首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
A G-to-A transition at nucleotide pair (np) 7444 in the mtDNA was found to correlate with Leber hereditary optic neuropathy (LHON). The mutation eliminates the termination codon of the cytochrome c oxidase subunit I (COI) gene, extending the COI polypeptide by three amino acids. The mutation was discovered as an XbaI restriction-endonuclease-site loss present in 2 (9.1%) of 22 LHON patients who lacked the np 11778 LHON mutation and in 6 (1.1%) of 545 unaffected controls. The mutant polypeptide has an altered mobility on SDS-PAGE, suggesting a structural alteration, and the cytochrome c oxidase enzyme activity of patient lymphocytes is reduced approximately 40% relative to that in controls. These data suggest that the np 7444 mutation results in partial respiratory deficiency and thus contributes to the onset of LHON.  相似文献   

2.
We have analyzed mitochondrial DNA sequence in 15 Russian LHON patients and found the new mtDNA sequence variant in one family (2 patients) who showed 100% penetrance of the disease in men. This family has a T14484C primary mutation, and four secondary mutations (T4216C, G13708A, G15812A, G15257A), which belong to the European haplogroup J. The new sequence variant of A9016G in the ATPase 6 gene changed highly conserved amino acid of isoleucine to valine, has not been found in the rest of 13 LHON patients and controls. This novel sequence variant may contribute to the 100% penetration of LHON disorder in men of this family.  相似文献   

3.
The archetypal NARP syndrome is almost exclusively associated with the m.8993T>C/G mutation in the sixth subunit of the mitochondrial ATP synthase, whereas other mutations in the MT-ATP6 gene primarily associate with Leigh syndrome or Leber's hereditary optic neuropathy (LHON). We report a novel mitochondrial point mutation, m.8989G>C, in a patient presenting with neuropathy, ataxia and retinitis pigmentosa constituting the classical NARP phenotype. This mutation alters the amino acid right next to canonical NARP mutation. We suggest that classic NARP syndrome relates to a defined dysfunction of p.MT-ATP6.  相似文献   

4.
We report here the clinical, genetic, and molecular characterization of three Chinese families (WZ4, WZ5, and WZ6) with Leber's hereditary optic neuropathy (LHON). Clinical and genetic evaluations revealed the variable severity and age-of-onset in visual impairment in these families. Penetrances of visual impairment in these Chinese families were 33.3%, 35.7%, and 35.5%, respectively, with an average 34.8%. Furthermore, the average age-at-onset in those Chinese families was 17, 20, and 18 years. In addition, the ratios between affected male and female matrilineal relatives in these Chinese families were 3:0, 1:1, and 1.2:1, respectively. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G11778A mutation associated with LHON in many families. The fact that mtDNA of those pedigrees belonged to different haplogroups F1, D4, and M10 suggested that the G11778A mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these Chinese families. The I187T mutation in the ND1, the S99A mutation in the A6, the V254I in CO3, and I58V in ND6 mutation, showing high evolutional conservation, may contribute to the phenotypic expression of the G11778A mutation in the WZ6 pedigree. By contrast, none of mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence in WZ4 and WZ5 pedigrees. Apparently, these variants do not have a potential modifying role in the development of visual impairment associated with G11778A mutation in those two families. Thus, nuclear modifier gene(s) or environmental factor(s) seem to account for the penetrance and expressivity of LHON in these three Chinese families carrying the G11778A mutation.  相似文献   

5.
Leber's hereditary optic neuropathy (LHON) is a maternally inherited disorder characterized by central vision loss in young adults. The majority of LHON cases around the world are associated with mutations in the mitochondrial genome at nucleotide positions (np) 3460, 11,778, and 14,484. Usually, these three mutations are screened in suspected LHON patients. The result is important not only in respect to the diagnosis but also as different LHON mutations lead to variations in expression, severity, and recovery of the disease. There are, however, a significant number of patients without any of these primary mutations. In these situations, genetic counselling of a patient and his family can be difficult. We sequenced the complete mitochondrial DNA (mtDNA) in 14 LHON patients with the typical clinical features but without a primary mtDNA mutation to evaluate the potential of extensive mutation screening for clinical purposes. Our results suggest to include the mutation at np 15,257 in a routine screening as well as the ND6 gene, a hot spot for LHON mutations. Screening for the secondary LHON mutations at np 4216 and np 13,708 may also help in making the diagnosis of LHON as these seem to modify the expression of LHON mutations. Although they do not allow to prove the clinical diagnosis, their presence increases the probability of LHON. Sequencing the complete mitochondrial genome can reveal novel and known rare disease causing mutations. However, considering the effort it adds little value for routine screening.  相似文献   

6.
Unlike most organisms, the mitochondrial DNA (mtDNA) of Chlamydomonas reinhardtii, a green alga, does not encode subunit 6 of F(0)F(1)-ATP synthase. We hypothesized that C. reinhardtii ATPase 6 is nucleus encoded and identified cDNAs and a single-copy nuclear gene specifying this subunit (CrATP6, with eight exons, four of which encode a mitochondrial targeting signal). Although the algal and human ATP6 genes are in different subcellular compartments and the encoded polypeptides are highly diverged, their secondary structures are remarkably similar. When CrATP6 was expressed in human cells, a significant amount of the precursor polypeptide was targeted to mitochondria, the mitochondrial targeting signal was cleaved within the organelle, and the mature polypeptide was assembled into human ATP synthase. In spite of the evolutionary distance between algae and mammals, C. reinhardtii ATPase 6 functioned in human cells, because deficiencies in both cell viability and ATP synthesis in transmitochondrial cell lines harboring a pathogenic mutation in the human mtDNA-encoded ATP6 gene were overcome by expression of CrATP6. The ability to express a nucleus-encoded version of a mammalian mtDNA-encoded protein may provide a way to import other highly hydrophobic proteins into mitochondria and could serve as the basis for a gene therapy approach to treat human mitochondrial diseases.  相似文献   

7.
Leber''s hereditary optic neuropathy (LHON) is a maternally inherited blinding disease due to mitochondrial DNA (mtDNA) point mutations in complex I subunit genes, whose incomplete penetrance has been attributed to both genetic and environmental factors. Indeed, the mtDNA background defined as haplogroup J is known to increase the penetrance of the 11778/ND4 and 14484/ND6 mutations. Recently it was also documented that the professional exposure to n-hexane might act as an exogenous trigger for LHON. Therefore, we here investigate the effect of the n-hexane neurotoxic metabolite 2,5-hexanedione (2,5-HD) on cell viability and mitochondrial function of different cell models (cybrids and fibroblasts) carrying the LHON mutations on different mtDNA haplogroups. The viability of control and LHON cybrids and fibroblasts, whose mtDNAs were completely sequenced, was assessed using the MTT assay. Mitochondrial ATP synthesis rate driven by complex I substrates was determined with the luciferine/luciferase method. Incubation with 2,5-HD caused the maximal loss of viability in control and LHON cells. The toxic effect of this compound was similar in control cells irrespective of the mtDNA background. On the contrary, sensitivity to 2,5-HD induced cell death was greatly increased in LHON cells carrying the 11778/ND4 or the 14484/ND6 mutation on haplogroup J, whereas the 11778/ND4 mutation in association with haplogroups U and H significantly improved cell survival. The 11778/ND4 mutation on haplogroup U was also more resistant to inhibition of complex I dependent ATP synthesis by 2,5-HD. In conclusion, this study shows that mtDNA haplogroups modulate the response of LHON cells to 2,5-HD. In particular, haplogroup J makes cells more sensitive to its toxic effect. This is the first evidence that an mtDNA background plays a role by interacting with an environmental factor and that 2,5-HD may be a risk element for visual loss in LHON. This proof of principle has broad implications for other neurodegenerative disorders such as Parkinson''s disease.  相似文献   

8.
The mutation in the mitochondrial ATP synthase subunit 6 gene (ATP6 T8993G) was identified in a male infant who died at age 15 months of Leigh syndrome. He had 94% mutated mitochondrial DNA (mtDNA) in muscle and 92% in lymphocytes. His mother was healthy but had 37% mutated mtDNA in muscle and 38% in lymphocytes. The proband's brother, who was also healthy, had 44% mutated mtDNA in lymphocytes. No mutated mtDNA was detected in muscle and lymphocytes from the maternal grandmother of the proband or in lymphocytes from 15 other maternal relatives, showing that the first carrier of the ATP6 T8993G mutation in this family was the mother of the proband. This study shows that this point mutation may occur at substantial levels in a carrier of a de novo mutation and rapid segregation with high levels of mutated mtDNA causing neurodegenerative disease may occur in the second generation.  相似文献   

9.
We investigated the biochemical phenotype of the mtDNA T8993G point mutation in the ATPase 6 gene, associated with neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in three patients from two unrelated families. All three carried >80% mutant genome in platelets and were manifesting clinically various degrees of the NARP phenotype. Coupled submitochondrial particles prepared from platelets capable of succinate-sustained ATP synthesis were studied using very sensitive and rapid luminometric and fluorescence methods. A sharp decrease (>95%) in the succinate-sustained ATP synthesis rate of the particles was found, but both the ATP hydrolysis rate and ATP-driven proton translocation (when the protons flow from the matrix to the cytosol) were minimally affected. The T8993G mutation changes the highly conserved residue Leu(156) to Arg in the ATPase 6 subunit (subunit a). This subunit, together with subunit c, is thought to cooperatively catalyze proton translocation and rotate, one with respect to the other, during the catalytic cycle of the F(1)F(0) complex. Our results suggest that the T8993G mutation induces a structural defect in human F(1)F(0)-ATPase that causes a severe impairment of ATP synthesis. This is possibly due to a defect in either the vectorial proton transport from the cytosol to the mitochondrial matrix or the coupling of proton flow through F(0) to ATP synthesis in F(1). Whatever mechanism is involved, this leads to impaired ATP synthesis. On the other hand, ATP hydrolysis that involves proton flow from the matrix to the cytosol is essentially unaffected.  相似文献   

10.
As with chromosomal DNA, the mitochondrial DNA (mtDNA) can contain mutations that are highly pathogenic .In fact, many diseases of the central nervous system are known to be caused by mutations in mtDNA. Dysfunction of the mitochondrial Respiratory Chain (RC) has been shown in patients with neurological disease including Alzheimer’s disease (AD), Parkinson’s disease (PD) and Multiple sclerosis (MS). MS is a demyelinating disease of central nervous system characterized by morphological hallmarks of inflammation, demyelination and axonal loss. Considering this importance, we decided to investigate several highly mutative parts of mtDNA for point mutations as MT-LTI (tRNALeucine1(UUA/G)), MT-NDI (NADH Dehydrogenase subunit 1), MT-COII (Cytochrome c oxidase subunit II), MT-TK (tRNALysine), MT-ATP8 (ATP synthase subunit F0 8) and MT-ATP6 (ATP synthase subunit F0 6) in 20 Iranian MS patients and 80 age-matched control subjects by PCR and automated DNA sequencing to evaluate any probable point mutations. Our results revealed that 15 (75%) out of 20 MS patients had point mutations. Some of point mutations were newly found in this study. This study suggested that point mutation occurred in mtDNA might be involved in pathogenesis of MS.  相似文献   

11.
The complete mitochondrial genome is of great importance for better understanding the genome-level characteristics and phylogenetic relationships among related species. In the present study, we determined the complete mitochondrial genome DNA sequence of the mud crab (Scylla paramamosain) by 454 deep sequencing and Sanger sequencing approaches. The complete genome DNA was 15,824 bp in length and contained a typical set of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a putative control region (CR). Of 37 genes, twenty-three were encoded by the heavy strand (H-strand), while the other ones were encoded by light strand (L-strand). The gene order in the mitochondrial genome was largely identical to those obtained in most arthropods, although the relative position of gene tRNAHis differed from other arthropods. Among 13 protein-coding genes, three (ATPase subunit 6 (ATP6), NADH dehydrogenase subunits 1 (ND1) and ND3) started with a rare start codon ATT, whereas, one gene cytochrome c oxidase subunit I (COI) ended with the incomplete stop codon TA. All 22 tRNAs could fold into a typical clover-leaf secondary structure, with the gene sizes ranging from 63 to 73 bp. The phylogenetic analysis based on 12 concatenated protein-coding genes showed that the molecular genetic relationship of 19 species of 11 genera was identical to the traditional taxonomy.  相似文献   

12.
Summary Leber's hereditary optic neuropathy (LHON) is characterized by acute or subacute bilateral (usually permanent) loss of central vision, caused by neuroretinal degeneration. The maternal inheritance is explained by the mitochondrial origin of the disease. Recently, a single mitochondrial DNA (mtDNA) mutation, a G to A substitution at position 11778 that converts a highly conserved arginine to histidine, has been associated with LHON. The mutation eliminates an SfaNI restriction enzyme recognition site and thus provides a method for detection of the muation by amplification, enzyme digestion and agarose gel electropheresis of polymerase chain reaction (PCR) products. Leukocyte mtDNA from 7 German families with LHON, diagnosed by clinical criteria, was tested for the presence of the G to A mutation at bp 11778. The mtDNa mutation, detected as a loss of the SfaNI site, was seen in one family. The G to A mtDNA mutation is the only known gene alteration associated with LHON so far. It has been identified in patients of different ethnic origin and recent reports strongly support the hypothesis that it represents the most frequent cause of LHON. Identification of the mtDNA replacement mutation using PCR and restriction enzyme digestion requires only a small amount of blood and can be performed rapidly. This method is thus a useful tool in the diagnosis of LHON.  相似文献   

13.
Translation of the gene for the b subunit of the Escherichia coli proton-translocating ATPase has been examined. Oligonucleotide-directed site-specific mutagenesis was used to mutate certain nucleotides in the intergenic region between uncE (c) and uncF (b). One of the changes was predicted to lower the stability of a proposed stem structure which blocked the ribosome binding site of the uncF mRNA segment. The result of the mutation is a nearly 3-fold increase in the rate of synthesis of the b polypeptide. Another mutation was introduced which changed the initiation codon for uncF from GUG to AUG. This change resulted in an approximately 2-fold increase in the synthesis rate of the b polypeptide. These results suggest that secondary structure in the mRNA and the use of a less efficient initiation codon play a role in restricting translation initiation of the uncF mRNA segment. These mechanisms may, in part, explain how the polypeptides of the ATPase complex are synthesized in approximately the same relative amounts as they appear in the assembled complex.  相似文献   

14.
We report here the clinical, genetic and molecular characterization of one three-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON) and hearing loss. Four of 14 matrilineal relatives exhibited the moderate central vision loss at the average age of 12.5 years. Of these, one subject exhibited both LHON and mild hearing impairment. Sequence analysis of the complete mitochondrial genomes in the pedigree showed the presence of homoplasmic LHON-associated ND6 T14484C mutation, deafness-associated 12S rRNA A1555 mutation and 47 other variants belonging to Eastern Asian haplogroup H2. None of other mitochondrial variants was evolutionarily conserved and functional significance. Therefore, the coexistence of the A1555G mutation and T14484C mutations in this Chinese family indicate that the A1555G mutation may play a synergistic role in the phenotypic manifestation of LHON associated ND6 T14484C mutation. However, the incomplete penetrance of vision and hearing loss suggests the involvement of nuclear modifier genes and environmental factors in the phenotypic expression of these mtDNA mutations.  相似文献   

15.
We report here the characterization of a five-generation large Chinese family with Leber's hereditary optic neuropathy (LHON). Very strikingly, six affected individuals of 38 matrilineal relatives (17 females/21 males) are exclusively males in this Chinese family. These matrilineal relatives in this family exhibited late-onset/progressive visual impairment with a wide range of severity, ranging from blindness to normal vision. The age of onset in visual impairment varies from 17 to 30 years. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the G11778A mutation in ND4 gene and 29 other variants. This mitochondrial genome belongs to the Southern Chinese haplogroup B5b. We showed that the G11778A mutation is present at near homoplasmy in matrilineal relatives of this Chinese family but not in 164 Chinese controls. Incomplete penetrance of LHON in this family indicates the involvement of modulatory factors in the phenotypic expression of visual dysfunction associated with the G11778A mutation. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, nuclear modifier gene(s) or environmental factor(s) seem to account for the penetrance and phenotypic variability of LHON in this Chinese family carrying the G11778A mutation.  相似文献   

16.
Mitochondrial encephalomyopathy and lactic acidosis with strokelike episodes (MELAS) is a severe young onset stroke disorder without effective treatment. We have identified a MELAS patient harboring a 13528A-->G mitochondrial DNA (mtDNA) mutation in the Complex I ND5 gene. This mutation was homoplasmic in mtDNA from patient muscle and nearly homoplasmic (99.9%) in blood. Fibroblasts from the patient exhibited decreased mitochondrial membrane potential (Deltapsim) and increased lactate production, consistent with impaired mitochondrial function. Transfer of patient mtDNA to a new nuclear background using transmitochondrial cybrid fusions confirmed the pathogenicity of the 13528A-->G mutation; Complex I-linked respiration and Deltapsim were both significantly reduced in patient mtDNA cybrids compared with controls. Inhibition of the adenine nucleotide translocase or the F1F0-ATPase with bongkrekic acid or oligomycin caused a loss of potential in patient mtDNA cybrid mitochondria, indicating a requirement for glycolytically generated ATP to maintain Deltapsim. This was confirmed by inhibition of glycolysis with 2-deoxy-D-glucose, which caused depletion of ATP and mitochondrial depolarization in patient mtDNA cybrids. These data suggest that in response to impaired respiration due to the mtDNA mutation, mitochondria consume ATP to maintain Deltapsim, representing a potential pathophysiological mechanism in human mitochondrial disease.  相似文献   

17.
Huntington disease (HD) is a genetically dominant condition caused by expanded CAG repeats which code for glutamine in the HD gene product, huntingtin. Huntingtin is expressed in almost all tissues, so abnormalities outside the brain can also be expected. Involvement of nuclei and mitochondria in HD pathophysiology has been suggested. In fact mitochondrial dysfunction is reported in brains of patients suffering from HD. The tRNA gene mutations are one of hot spots that can cause mitochondrial disorders. In this study, possible mitochondrial DNA (mtDNA) damage was evaluated by screening for mutations in the tRNAleu/lys and ATPase 6 genes of 20 patients with HD, using PCR and automated DNA sequencing. Mutations including an A8656G mutation in one patient were observed, which may be causal to the disease. Understanding the role of mitochondria in the pathogenesis of neurodegenerative diseases could potentially be important for the development of therapeutic strategies in HD.  相似文献   

18.
We report here the clinical, genetic, and molecular characterization of five Chinese families with Leber's hereditary optic neuropathy (LHON). Clinical and genetic evaluations revealed the variable severity and age-of-onset in visual impairment in these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical ND4 G11696A mutation associated with LHON. Indeed, this mutation is present in homoplasmy only in the maternal lineage of those pedigrees but not other members of these families. In fact, the occurrence of the G11696A mutation in these several genetically unrelated subjects affected by visual impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. Furthermore, the N405D in the ND5 and G5820A in the tRNA(Cys), showing high evolutional conservation, may contribute to the phenotypic expression of G11696A mutation in the WZ10 pedigree. However, there was the absence of functionally significant mtDNA mutations in other four Chinese pedigrees carrying the G11696A mutation. Therefore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic expression of the LHON-associated G11696A mutation in these Chinese pedigrees.  相似文献   

19.
The complete nucleotide sequence of the tapeworm Taenia solium mitochondrial DNA (mtDNA) has been determined. The sequence is 13,709 base pairs in length and contains 36 genes (12 for proteins involved in oxidative phosphorylation, 2 for ribosomal RNAs, and 22 for transfer RNAs). The gene content and organization of the T. solium mtDNA are identical to those of other taeniid mtDNAs. All genes are transcribed in the same direction, and all protein-coding genes appear to initiate with the AUG or GUG codon. In a gene for NADH dehydrogenase subunit 1, the abbreviated stop codon U was confirmed for the first time in flatworm mtDNAs.  相似文献   

20.
Co-occurrence of double pathogenic mtDNA mutations with different claimed pathological roles in one mtDNA is infrequent. It is tentative to believe that each of these pathogenic mutations would have its own deleterious effect. Here we reported one three-generation Chinese family with a high penetrance of LHON (78.6%). Analysis of the complete mitochondrial genome in the proband revealed the presence of the LHON primary mutation G11778A in the NADH dehydrogenase 4 (ND4) gene and a deafness-associated mutation A1555G in the 12S rRNA gene. The other mtDNA variants in this family suggested a haplogroup status G2b. Although A1555G has long been confirmed to be a primary mutation for aminoglycoside-induced and non-syndromic hearing loss, none of the maternally related members in this family showed hearing impairment. It thus seems that the occurrence of A1555G in this family had no pathological manifestation. However, whether A1555G has a synergistic effect with G11778A and contribute to the high penetrance of LHON remained an open question. To our knowledge, this is the first report that identified the co-existence of a deafness mutation A1555G and a primary LHON mutation G11778A in one family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号