首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An anaerobic, motile, gram-negative, rod-shaped bacterium is described which degrades benzoate in coculture with an H2-utilizing organism and in the absence of exogenous electron acceptors such as O2, SO 4 = or NO 3 - . The bacterium was isolated from a municipal primary, anaerobic sewage digestor using anaerobic roll-tube medium with benzoate as the main energy source and in syntrophic association with an H2-utilizing sulfate-reducing Desulfovibrio sp. which cannot utilize benzoate or fatty acids apart from formate as energy source. The benzoate utilizer produced acetate (3 mol/mol of substrate degraded) and presumably CO2 and H2, or formate from benzoate. In media without sulfate and with Methanospirillum hungatei (a methanogen that utilizes only H2–CO2 or formate as the energy source) added, 3 mol of acetate and 0.7 mol of methane were produced per mol of benzoate and CO2 was probably formed. Low numbers of Desulfovibrio sp. were present in the methanogenic coculture and a pure coculture of the benzoate utilizer with M. hungatei was not obtained. The generation times for growth of the sulfate-reducing and methanogenic cocultures were 132 and 166h, respectively. The benzoate utilizer did not utilize other common aromatic compounds, C 3 - –C7 monocarboxylic acids, or C4-C6 dicarboxylic acids for growth, nor did it appear to use SO 4 = , NO 3 - or fumarate as alternative electron acceptors. Addition of H2 inhibited growth and benzoate degradation.  相似文献   

2.
Summary The benzoyl-CoA ligase from an anaerobic syntrophic culture was purified to homogeneity. It had a molecular mass of around 420 kDa and consisted of seven or eight subunits of 58 kDa. The temperature optimum was 37–40° C, the optimum pH around 8.0 and optimal activity required 50–100 mM TRIS-HCI buffer, pH 8.0 and 3–7 mM MgCl2; MgCl2 in excess of 10 mM was inhibitory. The activation energy for benzoate was 11.3 kcal/mol. Although growth occured only with benzoate as a carbon source, the benzoyl-coenzyme A (CoA) ligase formed benzoyl-CoA esters with benzoate, 2-, 3- and 4-fluorobenzoate, picolinate, nicotinate and isonicotinate. Acetate was activated to acetyl-CoA by an acetyl-CoA synthetase. The K m values for benzoate, 2-, 3- and 4-fluorobenzoate were 0.04, 0.28, 1.48 and 0.32 mM, the V max values 1.05, 1.0, 0.7 and 0.98 units (U)/mg, respectively. For reduced CoA (CoA-SH) a K m of 0.17 mM and a V max of 1.05 U/mg and for ATP a K m of 0.16 mM and a V max of 1.08 U/mg was determined. Benzoate activation was inhibited by more than 6 mM ATP, presumably by pyrophosphate generation from ATP. The inhibition constant (K i) for pyrophosphate was 5.7 mM. No homology of the N-terminal amino acid sequence with that of a 2-aminobenzoyl-CoA ligase of a denitrifying Pseudomonas sp. was found. Correspondence to: J. Winter  相似文献   

3.
Syntrophomonas wolfei and Syntrophus buswellii were grown with butyrate or benzoate in a defined binary coculture with Methanospirillum hungatei. Both strains also grew independent of the partner bacteria with crotonate as substrate. Localization of enzymes involved in butyrate oxidation by S. wolfei revealed that ATP synthase, hydrogenase, and butyryl-CoA dehydrogenase were at least partially membrane-associated whereas 3-hydroxybutyryl-CoA dehydrogenase and crotonase were entirely cytoplasmic. Inhibition experiments with copper chloride indicated that hydrogenase faced the outer surface of the cytoplasmic membrane. Suspensions of butyrate-or benzoate-grown cells of either strain accumulated hydrogen during oxidation of butyrate or benzoate to a low concentration that was thermodynamically in equilibrium with calculated reaction energetics. The protonophore carbonylcyanide m-chlorophenyl-hydrazone (CCCP) and the proton-translocating ATPase inhibitor N,Ndicyclohexylcarbodiimide (DCCD) both specifically inhibited hydrogen formation from butyrate or benzoate at low concentrations, whereas hydrogen formation from crotonate was not affected. A menaquinone was extracted from cells of S. wolfei and S. buswellii grown syntrophically in a binary methanogenic culture. The results indicate that a proton-potential-driven process is involved in hydrogen release from butyrate or benzoate oxidation.Abbreviations BES Bromoethanesulfonate - CCCP Carbonyl cyanide-m-chlorophenyl-hydrazone - DCCD N,Ndicyclohexylcarbodiimide - DCPIP Dichlorophenol indophenol - PMS Phenazine methosulfate  相似文献   

4.
A thermophilic, strictly anaerobic eubacterium which utilized an unusually limited range of substrates was isolated from a sludge and pulp sample from a paperpulp cooling tank at a paper-board factory in Finland. The organism grew only with beech wood or oat spelt xylan; no growth occurred with soluble sugars, other polysaccharides, peptone, or yeast extract. The organism was rod-shaped, long (up to 20 m), thin (0.3 m), gramnegative, and in late-exponential and stationary phase cultures formed ball of yarn like structures; endospores were not observed and the organism was not motile. The organism grew fastest (=0.08 – 0.09 h-1) at 65 to 75°C and pH 6.5 to 8.4, with a maximum growth temperature between 75 and 80°C and an upper pH limit near 9. During growth on beech xylan the isolate produced only acetate, H2, and CO2 as fermentation products. The guanine + cytosine (G+C) content of the isolates cellular DNA was 34%. The unusual morphology of the isolate is characteristic of the genus Dictyoglomus, and the limited substrate range, higher G+C ratio, and different fermentation products indicated that the isolate was a new species in that genus.  相似文献   

5.
From sludge obtained from the sewage digester plant in Stuttgart-Möhringen a strictly anaerobic bacterium was enriched and isolated with methyl chloride as the energy source. The isolate, which was tentatively called strain MC, was nonmotile, gram-positive, and occurred as elongated cocci arranged in chains. Cells of strain MC formed about 3 mol of acetate per 4 mol of CH3Cl consumed, indicating that the organism was a homoacetogenic bacterium fermenting methyl chloride plus CO2 according to: The organism grew with 2–3% methyl chloride in the gas phase at a doubling time of near 30 h. Dichloromethane was not utilized. The bacterium also grew on carbon monoxide, H2 plus CO2, and methoxylated aromatic compounds. Optimal growth with methyl chloride was observed at 25°C and pH 7.3–7.7. The G+C-content of the DNA was 47.5±1.5%. The methyl chloride conversion appeared to be inducible, since H2 plus CO2-grown cells lacked this ability. From the morphological and physiological characteristics, the isolate could not be affiliated to a known species.  相似文献   

6.
Abstract Spore-forming sulfate-reducing bacteria (SRB) were enriched selectively from various kinds of aerobic soils with fatty acids as the sole carbon and energy source. A Gram-negative motile rod-shaped bacterium, which produced gas vacuoles during sporulation was isolated. It degraded alcohols, aromatic and n-fatty acids (up to C18) except for propionate, completely to CO2. Sulfate, sulfite, thiosulfate or elemental sulfur served as electron acceptors. Because of its sensitivity to H2S, the isolate never produced more than 8 mM dissolved sulfide at pH 7.0. G + C-content of the DNA was 48.0 mol %. The isolated strain Pato is described as a new species Desulfotomaculum sapomandens .  相似文献   

7.
8.
The oxygen-sensitive 4-hydroxybenzoate decarboxylase (4OHB-DC) activity from a phenol-carboxylating coculture, consisting of Clostridium-like strain 6 and an unidentified strain 7, was studied. Assays done with cell extracts showed that the optimal pH was 5.0-6.5 and the Km was 5.4 mM. The activity decreased by 50% in the presence of 5 mM EDTA, and it was restored and even enhanced by the addition of Mg++, Mn++, Zn++, or Ca++. After purification, the molecular mass of the enzyme was estimated as 420 kDa by gel chromatography, and as 119 kDa by SDS-PAGE, suggesting a homotetrameric structure. Its pI was 5.6. The N-terminal amino acid sequence showed 95% and 76% homology with the pyruvate-flavodoxin oxidoreductase (nifJ gene product) from Enterobacter agglomerans and Klebsiella pneumoniae, respectively. The purified enzyme also slowly catalyzed the reverse reaction, that is the phenol carboxylation. These characteristics suggest that this enzyme is different from other known decarboxylases. This includes the 4OHB-DC from Clostridium hydroxybenzoicum, which is the only one that had been purified before.  相似文献   

9.
Cellulolytic, strictly anaerobic spore-forming bacteria were isolated from chloroform treated rumen contents. They were different from previously described cellulolytic rumen clostridia in several characteristics. They formed subterminal rod-shaped spores approximately 0.7 m by 3.5 m. In broth cultures the growth rate was maximal at 39°C and after log growth extensive autolysis occurred. Fermentation products consisted of acetate, butyrate, hydrogen and ethanol. The GC content was 31%.  相似文献   

10.
We recently isolated an acetate-oxidizing rodshaped eubacterium (AOR) which was capable of oxidizing acetate to CO2 when grown in coculture with the hydrogenotrophic methanogen Methanobacterium sp. strain THF. The AOR was also capable of growing axenically on H2CO2 which it converted to acetate. Previous results for the acetate oxidizing coculture showed isotopic exchange between acetate and CO2, suggesting that the AOR was using a pathway for acetate oxidation resembling a reveral of the acetogenic (carbon monoxide) pathway. In this study, it was found that production of 14CO2 from 14CH3COO- by the coculture was inhibited by 200 M cyanide, while methanogenesis from H2–CO2 was unaffected, implying the involvement of carbon monoxide dehydrogenase (CODH) in acetate oxidation. CODH was present at 0.055 mol methyl viologen reduced min-1 mg-1 protein in extracts of Methanobacterium sp. strain THF, but was present in higher levels in the acetate oxidizing coculture and in the AOR grown axenically and on H2–CO2 (2.0 and 6.4 mol min-1 mg-1 protein respectively). Anaerobic activity stains for CODH in native polyacrylamide gels from the AOR coculture showed components co-migrating with bands from both organisms, as well as an additional band in extracts of the coculture. Formate dehydrogenase (FDH) was present in both the AOR coculture and monoculture but not in extracts of H2–CO2 grown cells of Methanobacterium sp. strain THF. Formyltetrahydrofolate (FTHF) synthetase was not detectable in extracts of the AOR monoculture or coculture, although it was found in high amounts in extracts of H2–CO2 grown cells of the thermophilic acetogen Acetogenium kivui. Extracts of H2–CO2 grown cells of the AOR showed a fluorescence spectrum typical of pterin derivatives. Bioassay for folates showed levels to be at anabolic rather than catabolic levels. It is possible that the AOR uses pterins distinct from folate for catabolism. Isocitrate dehydrogenase, a citric acid cycle enzyme, was also present in the AOR, but at anabolic levels and -ketoglutarate dehydrogenase was not detectable.Abbreviations (AOR) acetate-oxidizing rod - (CODH) carbon monoxide dehydrogenase - (FDH) formate dehydrogenase - (FTHF) formyltetrahydrofolate  相似文献   

11.
A new thermophilic sulfate-reducing bacterium, strain TSB, that was spore-forming, rod-shaped, slightly motile and gram-positive, was isolated from a butyrate-containing enrichment culture inoculated with sludge of a thermophilic methane fermentation reactor. This isolate could oxidize benzoate completely. Strain TSB also oxidized some fatty acids and alcohols. SO inf4 sup2- , SO inf3 sup2- , S2O inf3 sup2- and NO inf3 sup- were utilized as electron acceptors. With pyruvate or lactate the isolate grew without an external electron acceptor and produced acetate. The optimum temperature for growth was 62°C. The G+C content of DNA was 52.8 mol%. This isolate is described as a new species, Desulfotomaculum thermobenzoicum.  相似文献   

12.
Fumarase from the syntrophic propionate-oxidizing bacterium strain MPOB was purified 130-fold under anoxic conditions. The native enzyme had an apparent molecular mass of 114 kDa and was composed of two subunits of 60 kDa. The enzyme exhibited maximum activity at pH 8.5 and approximately 54° C. The K m values for fumarate and l-malate were 0.25 mM and 2.38 mM, respectively. Fumarase was inactivated by oxygen, but the activity could be restored by addition of Fe2+ and β-mercaptoethanol under anoxic conditions. EPR spectroscopy of the purified enzyme revealed the presence of a [3Fe-4S] cluster. Under reducing conditions, only a trace amount of a [4Fe-4S] cluster was detected. Addition of fumarate resulted in a significant increase of this [4Fe-4S] signal. The N-terminal amino acid sequence showed similarity to the sequences of fumarase A and B of Escherichia coli (56%) and fumarase A of Salmonella typhimurium (63%). Received: 15 September 1995 / Accepted: 13 November 1995  相似文献   

13.
A strictly anaerobic bacterium dechlorinating tetrachloroethene (perchloroethylene, PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (DCE) was isolated from activated sludge with pyruvate plus PCE as energy substrates. The organism, called Dehalospirillum multivorans, is a gram-negative spirillum that does not form spores. The G+C content of the DNA was 41.5 mol%. According to 16S rRNA gene sequence analysis, D. multivorans represents a new genus and a new species belonging to the epsilon subdivision of Proteobacteria. Quinones, cytochromes b and c, and corrinoids were extracted from the cells. D. multivorans grew in defined medium with PCE and H2 as sole energy sources and acetate as carbon source; the growth yield under these conditions was 1.4g of cell protein per mol chloride released. Alternatively to PCE, fumarate and nitrate could serve as electron acceptors; sulfate could not replace fumarate, nitrate, or PCE in this respect. In addition to H2, the organism utilized a variety of electron donors for dechlorination (pyruvate, lactate, ethanol, formate, glycerol). Upon growth on pyruvate plus PCE, the main fermentation products formed were acetatc, lactate, DCE, and H2. At optimal pH (7.3–7.6) and temperature (30°C), and in the presence of pyruvate (20mM) and PCE (160M), a dechlorination rate of about 50 nmol min-1 (mg cell protein)-1 and a doubling time of about 2.5h were obtained with growing cultures. The ability to reduce PCE to DCE appears to be constitutive under the experimental conditions applied since cultures growing in the absence of PCE for several generations immediately started dechlorination when transferred to a medium containing PCE. The organism may be useful for bioremediation of environments polluted with tetrachloroethene.Abbreviations PCE Perchloroethylene, tetrachloroethene - TCE Trichloroethene - DCE cis-1,2-Dichloroethene - CHC Chlorinated hydrocarbon  相似文献   

14.
The repeating sequences of the toxin A gene from toxin A-negative, toxin B-positive (toxin A-, toxin B+) strains of Clostridium difficile which were isolated in geographically separated facilities in Japan and Indonesia were determined. All six strains tested had identical repeating sequences with two deletions (1548 and 273 nucleotides in size) in the toxin A gene. A PCR method was designed to detect the deletions and the deletions were confirmed in all 50 toxin A-, toxin B+ strains examined by this method. Western immunoblot analysis revealed that polyclonal antiserum against native toxin A did not react with the concentrated culture filtrates of the toxin A-, toxin B+ strains. These results may suggest that toxin A-, toxin B+ strains have deletions of the two thirds of the repeating regions of the toxin A gene, which encodes the epitopes fully responsible for the reaction with the polyclonal antiserum.  相似文献   

15.
Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 ± 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the δ-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus. Received: 2 June 1998 / Accepted: 16 November 1998  相似文献   

16.
An extracellular p-coumaroyl esterase produced by the anaerobic fungus Neocallimastix strain MC-2 released p-coumaroyl groups from 0-[5-0-((E)-p-coumaroyl)-alpha-L-arabinofuranosyl]-(1----3)-0-beta -D-xylopyranosyl-(1----4)-D-xylopyranose (PAXX). The esterase was purified 121-fold from culture medium in successive steps involving ultrafiltration column chromatography on S-sepharose and hydroxylapatite, isoelectric focusing, and gel filtration. The native enzyme had an apparent mass of 11 kDa under nondenaturing conditions and a mass of 5.8 kDa under denaturing conditions, suggesting that the enzyme may exist as a dimer. The isoelectric point was 4.7, and the pH optimum was 7.2. The purified esterase had 100 times more activity towards PAXX than towards the analogous feruloyl ester (FAXX). The apparent Km and Vmax of the purified p-coumaroyl esterase for PAXX at pH 7.2 and 40 degrees C were 19.4 microM and 5.1 microM min(-1), respectively. p-Coumaroyl tetrasaccharides isolated from plant cell walls were hydrolyzed at rates similar to that for PAXX, whereas a dimer of PAXX was hydrolyzed at a rate 20-fold lower, yielding 4,4'-dihydroxy-alpha-truxillic acid as an end product. Ethyl and methyl p-coumarates were hydrolyzed at very slow rates, if at all. The purified esterase released p-coumaroyl groups from finely, but not coarsely, ground plant cell walls, and this activity was enhanced by the addition of xylanase and other cell wall-degrading enzymes.  相似文献   

17.
Abstract Malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB was purified 42-fold. The native enzyme had an apparent molecular mass of 68 kDa and consisted of two subunits of 35 kDa. The enzyme exhibited maximum activity with oxaloacetate at pH 8.5 and 60 °C. The K m for oxaloacetate was 50 μM and for NADH 30 μM. The K m values for l-malate and NAD were 4 and 1.1 mM, respectively. Substrate inhibition was found at oxaloacetate concentrations higher than 250 μM. The N-terminal amino acid sequence of the enzyme was similar to the sequences of a variety of other malate dehydrogenases from plants, animals and micro-organisms.  相似文献   

18.
目的从健康奶牛瘤胃液中分离、筛选出1株以产乙酸为主Actinomyces ruminicola。方法无菌采取装有瘤胃瘘奶牛的瘤胃液,按照厌氧茵分离步骤,通过Actinomyces ruminicola的特异性培养基进行筛选,提取分离菌的基因组DNA,克隆其16SrRNA基因,进行序列测定,分离出1株Actinomyces ruminicola。结果通过形态学观察、生化反应和序列分析证实所分离的1株产乙酸的杆菌为Actinomyces ruminicola。结论从健康牛瘤胃液中成功分离出1株Actinomyces ruminicola,为进一步研究其对瘤胃发酵的影响奠定了基础。  相似文献   

19.
一株产纤维素酶菌株的分离、鉴定及产酶特性   总被引:2,自引:0,他引:2  
【目的】筛选并鉴定一株产纤维素酶的菌株,初步探究该菌的产酶特性,为综合利用纤维素筛选菌源。【方法】在常温条件下,采用滤纸培养基对菌种富集,采用CMC-Na初筛纤维素降解菌,采用LB培养基分离纯化菌株,经形态学、生理生化特征试验、16S r RNA基因序列测定等分析筛选菌株的系统分类地位。单因素试验确定培养时间、培养温度、初始p H及Na Cl浓度对筛选菌株产酶活力的影响。【结果】从腐烂的玉米秸秆中分离出一株在常温下产纤维素酶细菌KZ-2,根据菌落形态特征、生理生化特征鉴定以及16S r RNA基因序列分析,初步鉴定KZ-2为肠杆菌(Enterobacter sp.),为潜在新种。产酶条件实验显示:该菌使用产酶发酵培养基120 h产酶量达到最大值,在25–35°C、初始p H 4.5–5.5、Na Cl浓度1.0%–2.0%范围内为最佳产酶条件,在最适条件下酶活可达80.93 U/m L。该菌株所产纤维素酶最适反应p H为7.0,最适反应温度为50°C。【结论】KZ-2是一株具有降解纤维素能力的细菌,在常温下即可分泌纤维素酶,并且该菌株为潜在新种,具有潜在的开发价值。  相似文献   

20.
The methyl chloride metabolism of the homoacetogenic, methyl chloride-utilizing strain MC was investigated with cell extracts and cell suspensions of the organism. Cell extracts were found to contain all enzyme activities required for the conversion of methyl chloride or of H2 plus CO2 to acetate. They catalyzed the dechlorination of methyl chloride with tetrahydrofolate as the methyl acceptor at a rate of 20 nmol/min × mg of cell protein. Also, the O-demethylation of vanillate with tetrahydrofolate could be measured at a rate of 40 nmol/min × mg. Different enzyme systems appeared to be responsible for the dehalogenation of CH3Cl and for the O-demethylation of methoxylated aromatic compounds, since cells grown with methoxylated aromatic compounds exhibited a significantly lower activity of CH3Cl conversion than methyl chloride grown cells and vice versa. In addition, ammonium thiocyanate (5 mM) completely inhibited CH3Cl dechlorination, whereas the consumption of vanillate was not affected significantly. The data were taken to indicate, that the methyl chloride dehalogenation is catalyzed by a specific, inducible enzyme present in strain MC, and that tetrahydrofolate rather than the corrinoid-protein involved in acetate formation is the primary acceptor of the methyl group in the dechlorination reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号