首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zusammenfassung Für eine aus Sauerteig und von einer Raupe isolierte neue Hefeart wird der Name Kloeckera Lodderi vorgeschlagen. K. Lodderi hat ovale und citronenförmige Zellen. Pseudomycel wird nicht gebildet. In flüssigen Nährmedien wird nur ein Bodensatz gebildet. Die Strichkultur ist cremefarbig, weich, glänzend und glatt. Nur d-Glucose wird vergoren. d-Glucose und Saccharose werden ausgiebig veratment, während d-Galaktose nur geringfügig und Maltose, Lactose sowie Äthylalkohol nicht veratmet werden. Mit Kaliumnitrat als einziger N-Quelle erfolgt mäßiges Wachstum. In der Diskussion wird begründet, warum die Verwendung von d-Galaktose und Kaliumnitrat durch K. Lodderi für die Beschreibung dieser Hefe als negativ bewertet wird. Beobachtungen der Verfasser zufolge zerfallen die Hefen, welche in der taxonomischen Literatur als unfähig gelten, gewisse Zuckerarten und Nitrat zu assimilieren, in zwei Gruppen: Hefen denen diese Fähigkeit wirklich abgeht und Hefen, bei denen die begonnene Assimilation aus unbekannten Gründen frühzeitig zum Stillstand kommt. Beispiele werden gegeben.Die Durchführung dieser Arbeit wurde durch die finanzielle Unterstützung des Instituto de Alta Cultura (Lissabon) ermöglicht.  相似文献   

2.
Zusammenfassung Bei 6 von 10 weißen Mäusen, die intraperitoneal mit Acladium Castellanii geimpft worden waren, zeigten sich nach 3 Wochen Abscesse in Leber, Milz und Dünndarm. In den Krankheitsherden und in Kulturen bei 37° C zeigte der untersuchte Stamm nicht einen hefeähnlichen, sondern einen filamentösen Habitus; hierin unterscheidetsich A. Castellanii von Blastomyces dermatitidis und B. brasiliensis, mit welchen Pilzen A. Castellanii in Kultur bei Zimmertemperatur große Ähnlichkeit hat.Von Leber und Milz dreier weißen Mäuse, die mit A. Castellanii infiziert worden waren, wurde eine neue Hefe isoliert, für welche der Name Torulopsis Pintolopesii vorgeschlagen wird. T. Pintolopesii wächst nur zwischen 28 und 40°C und braucht einen thermostabilen, wasserlöslichen Wachstumsfaktor, der im Leber- und Milzgewebe der weißen Maus, in Hefeextrakt und in Fleischextrakt, jedoch nicht in Pepton vorhanden ist. Auf Sabouraudagar mit Zusatz von 0,5% Hefeextrakt erfolgt gutes Wachstum. T. Pintolopesii bildet keine Askosporen, keine Basidiosporen (Ballistosporen), kein carotinoides Pigment, kein Pseudomycel. Die Zellen zeigen multipolare Sprossung, sind oval oder rund und haben eine starke Neigung zur Bildung von großen Sproßverbänden (Abb. 1). In flüssigen Nährmedien wird nur Bodensatz gebildet, Ring- und Hautbildung, sowie Trübung bleiben aus. Die Strichkultur ist cremefarbig, weich, glänzend und glatt, an den Rändern oft leicht gekräuselt. Von den untersuchten Kohlenstoffquellen (d-Glucose, d-Galaktose, Saccharose, Maltose, Lactose und Äthylalkohol) wird nur d-Glucose verwendet (Tab. 2). d-Glucose wird vergoren. Von den untersuchten Stickstoffquellen (Kaliumnitrat, Ammoniumsulfat, Harnstoff, Asparagin und Pepton) wird nur Pepton verwendet (Tab. 2). Asparagin zeigte unter den Versuchsbedingungen des Verfassers eine hemmende Wirkung auf das Wachstum von T. Pintolopesii (Tab. 2).Die Durchführung dieser Arbeit wurde durch die finanzielle Unterstützung des Instituto Para A Alta Cultura (Lissabon) ermöglicht.  相似文献   

3.
Zusammenfassung Die einzelnen Zellen des Tintendrüsenepithels im Tintenbeutel von Sepia arbeiten völlig ungeordnet. Das Sekret, Schleim und Pigmentkörnchen wird merokrin abgegeben.Das von Graupner und Fischer festgestellte reversible Kernwachstum steht in Zusammenhang mit der Differenzierung der embryonalen Zelle zur Drüsenzelle und ihrer späteren Degeneration und kann nicht in unmittelbare Beziehung zu den wiederholten Pigmentbildungsperioden gebracht werden. Eine Chromidienbildung ist mit Sicherheit auszuschließen.Das Chondriom läßt keine unmittelbare Beteiligung an der Melaninbildung erkennen. Bei den als Chondriom bezeichneten Strukturen (Turchinj, Graupner und Fischer) handelt es sich um das typische Ergastoplasma einer Drüsenzelle.Nach der mitotischen Vermehrung der Epithelzellen in der Bildungszone neuer Drüsensepten erfolgt eine deutliche polare Differenzierung in das basophile Fußplasma, das in entsprechend fixierten Präparaten fibrilläre Ergastoplasmastrukturen zeigt, in die Zone der Pigmentgranulabildung über dem Zellkern und in den schleimerfüllten Zellapex, der nur bei den stärker beladenen Zellen mit fertigen, winzigen Melaninkörnchen angefüllt wird und bewimpert ist.Die Bildung der Pigmentkörnchen geht von typischen Lipochondrien aus, die sich vergrößern und reich zerteilen, wobei das Pigment zunächst in der Rindenzone der Abschnürungsgranula in Form von Kappen, Buckeln und aufsitzenden Körnchen erscheint. Die Lipochondrien sind osmiophil und basisch vital färbbar. Sie geben während der Melaninbildung positive Rongalitweißreaktion. — Die Morphogenese der Pigmentkörnchen entspricht damit in den Hauptzügen — bis auf die Anteilnahme eines typischen Golgi-Apparates — der Proenzymgranulabildung in der Pankreaszelle der weißen Maus.  相似文献   

4.
Bernhard Baule 《Planta》1930,10(1):84-107
Zusammenfassung Es wird im engsten Anschluß an die Vorstellungen vonLiebig unter Benutzung des Prinzips des kleinsten Zwanges vonGauss ein Gesetz für die Wirkung der Nährstoffe im Innern der Pflanze (Innenwirkungsgesetz) aufgestellt. Dieses Gesetz stimmt praktisch fürjeden einzelnen Nährstoff mit dem Wirkungsgesetz vonMitscherlich überein, für das Zusammenwirkensämtlicher Nährstoffe fließen aus ihm jedochgänzlich andere Folgerungen.Unter der Voraussetzung, daß es für jede Pflanze eine ideale Zusammensetzung der Nährstoffe, ein Idealgemisch, gibt, wird der spezifische Wirkungswert eines Nährstoffgemisches definiert.Es wird an Hand primitiver Vorstellungen eine Annahme darüber gemacht, wie das Wachstum der Pflanze während ihrer Vegetationszeit durch die verschiedenen Wachstumsfaktoren bedingt wird. Aus diesen Annahmen folgt ein Wachstumsgesetz und aus diesem wiederum ein Ertragsgesetz.Dieses Ertragsgesetz erklärt in durchaus natürlicher Weise die bei fortgesetzter Steigerung eines Nährstoffes eintretende Ertragsdepression.Es erklärt auch die bei Verbesserung der Nebenbedingungen sich zeigende Verschiebung der relativen Ertragskurve.Es werden Folgerungen aus dem abgeleiteten Ertragsgesetz angegeben, mit denen das Gesetz und die ganze Theorie steht und fällt, und die daher der Nachprüfung durch Versuche anempfohlen werden.Mit 9 Textabbildungen.  相似文献   

5.
Zusammenfassung Das Ganglion coeliacum von 30 Menschen im Alter von 2–86 Jahren mit den verschiedensten Krankheiten und unterschiedlicher Todesursache wurde nach der Methode Bielschowsky-Gros untersucht.Der Bau von gesunden Ganglienzellen mit ihrem Hüllplasmodium aus dem Ganglion solare wird beschrieben. Ferner werden verschiedene Erkrankungsformen des Nervengewebes an der Ganglienzelle, ihren Fortsätzen und dem zugehörigen Hüllplasmodium geschildert.Tumorartige Bildungen werden im Ganglion solare beobachtet. An Hand pathologischen Wachstums wirdgezeigt, daß bei der Entwicklung von Nervenfasern der Ganglienzelle, dem Hüllplasmodium, dem Schwannschen Gewebe und dem Bindegewebe ein formativer Einfluß zukommen muß.Die pathologischen Erscheinungen im Ganglion solare des Menschen treten nicht nur an einzelnen Zellen oder in mikroskopisch kleinen Bezirken auf. In der weitaus überragenden Mehrzahl der Schnitte sind die Ganglien in ausgedehntem Maße von krankhaften Vorgängen ergriffen.Anlage, Alter des Menschen und die im Laufe des Lebens durchgemachten Erkrankungen verleihen jedem Ganglion solare ein unterschiedliches und für jeden Menschen individuelles Gepräge. Demnach dürfte neben dem Zentralnervensystem auch dem vegetativen Nervensystem bei dem Thema Individualanatomie eine besondere Bedeutung zukommen.  相似文献   

6.
Zusammenfassung Im ersten Abschnitt wird die ääußere Erscheinung der Krokodileier behandelt und hinsichtlich der Oberflächengestaltung eine Einteilung in 5 Typen gegeben. Eine Liste gibt die Durchschnittswerte der Maße der Schale (Länge, Breite, Schalenstärke) für 18 Arten und ordnet sie den Typen zu.Im zweiten Abschnitt wird über die Struktur der Kalkschale berichtet Gleich der Kalkschale der Vogeleier besteht die der Krokodile aus einer einfachen Lage von Calcitsphaerokristallen, deren Zentren in den Mam millen liegen, und deren nach außen weisende Elemente säulenartig, als Prismen, entwickelt sind. Die Calcitnatur des Schalenkalkes ergibt sich gemäß den negativ einachsigen Konoskophildern auf dem Flachschliff in Übereinstimmung mit Kelly und ebenso auf Grund der Meigenschen Reaktionen. Die Mammillen bauen sich aus einer geringen Anzahl von Calcitindividuen auf, die keilförmig zugeschärft zusammentreten; ein deutliches Sphaeritenkreuz kommt unter diesen Umständen im Flachschliff der Mammillenschicht nicht zustande. Kellys Phosphatkörnchen im mittleren Teil der Mammillen sind in Wirklichkeit Gaseinschlüsse. Die Prismenschicht ist vor allem in ihrem äußeren Teil durch eine sehr ausgeprägte lamelläre Wachstumsschichtung gekennzeichnet; auch in ihr finden sich öfter größere Gaseinschlüsse. Eine bisher nur bei Krokodileiern bekannte Erscheinung ist eine von der Oberfläche nach innen fortschreitende Corrosion der Kalkschale, die das Relief der Eioberfläche erzeugt, ja labyrinthische Hohlräume in der Kalkschale entstehen lassen kann; sie vollzieht sich wahrscheinlich im unteren Teil der Eileiter, nachdem die Schale normale Stärke erlangt hatte. Die Poren der Schale liegen stets zwischen den Prismen.  相似文献   

7.
Zusammenfassung Die Atmungsintensität winterruhender Weinbergschnecken (Helix pomatia) weist eine dem Typ 3 entsprechende Temperaturadaptation auf. Der kritische Punkt, von dem ab eine Abhängigkeit des Sauerstoffverbrauches vom Sauerstoffpartialdruck in Erscheinung tritt, wird daher mit steigender Adaptationstemperatur nach niedrigeren Sauerstoffdrucken hin verschoben.Der Atmungsadaptation geht eine entsprechende Aktivitätsanpassung der Dehydrasen in Eiweißdrüse, Mitteldarmdrüse, Fußmuskulatur und Niere parallel. Die Fermentaktivität warmadaptierter Schnecken ist jedoch in den einzelnen Organen in unterschiedlichem Grade gedrosselt. Das Aufwachen aus der Winterruhe ist mit einer Aktivitätssteigerung der Dehydrasen verbunden. Von diesem Prozeß werden die einzelnen Organe zu verschiedenen Zeitpunkten erfaßt, so daß die Aktivität der Succinodehydrase ein und derselben warmadaptierten Schnecke in einigen Organen (Eiweißdrüse und Niere) noch durch die Temperaturadaptation gedrosselt sein kann, während sie in anderen Organen (Fußmuskulatur und Zwitterdrüse) bereits die Aktivität aufgewachter Tiere erreicht.Die Adaptationstemperatur sowie das Aufwachen aus der Winterruhe wirken sich auf den Gehalt an wasserstoffübertragenden Stoffwechselprodukten (Bernsteinsäure) in einigen Organen noch stärker aus als auf die Fermentaktivität. Der Gehalt an gebundenem und freiem Wasser in der Mitteldarmdrüse wird durch die Adaptations temperatur nicht beeinflußt.Auch Lumbriculus variegatus besitzt eine Atmungsadaptation entsprechend Typ 3. Die adaptative Drosselung der Atmungsintensität beginnt hier erst, wenn die Adaptationstemperatur einen bei etwa 14° liegenden Grenzwert überschreitet. Nach Gewöhnung an einen 12stündigen Wechsel von 15 und 23° zeigen die Würmer den gleichen Sauerstoffverbrauch wie nach Anpassung an konstante Temperatur von 19°. Der Umkehrpunkt der Atmungskurve warmadaptierter Tiere liegt bei höherer Temperatur als derjenigen kaltadaptierter. An Gewebesuspensionen konnten weder Atmungsnoch Fermentadaptation (Succinodehydrase) nachgewiesen werden.Sauerstoffverbrauch, Umkehrpunkt der Atmungskurven und Aktivität der Succinodehydrase von Eisenia foetida werden durch die Adaptationstemperatur nicht beeinflußt. Die Aktivität der Katalase sowie die bei den Dehydraseaktivitätsbestimmungen ohne Bernsteinsäurezusatz resultierenden Entfärbungsgeschwindigkeiten nehmen jedoch mit steigender Adaptationstemperatur zu. Die Lebensresistenz gegenüber extrem hohen Temperaturen steigt mit zunehmender Adaptationstemperatur. Umkehrpunkt der Atmungskurve und Hitzetod liegen bei gleicher Temperatur; die gemessene Fermentinaktivierung setzt erst bei höherer Temperatur ein. Die Lebensresistenz gegenüber Hitze ist im Herbst größer als im Frühjahr.Die Stoffwechselintensität von Diapause-Larven von Cephaleia abietis weist ebenfalls keine Temperaturadaptation auf. Die an 24° gewöhnten Larven mit Puppenaugen haben allerdings einen geringeren Sauerstoffverbrauch als die bei kalten und mittleren Temperaturen gehaltenen Tiere. Diese Erscheinung könnte jedoch durch Entwicklungsprozesse bedingt sein. An Gewebesuspensionen aus unterschiedlich adaptierten Diapause-Larven mit Puppenaugen ließen sich keine Unterschiede in der Dehydrasenaktivität nachweisen.Gekürzte Wiedergabe einer Dissertation bei der Philosophischen Fakultät der Universität Kiel, Teil I (Anregung und Anleitung: Prof. Dr. H. Precht).  相似文献   

8.
Zusammenfassung Es wurden acht normale Bulbi und drei Disci pathologisch veränderter Corneae (Trübung und Narben) elektronenmikroskopisch untersucht. Die Sklerafibrillen entsprechen weitgehend den Sehnenkollagenfibrillen. In der Cornea wurde neben den Fibrillen, die eine weitgehende Ähnlichkeit mit embryonalen Bindegewebsfibrillen besitzen, eine besondere Kittsubstanz morphologisch nachgewiesen, von der ein Teil zu den Substraten der Hyaluronidase gehört (Hyaluronsch wefelsäure). Die Dicke der nackten Fibrillen schwankt zwischen 25 und 33 m. Der Mittelwert beträgt 29 m. Die Fibrillen sind von einem Mantel von Kittsubstanz umgeben, der wesentlich dicker ist als beim Sehnen- und Sklerakollagen. Die Corneafibrillen liegen zu Bündeln zusammengefaßt und durch Kittsubstanz maskiert in den Lamellen. Die Dicke der Bündel schwankt zwischen 2,5 und 8 . Sie entsprechen den aus der Histologie bekannten Fibrillen. Das Problem der Durchsichtigkeit wurde an Hand der neuen Befunde diskutiert. Die Quellungs- und Entquellungstheorie konnte nicht bestätigt werden. Die Durchsichtigkeit der Cornea wird durch ein System feinster Fibrillen und einer besonderen, diese Fibrillen maskierenden Kittsubstanz erklärt. Veränderungen an den Fibrillen und der Kittsubstanz, bzw. Verschiebungen des Verhältnisses zwischen beiden führen zur Undurchsichtigkeit der Cornea, wie Befunde an den Narben zeigen. Diese nehmen in gewisser Hinsicht eine Zwischenstellung zwischen Cornea und Sklera ein. Weitere Untersuchungen auf diesem Gebiet sind erforderlich.  相似文献   

9.
Zusammenfassung In jedem Entwicklungsabschnitt von Häutung zu Häutung wiederholt sich ein gleichmäßiger Rhythmus von mehreren aufeinanderfolgenden Phasen, deren Phasendauer aber sehr verschieden lang sein kann. Es folgen auf eine Häutung nacheinander eine Beharrungs-, Chitinablösungs-und Zellteilungs-, Streckungs- und Faltungs- und Chitinbildungsphase.Erst während der Beharrungsphase des letzten Larvenstadiums legen sich die Flügelanlagen als einfache Hautfalten an, in welche die Tracheenäste hineingelangen, die vorher die Hypodermis an den Seiten des Mesound Metathorax versorgt haben.In der Chitinablösungsphase des letzten Larvenstadiums, bei dem Übergang zur Vorpuppe, erfolgt die Loslösung des gesamten Chitins von der Hypodermis und von der Tracheenmatrix der größeren Tracheenstämme. Dabei tritt zwischen Epithel und Chitin Exuvialflüssigkeit auf. Sofort nach der Chitinablösung treten die ersten Zellteilungen auf. Von den lateralen Tracheenbögen wachsen jeweils 6 Haupttracheenstämme, die sich verzweigen, in jede Flügelanlage ein. Am Ende der Zellteilungsphase scheiden die Flügelepithelien basal eine Basalmembran und apikal eine gallertige Masse aus. Gleichzeitig bildet sich in den Flügelanlagen ein Blutlakunensystem durch teilweises Aneinanderlegen und Verkleben der Basalmembranen aus. Die verklebten Basalmembranen bilden die Mittelmembran.In der Streckungs- und Faltungsphase der Vorpuppe werden sämtliche Epithelien gestreckt, die Blutlakunen nur noch geweitet. Die Streckung ruft die Faltung der Hypodermis hervor. Die Hauptfalten, die im Imago flügel zu finden sind, werden schon in den Vorpuppenflügeln angelegt. Die Tracheen strecken sich entsprechend.In der Chitinbildungsphase erfolgt die Chitinbildung der gesamten Hypodermis, Tracheenmatrix und Sinnesorgane. Die Chitinbildung der Vorderflügeloberseite ist besonders stark.Schon 24 Stunden nach dem Schlüpfen setzt in der Puppe die Chitinablösungsphase ein, die genau so wie bei der Larve des letzten Larvenstadiums verläuft. Die verklebten Basalmembranen der Flügelanlagen rücken jedoch auseinander, im Vorderflügel ganz, im Hinterflügel nur teilweise.Im Vorderflügel häuten sich in der Hauptsache nur die 6 Haupttracheenstämme, im Hinterflügel sogar nur die Costa- und die Subcostatrachee, oft nur die Haupttrachee (c).In der Zellteilungsphase der Puppe wird die Zahl der Flügelepithelzellen stark vergrößert. Die gehäuteten Flügeltracheen wachsen stark heran und bilden neue Nebenäästchen aus.Am Ende der Zellteilungsphase der Puppe wird wieder das alte Blutlakunensystem ausgebildet durch teilweises Aneinanderlegen und Verkleben der beiden Basalmembranen. Zwischen- und Querlakunen treten neu hinzu. Die Basalmembranen werden verstärkt; apikalwärts wird von den Epithelien wieder eine gallertige Masse ausgeschieden.Die folgenden Phasen der Puppe verlaufen ganz entsprechend wie die der Vorpuppe.Die Chitinbildung der Vorderflügelepithelien ist mit dem 3. Tage der Imago abgeschlossen.Als Dissertation angenommen von der Mathematisch-naturwissenschaftlichen Fakultät der Universität Göttingen.Meinem Lehrer, Professor Dr. Kühn, danke ich für die Anregung und Förderung dieser Arbeit; ferner danke ich den Herren Dr. Kuhn und Dr. Henke für mannigfache Ratschläge.  相似文献   

10.
Zusammenfassung Eine Reihe von Untersuchungen soll die Erscheinung des Zelltodes und die Altersveränderangen von Zellen analysieren, um so allmählich zu einer Definition des Begriffes Zelltod und zu einem tieferen Verständnis für die Bedingungen des Absterbens und Alterns von Zellen und Geweben zu kommen.In dieser ersten Untersuchung werden die Zustandsänderungen während des Katastrophentodes verschiedener Zelltypen der Haut junger Axolotllarven mit Hilfe der Neutralrotfärbung festgestellt.Es erweist sich als unmöglich, lediglich mit Hilfe der Färbung ohne Analyse der Anfärbungsbedingungen und vor allem ohne Prüfung der Irreversibilität festzustellen, ob eine Zelle lebt oder abgestorben ist. Zwischen dem färberischen Verhalten der lebenden und der toten Zelle gibt es einen charakteristischen Zwischenzustand, der experimentell sehr zuverlässig herbeigeführt werden kann und in den Anfangsstadien völlig reversibel ist. Dieser Zustand wird färberisch vor allem durch die Kernfärbung und durch das Fehlen typisch granulärer Speicherungsprozesse im Plasma gekennzeichnet.Die vitale Kernfärbung kann in befriedigender Weise durch eine reversible Entmischung und Dehydratation der sauren Kerneiweiße erklärt werden. Es ist kolloidchemisch verständlich, daß die sauren Kerneiweiße im völlig ungeschädigten Kern gegen die polare Adsorption von basischem Farbstoff durch den Solvatmantel geschützt sind. Die Reaktion im Kern wie im Plasma ist unabhängig von dem isoelektrischen Punkt der in ihnen dispergierten Eiweißsubstanzen nach ihrer Ausfällung. Trotz des Vorhandenseins sich leicht entmischender saurer Eiweißsubstanzen im Kern kann er daher doch relativ alkalisch reagieren und dementsprechend nur ein geringes Aufnahmevermögen für den basischen Farbstoff besitzen. Dagegen tritt bei Entmischung, Dispersitätsverminderung und Dehydratation sofort die Farbstoffadsorption ein. Die Annahme einer impermeablen Kernmembran ist sehr unwahrscheinlich, und die Reduktion von Farbstoff im Kerninnern kann als Grund für das Farblosbleiben der ungeschädigten Kerne bei der vitalen Färbung ausgeschlossen werden.Die normalerweise bei dem Absterben der Zelle eintretenden Entmischungserscheinungen können durch bestmimte alkalisierende Mittel sowie durch Stoffe, die in spezifischer Weise Eiweiß-Lipoidkomplexe zu stabilisieren vermögen, verzögert oder sogar verhindert werden.Modellversuche ergaben, daß dieselben Substanzen, die Kernfärbung hervorriefen, auch bei Eiweißtropfen Fällung und Farbstoffadsorption im sauren Farbton zur Folge hatten, während die Stoffe, die Zelltod ohne Kernfärbung bewirkten, auch im Eiweiß nur zu zarten Diffusfärbungen im alkalischen Farbton führten. Das ist ein Beweis mehr dafür, daß die vitale Kernfärbung in erster Linie, wenn nicht ausschließlich, von der Dispersität und Hydratation der Eiweißkörper und dem dadurch bedingten Adsorptionsvermögen für den basischen Farbstoff (und einer Reaktionsänderung?) abhängt.Eine Eiweißentmischung (Fällung) im Hyaloplasma und die damit verbundene Farbstoffadsorption war in den untersuchten Zelltypen stets irreversibel und konnte daher als Signal für den eingetretenen Zelltod gewertet werden.Die granuläre Farbstoffspeicherung im Plasma ist nicht abhängig von der durch Oxydationsvorgänge gelieferten Energie. Die Speicherungsprozesse wurden in den Epithelzellen durch leicht in das Plasma eindringende alkalisierende Substanzen sowie durch Stoffe, die deutliche Quellungserscheinungen an Plasmastrukturen hervorriefen, begünstigt, dagegen durch leicht permeierende Säuren unterdrückt. Die typische granuläre Farbstoffspeicherung ist stets nur in lebenden Zellen möglich und kann daher als ein gewisses Kriterium für die Lebendigkeit gewertet werden.Innerhalb eines sehr weiten pH-Bereiches bleibt die Innenreaktion der Zellen in Pufferlösungen konstant, solange die Zellen nicht absterben. Dementsprechend läßt sich das Ergebnis der Vitalfärbung nicht durch die Reaktion der Farblösung in demselben Sinne wie bei der histologischen Färbung modifizieren, nur wird das Eindringen des basischen Farbstoffes aus saurer Lösung erschwert, aus basischer Lösung begünstigt. Dagegen läßt sich die Reaktion des Hyaloplasmas sehr leicht reversibel durch permeierende Säuren und Laugen verändern.Es wird über die Möglichkeiten verschiedener vitaler Elektivfärbungen berichtet (Färbung von Interzellularen, Cuticularstrukturen, Färbung der Leydigschen Zellen, der Macrophagen, granuläre Färbung der Epithelzellen). Vitale Kernfärbungen lassen sich experimentell entweder ausschließlich an den Leydigschen Zellen oder nur in den Bindegewebszellen oder in Bindegewebszellen und Epithelzellen hervorrufen. Wahrscheinlich sind diese Unterschiede zum Teil durch das Plasma mitbedingt; jedenfalls unterscheiden sich die angeführten Zelltypen auf fixierten Präparaten nicht meßbar im isoelektrischen Punkt der Kernstrukturen. Bei den Leydigschen Zellen riefen alle Mittel vitale Kernfärbung hervor, die die sauren Sekretschollen in stärkerem Maße zur Verquellung oder zum Schrumpfen brachten. Es ist leicht zu beweisen, daß alle Schädigungen bei differenzierten Zellen ausgesprochen zellspezifisch verschieden wirken.Die Chromosomen aller Mitosestadien reagieren genau so zellspezifisch wie die Chromatinstrukturen der Ruhekerne. Es ergibt sich aus dem Verhalten bei der Vitalfärbung für die untersuchten Zelltypen eine bestimmte stoffliche Kontinuität aller Chromatinstrukturen.Im Zusammenhang mit den Untersuchungen Zeigers kann daher behauptet werden, daß zwischen den protoplasmaphysiologischen und cytogenetischen Untersuchungen über den Zellkern kein Gegensatz zu bestehen braucht.Es ist nicht möglich, bei der Vitalfärbung grundsätzlich zwischen passiven Speicherungsprozessen für basische Farbstoffe und der aktiven Speicherung saurer Farbstoffe zu unterscheiden, sowie durch die Vitalfärbung mit basischen Farbstoffen Paraplasma, leblose Zellprodukte und Protoplasma auseinander zu halten oder auf einfache Weise lebendes und totes Plasma durch ihr unterschiedliches Reduktionsvermögen für basische Vitalfarbstoffe zu trennen.Im Absterbeprozeß werden bei manchen Zelltypen (z. B. Ez) Beziehungen zwischen benachbarten Zellen offensichtlich, die bei den LZ allem Anschein nach fehlen. Es ist nicht möglich, färberisch ein Vorauseilen bestimmter Zellstrukturen im Absterbeprozeß festzustellen; stets treten Veränderungen in bezug auf das Ergebnis der Anfärbung mehr oder minder gleichzeitig in allen Zellstrukturen ein. Die extrazellulären Bildungen sind in ihrem Verhalten von den zugehörigen Zellen abhängig, so daß wir auch hier von vitalen Färbungen sprechen können.Auf Grund der vorliegenden Erfahrungen wird vorgeschlagen, als vitale Färbung nur die Färbungserscheinungen an sicher noch lebenden Histosystemen in lebenden Organismen zu bezeichnen. Als supravitale Färbung kann die Färbung isolierter Histosysteme gekennzeichnet werden, soweit die Vitalität durch Fortdauer bestimmter Stoffwechselerscheinungen, Fortpflanzungsmöglichkeit oder aber Reversibilität bestimmter Färbungserscheinungen in geschädigten Zellen bewiesen werden kann. Von diesen Färbungserscheinungen ist die postmortale (oder postvitale oder auch histologische) Färbung toter Histosysteme grundsätzlich scharf zu trennen.  相似文献   

11.
Ohne ZusammenfassungNach dem Ableben des Verfassers aus dem Nachlaß zum Druck vorbereitet vonElisabeth Arndt undAdolf Meyer. Es ist uns eine angenehme Pflicht, auch an dieser Stelle den Herren Professoren W.Vogt (München) undAlfred Kühn (Göttingen) für die große Mühe und Sorgfalt zu danken, mit der sie die aus ökonomischen Gründen notwendige Kürzung, besonders am Bildmaterial, vorgenommen haben. Die vorliegende Abhandlung hatte dem Verfasser als Rostocker Habilitationsschrift gedient. Ein in ihr noch enthalten gewesenes besonderes Kapitel über Kernbau und Kernteilung vonDictyostelium wird an anderer Stelle veröffentlicht werden.  相似文献   

12.
Zusammenfassung Es wird versucht, das äußerst mannigfaltige und an Gegensätzen reiche Bild, das Messungen der Atmungsgröße unbehandelter und 6–45 Std mit N2 vorbehandelter Larven von Chironomus tentans ergaben, unter Zugrundelegung der Daten von Cole (1921) durch die Annahme zu begreifen, daß der Larve zur Reparation der durch Anaerobiose bedingten Situation außer Erholungsatmung, die O2 aus dem Medium gewinnt, und nach der Anaerobiose getätigt wird, auch ein Mechanismus zur Verfügung steht, in dem O2 für den entsprechenden Prozeß schon während der Anaerobiose aus bereitgestellten O2-Speichern (Peroxyden) des Körpers gewonnen wird. Dieser Prozeß wird als Endoxybiose bezeichnet. Sekundäre Oxybiose hat zu leisten, was Endoxybiose, deren Entwicklung je nach Zustand und Ernährung der Larven verschieden ist, zu leisten übriggelassen hat.Die Atmungsgröße von Larven in Erholungsatmung ist ausgesprochen abhängig vom O2-Partialdruck des Mediums. Für Larven in Endoxybiose gilt das gleiche, da das Oxydans der sekundären Oxybiose auch in der Endoxybiose mitarbeitet.Durch energische Vorbehandlung mit O2 ist es möglich, vom Partialdruck unabhängige Atmungsgröße zu erzielen, ein Zustand, den auch unbehandeltes Material mit geringer Atmungsgröße gelegentlich zeigt. Sichere Festlegung des Wertes der primären Oxybiose stößt auf Schwierigkeiten.  相似文献   

13.
Zusammenfassung Am Auerbachschen Plexus im Darm bei Katze und Kaninchen läßt sich ein Maschenwerk erster und zweiter Ordnung, sowie ein feines der Ringmuskelschicht direkt aufliegendes Tertiärgeflecht unterscheiden. In den Nervenbündeln aller drei Geflechte finden sich reichlich Schwannsche Kerne vor.Die Ganglienzellen des Auerbachschen Plexus befinden sich hauptsächlich im Maschenwerk erster Ordnung, kommen aber auch noch vereinzelt in den Maschen des Sekundärgeflechts vor. Es lassen sich an den Ganglienzellen zwei verschieden gebaute Zelltypen im Sinne Dogiels unterscheiden. Typus 2 wird durch multipolare Zellen repräsentiert, deren zwei bis sechs lange Fortsätze sich meist dichotomisch aufteilen und Neurit und Dendriten nicht unterscheiden lassen. Die Endigungsweise der Fortsätze war nicht feststellbar. Über die Funktion des Zelltypus 2 lassen sich keine bestimmten Angaben beisteuern.Der Zelltypus 1 ist gewöhnlich durch einen einzigen langen Fortsatz und zahlreiche, sich häufig verästelnde kurze Fortsätze ausgezeichnet. Gelegentlich kommen auch zwei lange, an den entgegengesetzten Polen der Zelle entspringende Fortsätze zu Gesicht. Die kurzen Fortsätze endigen mit ungeheuer feinen fibrillären Verbreiterungen, welche, ähnlich einem periterminalen Netzwerk, manchmal in das Plasma der glatten Muskelfasern oder in das Endothel der Kapillaren hinein versenkt sind.Mit der Nisslmethode läßt sich in den Ganglienzellen des Auerbachschen Plexus eine sehr feine Tigroidsubstanz darstellen; sie erscheint bei der Katze kleinschollig, beim Kaninchen diffus verteilt.Der Meissnersche Plexus submucosus besteht aus mehreren, verschieden gebauten, etagenartig übereinander geschichteten Nervengeflechten. Am weitesten peripher, also direkt an die Ringmuskelschicht grenzend, liegt der Plexus entericus internus (Henle). Die übrigen in der Submukosa befindlichen Geflechte bilden den Plexus submucosus im engeren Sinne. Der Plexus entericus internus weist in der Konstruktion eine beträchtliche Ähnlichkeit mit dem Auerbachschen Geflecht auf; nur sind seine Nervenbündel schmäler, seine Maschen kleiner und unregelmäßiger und die Anhäufungen der Ganglienzellen in geringerem Umfang ausgebildet als im Auerbachschen Plexus.Im Meissnerschen Plexus des Dünndarmes von Katze und Kaninchen lassen sich ebenfalls zwei Arten von Ganglienzellen unterscheiden: Typus 1 mit vielen kurzen und einem oder zwei langen Fortsätzen; Typus 2 mit ungefähr zwei bis fünf langen Fortsätzen (Katze) oder mit sieben und mehr langen Fortsätzen (Kaninchen).Die Ganglienzellen des Auerbachschen Plexus sind meistens in einen dichten Filz feinster Nervenfäserchen eingehüllt, welche in ihrer Gesamtheit jedoch nicht als Endkorb zu betrachten sind. Gelegentlich dringt eine allerfeinste Terminalfaser in das Innere einer Ganglienzelle ein. Anastomotische, plasmatische Verbindungen zwischen benachbarten Ganglienzellen vom Typus 1 kommen sicher vor; benachbarte Ganglienzellen vom Typus 2 zeigen niemals anastomotische Verbindungen ihrer Fortsätze.Der Auerbachsche Plexus des Menschen unterscheidet sich in Größe und Gestaltung seiner Maschen von demjenigen der Katze und des Kaninchens. Er läßt ein Primär- und Sekundärgeflecht erkennen. Der Meissnersche Plexus submucosus besteht aus mehreren etagenförmig übereinander gelagerten Geflechten; am weitesten peripher liegt der Plexus entericus internus (Henle), der durch die Feinheit seiner Bündel und Ganglien und durch die Unregelmäßigkeit in der Größe und Anordnung seiner Maschen von der Konstruktion des Auerbachschen Plexus erheblich abweicht. Die Geflechte des Plexus submucosus im engeren Sinne nehmen, je näher sie der Muscularis mucosae liegen, an Feinheit ihrer Maschen und Bauelemente zu.Das Tertiärgeflecht des Auerbachschen Plexus bei Kaninchen und Katze ist durch eine außerordentliche Feinheit seiner Fäserchen ausgezeichnet; letztere sind in das Schwannsche synzytiale Leitgewebe eingebettet und dringen allmählich in die Ringmuskelschicht ein.Die interstitiellen Zellen sind mit den Schwannschen Zellen, Lemnoblasten, Leitzellen, peripheren Neuroblasten der Autoren identisch. Sie bilden das Leitgewebe oder Schwannsche Synzytium und können verschiedener Abkunft sein. Man kann — physiologisch gedacht — das Schwannsche Leitgewebe gemeinsam mit den in seinem Plasma eingebetteten Nervenfäserchen als ein nervöses terminales Plasmodium bezeichnen.Das nervöse terminale Plasmodium ist sehr schön in der Tunica propria der Darmzotten zu beobachten.In der Ringmuskelschicht findet sich ebenfalls das Schwannsche nervöse Synzytium vor. Einzeln verlaufende, feinste Nervenfäserchen mit kleinen fibrillären Netzchen wurden teils zwischen, teils innerhalb (?) der glatten Muskelfasern beobachtet. Eine eigentliche intraprotoplasmatische Endigung in der glatten Muskulatur ließ sich nicht finden. Auch in der Ringmuskelschicht wurden Ganglienzellen bemerkt.Außer den gewöhnlichen Kapillarbegleitnerven konnten mehrmals direkte Beziehungen zwischen der Kapillarwand einerseits und dem Fortsatz einer Ganglienzelle und Nervenfasern andererseits nachgewiesen werden.Die Submukosa des menschlichen Magens zeigt im Pylorusabschnitt eine außerordentlich reichliche Innervation. Die Maschen des Plexus submucosus sind sehr unregelmäßig; es kommen ferner unipolare, bipolare und multipolare Ganglienzellen von jeder erdenklichen Größe vor.In der Schleimhaut des Pylorus und in der Regio praepyloric a des menschlichen Magens lassen sich in der Submukosa eigentümliche, gewundene Nervenfasern beobachten, die in einem besonderen synzytialen Leitplasmodium einherziehen. An zirkumskripten Stellen von sehr verschiedener Ausdehnung können die Nervenfasern durch eine mannigfache Anhäufung zahlreicher Windungen nervöse Schlingenterritorien entstehen lassen.In einem gewundenen plasmatischen Leitstrang können mehrere Nervenfasern verschiedenen Kalibers verlaufen. Ein Teil dieser Nervenfasern nimmt von unipolaren, in der Submukosa befindlichen Ganglienzellen seinen Ursprung. Im übrigen finden sich in der Pylorusregion des menschlichen Magens reichlich Ganglienzellen, sowohl vereinzelt, wie in kleinen Ganglien angehäuft, vor.Vielleicht bilden die gefundenen Schlingenterritorien ein einheitliches nervöses Überwachungssystem für die Tätigkeit der Pylorusmuskulatur. Möglicherweise spielen sie auch bei der Entstehung des Magengeschwürs eine Rolle.Die Untersuchungen wurden mit Unterstützung der Deutschen Forschungsgemeinschaft ausgeführt.  相似文献   

14.
Zusammenfassung Der kohlensaure Kalk der untersuchten Helicideneischalen — Bulimus maximus (Durchmesser der Schale 23,6 x 25,1 mm, Dicke 0,25 mm), nicht näher bestimmte Schneckeneischale aus Sta. Catharina Brazil (Durchmesser 22,5 x 16,3 mm, Dicke 0,15 mm) — ist Calcit gemäß Optik (negativ einachsiges Konoskopbild) and Meigenscher Reaktion (in Übereinstimmung mit Kellys Beobachtungen bei Bulimus oblongus). Der Phosphatgehalt der Schale ist äuBerst gering trotz reichlichen Vorkommens der KELLyschen Phosphatkörnehen; diese sind in Wirklichkeit Gaseinschüisse. Erhitzen von Schalenstiicken braunt den Kalk bei Verkohlung der organischen Substanz durch and durch ; these durchsetzt also die Calcitkristalle, in Übereinstimmung mit Kellys Erfahrungen beim Entkalken. Erhitzen his zum Verbrennen der organischen Substanz (Wiederweißwerden der Schalenstücke) hebt die Doppelbrechung auf (Umwandlung des Calciumcarbonats in -oxyd); zugleich erscheint bräunliche Trübung im durchfallenden Licht wohl infolge des Austretens der Kohlensäure.Die Mammillenschicht auf der Innenseite der Schale besteht aus einzelnen Calcitindividuen oder Gruppen von solchen; diese Kristallkörnchen wachsen (zum Teil) zu den annähernd senkrecht stehenden Prismen aus, deren optische Achse rneist gegen die Schalenfläche geneigt ist. Vor allem bei Bulimus maximus lassen die Prismen eine innere grobgeschichtete and eine äußere feinstreifige Lage unterscheiden; die erste enthält die Gaseinschliisse, die sich bei der Schneckeneischale aus Sta. Catharina Brazil bis in die Mammillen hinein finden, and von rundlicher Form sind, während she bei Bulimus maximus zum Teil spaltenartig erscheinen. An manchen Stellen der Eischale aus Sta. Catharina Brazil tragen die Mamillen an ihrem freien Ende Scheiben aus radial gestellten Kalknadeln oder Rosetten aus größeren Kristallen, die bis zur Berührung benachbarter auswachsen können.  相似文献   

15.
W. Wergin 《Planta》1942,32(5):535-546
Zusammenfassung In den Samenhaaren der Baumwolle befinden sich im Cytoplasma farblose Partikel.W. Farr hat behauptet, daß diese Partikel aus Cellulosekristalliten mit einer Pektinhülle bestehen, und daß diese celluloseparticles nach linearer Zusammenlagerung die Fibrillen bilden, aus denen die Zellwände aufgebaut werden. Auf Grund eigener Untersuchungsergebnisse an lebenden Baumwollhaaren von Gewächshauspflanzen konnten die Argumente, dieW. Farr für die Cellulosenatur der Partikel angeführt hat, als unbegründet zurückgewiesen werden. In Übereinstimmung mit den Anschauungen vonD. B. Anderson undTh. Kerr werden die Partikel als Plastiden bezeichnet, die keine Cellulose, sondern Stärke aufbauen und zeitweilig enthalten können. Ebenso wird auf Grund mikroskopischer Beobachtungen und der bisherigen Erkenntnisse über den Feinbau der Zellwände die AnnahmeW. Farrs abgelehnt, daß die Plastiden zu Fibrillen zusammentreten und in die Wand eingebaut werden. Zum Schlusse wird kurz auf die Möglichkeit der Cellulosebildung an der Wand hingewiesen.Mit 2 Textabbildungen (6 Einzelbildern).  相似文献   

16.
Zusammenfassung Bei den Nestmüttern von Vespa crabro, V. media, V. germanica, V. vulgaris, V. saxonica und V. rufa werden besondere rotbraune Zeichnungen beobachtet, die diese Tiere von allen übrigen Nestinsassen unterscheiden.Diese Zeichnungen beruhen auf der Bildung eines rotbraunen Pigments, das aller Wahrscheinlichkeit nach zur Melaningruppe gehört und in der Hypodermis selbst abgelagert wird. Sie finden sich nur in der Nähe solcher Integumentteile, die dauernder Reibung an härteren Chitinstücken ausgesetzt sind.Durch diesen dauernden mechanischen Reiz wird die Hypodermis unter dünneren Chitinlagen so beeinflußt, daß in ihr an Stelle der normalen Stoffwechselvorgänge ein anormaler Schädigungsstoffwechsel tritt. Dieser kann an den betreffenden Stellen zu einem teilweisen Abbau des darin abgelagerten Pterinpigments führen und an besonders stark gereizten Stellen eine Zerstörung der Hypodermis selbst bewirken.An den Stellen der Hypodermis, die diesem anormalen Stoffwechsel verfallen sind, entsteht weiterhin eine Substanz, die anscheinend ein Eiweißabbauprodukt ist und von diesen Stellen als Diffusionszentren aus durch die Hypodermis hindurchdiffundiert. Dabei wird sie in das rotbraune Pigment überführt und dadurch unlöslich niedergeschlagen. Die Ablagerung dieses Pigments findet nach den Gesetzen der Bildung periodischer Niederschläge statt und führt zur Entstehung von Liesegangschen Ringen und ähnlichen Zeichnungsmustern.Die Zeichnung der Wespennestmütter ist das erste Beispiel, in dem die Bildung einer periodischen und symmetrischen Insektenzeichnung, die als solche nicht direkt von morphologischen Strukturen abhängig scheint, weitgehend auf einfache Kausalzusammenhänge und auf Vorgänge zurückzuführen ist, die bei anderen leblosen oder belebten Systemen bereits bekannt und untersucht sind. Sie kann daher als Modell für schwerer analysierbare flächenhafte Symmetriemuster betrachtet werden.  相似文献   

17.
Zusammenfassung Material aus 26 Rinderaugen wurde im unfixierten und fixierten Zustande elektronenmikroskopisch untersucht. Dabei stellte sich heraus, daß zwei verschiedene Arten von Fasern der lichtmikroskopischen Größe vorhanden sind. Ein Teil der Fasern erinnert an die Stützfasern der Gliazellen, während die übrigen protoplasmatische Eigenschaften zeigen und mit Einschlüssen versehen sind. Die Form dieser charakteristischen Einschlüsse wird beschrieben. Ein Zusammenhang mit irgendwelchen Zellen kann in dieser Untersuchung nicht festgestellt werden. Die im Dunkelfeld des Lichtmikroskopes sichtbaren größeren hellen Kugeln können zum Teil auf gewisse große Einschlüsse in Kolbenfasern zurückgeführt werden. Außerdem sieht man im unfixierten Material runde, schwer durchstrahlbare Gebilde, die ebenfalls für den Effekt im Dunkelfeld verantwortlich sein können. Die aus der Ultra-Immersionsmikroskopie bekannten Fibrillen sind auf ihre Innenstruktur hin untersucht und nach Feststellung ihrer Größenordnung der grobdispersen Phase zugerechnet worden. Die früher daran geknüpften Erwägungen über die Ultrastruktur des Glaskörpers werden widerlegt. Gewisse Ähnlichkeiten der Innenstruktur mit der des lamellierten Kollagens (Präkollagen) sind erörtert worden. Im metallbedampften Präparat stellt sich eine Periodeneinteilung der Fibrille heraus, welche durchschnittlich 50 m beträgt. Zum ersten Male wird ein Faserwerk zwischen der grobdispersen Phase beschrieben, welches der kolloiden Phase angehört. Im Durchstrahlungsbild wechseln in den einzelnen Fasern hellere und dunklere Teile miteinander ab. Nach Metallbedampfung lassen sich ebenfalls Perioden feststellen, die durchschnittlich bei 25 m liegen. Dieses System bildet ein polygonales Netzwerk. Die Maschenweite schwankt beträchtlich, sie liegt zwischen 160 und 800 m. Die Dicke der Fasern beträgt höchstens 15–20 m. Dieses zum ersten Male beschriebene Netzwerk der kolloiden Phase erklärt die gallertartige Konsistenz des Glaskörpers. Es wird überschlagsmäßig festgestellt, daß der Eiweißgehalt des Glaskörpers ausreicht, um die Masse aller beschriebenen Fasersysteme quantitativ zu erfassen.Herrn Prof. Dr. H. Ruska möchte ich an dieser Stelle meinen Dank für seine Hilfe aussprechen.  相似文献   

18.
Zusammenfassung Es wird der Aufenthalt der Kreuzspinne (Epeira diademata) im Schlupfwinkel beschrieben, und einige Bedingungen für den Aufenthalt im Schlupfwinkel werden mitgeteilt.Es wird der Aufenthalt der Spinne in der Warte des Netzes beschrieben.Es wird beschrieben, wie die Spinne eine bewegungslos im Netz hängende Beute aufsucht. Experimentell wird gezeigt, daß die Suchbewegungen durch einen plötzlichen Ruck am Netz herbeigeführt werden können, daß die Spinne aber nur solange nach einer Beute sucht, als das Netz belastet ist. Sie ist imstande, die Belastung durch eine Beute von dem durch Anziehen eines Radialfadens verursachten Zug zu unterscheiden. Auch unterscheidet sie eine schwere Beute von einer leichten an der verschiedenen Belastung des Netzes; sie verhält sich in beiden Fällen verschieden.Es wird beschrieben, wie die Spinne ein vibrierendes Beutetier aufsucht.Zur Untersuchung der Reaktionen auf Vibrationsreize wurde ein Apparat konstruiert, mit dem die Vibrationen eines Beutetieres nachgeahmt werden, und mit dem tote Fliegen und andere Gegenstände in Vibration versetzt werden können.DieGrünbaumsche Hypothese, die dem Abdomen der Spinne bei der Orientierung gegen den vibratorischen Reiz eine wesentliche Bedeutung zumißt, wird widerlegt, besonders durch Versuche, in denen die Aufnahme des Vibrationsreizes durch das Abdomen verhindert wurde.Angaben vonDahl über die Bedeutung eines Farbensinnes beim Aufsuchen der Beute werden widerlegt.Die Reaktionen der Spinne in der zweiten Phase der Fanghandlung (von der Ankunft an der Beute ausschließlieh bis zum Transport derselben zur Warte) werden beschrieben und ihre Bedingungen untersucht. — Für den Fall, daß die Beute bewegungslos und vom Gewicht eines gewöhnlichen Beutetieres ist, gilt folgendes. Ist sie geruchlos (oder hat sie den Geruch eines gewöhnlichen Beutetiere's [Fliege]), so wird sie mit den Palpen betastet; hat sie den Geruch einer Wespe oder riecht sie nach Terpentin, so wird sie sofort, ohne vorheriges Betasten mit den Palpen, umsponnen. Erhält die Spinne beim Betasten mit den Palpen nun einen (mit einem chemischen verbundenen) taktilen Reiz, wie er von einem chitinigen Insektenpanzer ausgeht, so tritt der Reflex des Umspinnens ein; kleine Glaskörper werden in der Regel ebenfalls umsponnen, da von ihnen der nötige taktile Reiz ausgeht. Erhält die Spinne beim Betasten mit den Palpen dagegen einen taktilen (eventuell mit einem chemischen Reiz verbundenen) Reiz, wie er von einem nichtchitinigen Material ausgeht, so wird der Gegenstand sofort entfernt oder gebissen und so auf seine Genießbarkeit untersucht.Vibrierenden Beutetieren wird in der Regel ein langanhaltender Biß versetzt, zu dessen Herbeiführung der Vibrationsreiz allein genügt. Die Dauer des langen Bisses steht mit derjenigen der Vibration in keiner festen Beziehung. Der auf den Reflex des langen Bisses folgende Einspinnreflex wird entweder von dem beim Biß erhaltenen Reiz (chemischer Reiz ?) ausgelöst, oder, wenn ein solcher nicht empfangen wurde, von dem mit den Palpen aufgenommenen taktilen (mit einem chemischen Reiz verbundenen) Reiz. Die während des Umspinnens erfolgenden kurzen Bisse werden von einem von den um die Beute gewickelten Spinnfäden ausgehenden Reiz herbeigeführt.Es wird auch die dritte Phase der Fanghandlung (Transport in die Warte) analysiert und durch Experimente gezeigt, daß ein durch den Biß empfangener chemischer Reiz (Geschmacksreiz?) dazu nötig ist, daß ein Gegenstand aus dem Netz gelöst und in die Warte getragen wird.Der Rundgang der Spinne in der Warte wird beschrieben und als wesentlich für sein Zustandekommen festgestellt, daß die Spinne einen Faden hinter sich herziehend in der Warte ankommt; der Rundgang dient der Befestigung dieses Fadens am Gewebe der Warte. Es werden drei verschiedene Methoden beschrieben, nach denen die Spinne von einem im Netz gelegenen Punkt in die Warte zurückkehrt.Die Frage wird untersucht, wie die Spinne ihre auf Vorrat gefangenen, im Netz hängen gelassenen Beutetiere wiederfindet. Durch Experimente wird ein Gedächtnis nachgewiesen.Die Fanghandlung der Spinne wird als Kette von Reflexen erklärt, deren Aufeinanderfolge durch die Aufeinanderfolge der äußeren Reize zustande kommt  相似文献   

19.
Zusammenfassung Die Interzellularsubstanz des Knochengewebes wurde im Durchstrahlungsbild elektronenmikroskopisch untersucht. Die aus der Licht-mikroskopie bekannten Knochenfibrillen setzen sich aus nur elektronenmikroskopisch sichtbaren Elementarfibrillen (Knochenfibrillen) und einer amorphen Kittsubstanz zusammen. In diese Kittsubstanz ist der Kalk eingelagert.Die Knochenfibrillen zeigen die charakteristische Querstreifung der Fibrillen aller Binde- und Stützgewebe. Bei der Bindegewebsversilberung nach Gömöri stimmt der Versilberungsmodus der Fibrillen des erwachsenen Knochens mit dem der reifen Fibrillen des Sehnenkollagens überein. Eine Differenzierung der Knochenfibrillen während der Entwicklung und Alterung läßt sich mit dieser Versilberungsmethode ebenfalls nachweisen. Es wurden Dickenunterschiede der Fibrillen im embryonalen Osteoid, im Faserknochen des Embryos und frühen Kindesalters und im lamellären Knochen festgestellt und tabellarisch zusammengefaßt. Auch die Periodenlängen der Fibrillen nehmen mit dem Alter des Knochengewebes zu. Zur Darstellung der Fibrillen wurden verschiedene Mazerations- und Fermentmethoden benutzt. Auch wurden mehrere Entkalkungsflüssigkeiten angewendet. Alle diese Methoden führen zu einer mehr oder weniger starken Quellung der Fibrillen. Als beste Methode zur Isolierung der Knochenfibrillen hat sich die Kombination von Trypsin- oder Papainverdauuung und Entkalkung mit Salpetersäure erwiesen. Die Knochenkittsubstanz wird mit zunehmendem Alter dichter und enthält sehr wenig Polysaccharide. Der Kalk ist in Form von ovalären und spindelförmigen Partikeln in die Kittsubstanz eingelagert. Die Größe der Kalkteilchen schwankt zwischen 15 und 130 m. Ihre Längsachse ist der Längsachse der Fibrillen parallel gerichtet. Die kleinsten Elemente liegen den Fibrillen, und zwar deren D-Teil an. Die Fibrillen selbst sind kalkfrei.Durchgeführt mit Unterstützung der Deutschen Forschungsgemeinschaft.  相似文献   

20.
Dr. Ilse Hövermann 《Planta》1951,39(6):480-499
Zusammenfassung In steriler Organkultur wurde die Wirkung von Aminosäuren und einigen anderen Substanzen mit strukturellen Beziehungen zum Eiweiß auf junge, undifferenzierte Kerne in den Wurzelspitzen vonImpatiens balsamina undSinapis alba untersucht.Gegenüber den Kontrollen ergab sich bei Zusatz von Aminosäuren zur Nährlösung eine Steigerung des Heterochromatingehalts der Zellkerne. In der gleichen Weise wirkten Pepton, Glucosamin und Asparagin. Hydroxylamin ließ den Heterochromatingehalt der Kerne sowie ihre Struktur unverändert.Von den typischen Histonbestandteilen Arginin und Histidin steigerte nur Arginin den Heterochromatingehalt, und zwar sehr stark.Die hier erzeugten hyperchromatischen Kerne waren nicht polypoid, wie es auf Grund eines Peptonversuches vonRosenberg und oft nachgewiesener endomitotischer Polyploidie in Kernen mit gesteigerten trophischen Funktionen hätte erwartet werden können. Sie zeigten normale diploide Mitosen.Die Häufigkeit der Zellteilungen war gegenüber den Kontrollen in manchen Serien gesteigert, das Wachstum und die Entwicklung der Kulturen öfters gefördert.Die Vergrößerung der Chromozentren, die hier nicht so erheblich war wie z. B. in den Drüsenzellen vonDrosera, erscheint als ein Schritt auf dem Wege zu jenen großen Chromatinansammlungen der sog. sekundären Chromozentren, deren Vorhandensein für alle Kerne mit gesteigertem Stoffwechsel typisch ist und als Ausdruck eben dieser Tätigkeit gilt. Das hier nachgewiesene Vorhandensein der gleichen oder einer ähnlichen Fähigkeit für Chromozentren, die sicher heterochromatische Chromosomenabschnitte sind und deren Gehalt an Thymonukleinsäure mittels der Nuklealreaktion nachgewiesen ist, macht es wahrscheinlich, daß diese bisher immer voneinander unterschiedenen Strukturelemente der Ruhekerne nur verschieden starke Ausprägungen ein und desselben Kernorganells sind.Mit 11 Textabbildungen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号