since 1865) and pH (3.3-7.4) on fungal and bacterial growth, biomass and phospholipid fatty acid (PLFA) composition were investigated in grassland soils from the 'Park Grass Experiment', Rothamsted Research, UK. Bacterial growth decreased and fungal growth increased with lower pH, resulting in a 50-fold increase in the relative importance of fungi between pH 7.4 and 3.3. The PLFA-based fungal:bacterial biomass ratio was unchanged between pH 4.5 and 7.4, and decreased only below pH 4.5. Respiration and substrate-induced respiration biomass both decreased three- to fourfold with lower pH, but biomass concentrations estimated using PLFAs were unaffected by pH. N fertilization did not affect bacterial growth and marginally affected fungal growth while PLFA biomass marker concentrations were all reduced by higher N additions. Respiration decreased with higher N application, suggesting a reduced quality of the soil organic carbon. The PLFA composition was strongly affected by both pH and N. A comparison with a pH gradient in arable soil allowed us to generalize the pH effect between systems. There are 30-50-fold increases in the relative importance of fungi between high (7.4-8.3) and low (3.3-4.5) pH with concomitant reductions of respiration by 30-70%.  相似文献   

11.
揭示不同恢复阶段热带森林土壤细菌呼吸季节变化及其主控因素,对于探明土壤细菌呼吸对热带森林恢复的响应机制具有重要的科学意义。以西双版纳不同恢复阶段热带森林(白背桐群落、崖豆藤群落和高檐蒲桃群落)为研究对象,运用真菌呼吸抑制法及高通量宏基因组测序技术分别测定土壤细菌呼吸速率和细菌多样性,并采用回归分析及结构方程模型揭示热带森林恢复过程中土壤细菌多样性、pH、土壤碳氮组分变化对土壤细菌呼吸速率的影响特征。结果表明:1)不同恢复阶段热带森林土壤细菌呼吸速率表现为:高檐蒲桃群落((1.51±0.62)CO2 mg g-1 h-1)显著高于崖豆藤群落((1.16±0.56)CO2 mg g-1 h-1)和白背桐群落((0.82±0.60)CO2 mg g-1 h-1)(P<0.05)。2)不同恢复阶段土壤细菌呼吸速率呈显著的单峰型季节变化(P<0.05),最大值均出现在9月:高檐蒲桃群落((...  相似文献   

12.
Changes in the relative metabolism of soil bacteria and fungi following contamination with diesel were assessed using a modified substrate-induced respiration (SIR) method including selective antibiotic inhibition. 14CO2 release from radiolabelled glucose was used as an indication of population activity. In a Sandy Gley Soil with no history of contamination, the population activity shifted from 38 ± 4% (bacterial): 62 ± 4% (fungal) to 73 ± 4% (bacterial): 27 ± 4% (fungal) after treatment with diesel.  相似文献   

13.
To better understand the soil carbon dynamics and cycling in terrestrial ecosystems in response to environmental changes, we studied soil respiration, litter decomposition, and their relations to soil temperature and soil water content for 18-months (Aug. 2010–Jan. 2012) in three different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China. Across the experimental period, the mean total soil respiration and litter respiration were 1.94 and 0.81, 2.00 and 0.60, 2.19 and 0.71 µmol CO2 m−2 s−1, and the litter dry mass remaining was 57.6%, 56.2% and 61.3% in the 20-, 30-, and 46-year-old forests, respectively. We found that the temporal variations of soil respiration and litter decomposition rates can be well explained by soil temperature at 5 cm depth. Both the total soil respiration and litter respiration were significantly positively correlated with the litter decomposition rates. The mean contribution of the litter respiration to the total soil respiration was 31.0%–45.9% for the three different-aged forests. The present study found that the total soil respiration was not significantly affected by forest age when P. masonniana stands exceed a certain age (e.g. >20 years old), but it increased significantly with increased soil temperature. Hence, forest management strategies need to protect the understory vegetation to limit soil warming, in order to reduce the CO2 emission under the currently rapid global warming. The contribution of litter decomposition to the total soil respiration varies across spatial and temporal scales. This indicates the need for separate consideration of soil and litter respiration when assessing the climate impacts on forest carbon cycling.  相似文献   

14.
The phospholipid fatty acid (PLFA) pattern was analyzed in a forest humus and in an arable soil experimentally polluted with Cd, Cu, Ni, Pb, or Zn at different concentrations. In both soil types, there were gradual changes in the PLFA patterns for the different levels of metal contamination. The changes in the forest soil were similar irrespective of which metal was used, while in the arable soil the changes due to Cu contamination differed from those due to the other metals. Several PLFAs reacted similarly to the metal amendments in the two soil types, while others showed different responses. In both soils, the metal pollution resulted in a decrease in the iso-branched PLFAs i15:0 and i17:0 and in the monounsaturated 16:1ω5 and 16:1ω7c fatty acids, while increases were found for i16:0, the branched br17:0 and br18:0, and the cyclopropane cy17:0 fatty acids. In the forest soil, the methyl branched PLFAs 10Me16:0, 10Me17:0, and 10Me18:0 increased in metal-polluted soils, indicating an increase in actinomycetes, while in the arable soil a decrease was found for 10Me16:0 and 10Me18:0 in response to most metals. The bacterial PLFAs 15:0 and 17:0 increased in all metal-contaminated samples in the arable soil, while they were unaffected in the forest soil. Fatty acid 18:2ω6, which is considered to be predominantly of fungal origin, increased in the arable soil, except in the Cu-amended samples, in which it decreased instead. Effects on the PLFA patterns were found at levels of metal contamination similar to or lower than those at which effects on ATP content, soil respiration, or total amount of PLFAs had occurred.  相似文献   

15.
Forest soil biology in Scots pine forests of the Empetrum-Vaccinium type was studied around the industrialized city of Oulu, northern Finland since 1987. The forest sites lie along a sulphur and nitrogen concentration gradient in the mor humus ranging from 1.6 to 3.9 mg S g–1 organic matter (OM) and from 14 to 23 mg N g–1 OM. A number of biological parameters have earlier been found to vary along this gradient, thus indicating that the ecosystems are subjected to a pollution stress. Total microbial biomass and various activity parameters were studied in 1991. The different methods are discussed and the results interpreted within the light of Odum's theory of the energetic stabilization of ecosystems. Microbial biomass C determined by the fumigation-extraction (FE) technique varied from 5 to 10 mg gOM, N from 0.5 to 1.0 mg g–1OM, and basal respiration rate from 0.040 to 0.097 mg CO2 h–1 g–1OM. All decreased along the pollution gradient. Substrate induced respiration values (SIR) varied from 0.025 to 0.085 mg CO2-C h–1 g–1dw. SIR correlated well with the biomass values determined by the FE technique. The lag time of the microbial community after glucose addition (varying from 13 to 22 h) was shortened and the specific respiration increment of the microbial community in response to glucose addition increased along the gradient. The metabolic quotient (respiration/biomass) of the microflora strongly depended on the technique and equation used in calculating the microbial biomass. The results show a reduced biomass, but a more intensive regeneration and intensified activity per biomass unit of microorganisms in polluted forest soil. This in turn denotes an alteration in the microbial community in favor of a higher proportion of r-strategists under the disturbed conditions. In contrast, K-strategists may be more dominant under less polluted conditions. This interpretation is presented with some reservations concerning methodology. There is a need for the calibration of each method for determining microbial biomass in different types of soil.  相似文献   

16.
Soil temperature and moisture influence soil respiration at a range of temporal and spatial scales. Although soil temperature and moisture may be seasonally correlated, intra and inter-annual variations in soil moisture do occur. There are few direct observations of the influence of local variation in species composition or other stand/site characteristics on seasonal and annual variations in soil moisture, and on cumulative annual soil carbon release. Soil climate and soil respiration from twelve sites in five different forest types were monitored over a 2-year period (1998–1999). Also measured were stand age, species composition, basal area, litter inputs, total above-ground wood production, leaf area index, forest floor mass, coarse and fine root mass, forest floor carbon and nitrogen concentration, root carbon and nitrogen concentration, soil carbon and nitrogen concentration, coarse fraction mass and volume, and soil texture. General soil respiration models were developed using soil temperature, daily soil moisture, and various site/soil characteristics. Of the site/soil characteristics, above-ground production, soil texture, roots + forest floor mass, roots + forest floor carbon:nitrogen, and soil carbon:nitrogen were significant predictors of soil respiration when used alone in respiration models; all of these site variables were weakly to moderately correlated with mean site soil moisture. Daily soil climate data were used to estimate the annual release of carbon (C) from soil respiration for the period 1998–1999. Mean annual soil temperature did not differ between the 2 years but mean annual soil moisture was approximately 9% lower in 1998 due to a summer drought. Soil C respired during 1998 ranged from 8.57 to 11.43 Mg C ha−1 yr−1 while the same sites released 10.13 and 13.57 Mg C ha−1 yr−1 in 1999; inter-annual differences of 15.41 and 15.73%, respectively. Among the 12 sites studied, we calculated that the depression of soil respiration linked to the drought caused annual differences of soil respiration from 11.00 to 15.78%. Annual estimates of respired soil C decreased with increasing site mean soil moisture. Similarly, the difference of respired carbon between the drought and the non-drought years generally decreased with increasing site mean soil moisture.  相似文献   

17.
The addition of nitrogen via deposition alters the carbon balance of temperate forest ecosystems by affecting both production and decomposition rates. The effects of 20 years of nitrogen (N) and phosphorus and potassium (PK) additions were studied in a 40-year-old pine stand in northern Sweden. Carbon fluxes of the forest floor were reconstructed using a combination of data on soil 14C, tree growth, and litter decomposition. N-only additions caused an increase in needle litterfall, whereas both N and PK additions reduced long-term decomposition rates. Soil respiration measurements showed a 40% reduction in soil respiration for treated compared to control plots. The average age of forest floor carbon was 17 years. Predictions of future soil carbon storage indicate an increase of around 100% in the next 100 years for the N plots and 200% for the NPK plots. As much as 70% of the increase in soil carbon was attributed to the decreased decomposition rate, whereas only 20% was attributable to increased litter production. A reduction in decomposition was observed at a rate of N addition of 30 kg C ha–1 y–1, which is not an uncommon rate of N deposition in central Europe. A model based on the continuous-quality decomposition theory was applied to interpret decomposer and substrate parameters. The most likely explanations for the decreased decomposition rate were a fertilizer-induced increase in decomposer efficiency (production-to-assimilation ratio), a more rapid rate of decrease in litter quality, and a decrease in decomposer basic growth rate.  相似文献   

18.
Effects of high density adult millipede populations on soil ecosystem properties were investigated using laboratory and field microcosm methods in a deciduous broad-leaved forest in western Japan. The density of Parafontaria tonominea adults was 25.6–72.0 individuals m–2 on 15 September 1996, then the density declined to 0–5.4 m–2 on 22 October 1996. Addition of millipedes to the laboratory microcosm enhanced soil respiration and decreased soil microbial biomass. Soil microcosms with and without millipedes (one and two pairs of adults) were set on a forest floor, and soil respiration, dissolved ion concentration in leacheate water were observed for 8 weeks. The millipedes ingested both leaf litter and soil, which increased soil respiration, leaching of Ca2+, Mg2+, and nitrate from the soil, whereas the soil microbial biomass was not changed at 8 weeks after introduction of the animals. Millipede feeding on soil enhanced microbial activity and nutrient leaching from the forest soil.  相似文献   

19.
Quantification of annual carbon sequestration is very important in order to assess the function of forest ecosystems in combatting global climate change and the ecosystem responses to those changes. Annual cycling and budget of carbon in a forested basin was investigated to quantify the carbon sequestration of a cool-temperate deciduous forest ecosystem in the Horonai stream basin, Tomakomai Experimental Forest, northern Japan. Net ecosystem exchange, soil respiration, biomass increment, litterfall, soil-solution chemistry, and stream export were observed in the basin from 1999–2001 as a part of IGBP-TEMA project. We found that 258 g C m–2 year–1 was sequestered annually as net ecosystem exchange (NEE) in the forested basin. Discharge of carbon to the stream was 4 g C m–2 year–1 (about 2% of NEE) and consisted mainly of dissolved inorganic carbon (DIC). About 43% of net ecosystem productivity (NEP) was retained in the vegetation, while about 57% of NEP was sequestered in soil, suggesting that the movement of sequestered carbon from aboveground to belowground vegetation was an important process for net carbon accumulation in soil. The derived organic carbon from aboveground vegetation that moved to the soil mainly accumulated in the solid phase of the soil, with the result that the export of dissolved organic carbon to the stream was smaller than that of dissolved inorganic carbon. Our results indicated that the aboveground and belowground interaction of carbon fluxes was an important process for determining the rate and retention time of the carbon sequestration in a cool-temperate deciduous forest ecosystem in the southwestern part of Hokkaido, northern Japan.  相似文献   

20.
Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号