首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental evidence indicates that the major pathway of retinoic acid metabolism in hamster liver microsomes follows the sequence: retinoic acid → 4-hydroxy-retinoic acid → 4-keto-retinoic acid → more polar metabolites. Using all-trans-[10-3H]retinoic acid, it can be shown by reverse-phase high pressure liquid chromatographic analysis that the first and last steps of this sequence require NADPH, whereas the oxidation of 4-hydroxy to 4-keto-retinoic acid is NAD+ (or NADP+) dependent. Both NADPH-dependent steps, but not the NAD+-dependent dehydrogenase reaction, are strongly inhibited by carbon monoxide. The metabolism of retinoic acid but not of 4-hydroxy-retinoic acid is highly dependent on the vitamin A regimen of the animal. Retinoic acid is rapidly metabolized by liver microsomes either from vitamin A-normal hamsters or from vitamin A-deficient hamsters that have been pretreated with retinoic acid, but not by microsomes from vitamin A-deficient animals; in direct contrast, the rate of metabolism of 4-hydroxy-retinoic acid is equivalent in each of these microsomal preparations. Analysis of the kinetics of these reactions yields the following Michaelis constants with respect to the retinoid substrates: retinoic acid, 1 × 10?6m; 4-hydroxy-retinoic acid, 2 × 10?5m; and 4-keto-retinoic acid, 1 × 10?7m. The 4-hydroxy to 4-keto-retinoic acid oxidation has been shown to be experimentally irreversible, to have a KmNAD+of 2 × 10?5m, to be strongly inhibited by NADH, and to be unaffected by the presence of retinoic acid or its 4-keto-derivative in an equimolar ratio to the 4-hydroxy-substrate.  相似文献   

2.
The in vitro metabolism of all-trans-[11,12-3h]retinoic acid to several more polar compounds has been demonstrated in a hamster tracheal organ culture system. The production of these metabolites is dependent on the presence of tissue. The physiological significance of these compounds is shown by the cochromatography of several of the in vitro formed metabolites synthesized from [carboxy-14C]retinoic acid with metabolites isolated from the intestine and urine of hamsters previously injected with 0.1 to 1.5 microgram of [3H]retinoic acid. One of the metabolites shows about one-tenth the biological activity of all-trans-retinoic acid when tested in a hamster tracheal organ culture assay. This biologically active metabolite is converted by the hamster trachea in vitro to a biologically inactive metabolite.  相似文献   

3.
Incubation of [3H]retinoic acid in the presence of hamster liver 10000g supernatant produces several metabolites that are more polar than the parent compound. Two of these metabolites are identical with synthetic all-trans-4-hydroxyretinoic acid and all-trans-4-oxoretinoic acid both in ultraviolet absorption and mass spectral characteristics and in migration rates on two different reverse-phase high-pressure liquid chromatographic systems. The metabolites produced in a cell-free liver incubation reaction also migrate on a high-pressure liquid chromatography column together with metabolites isolated from a tracheal organ culture system. Both the metabolites and the synthetic standards show less biological activity than the parent all-trans-retinoic acid in a tracheal organ culture assay.  相似文献   

4.
Metabolism of retinoic acid in vivo in the vitamin A-deficient rat.   总被引:3,自引:1,他引:2       下载免费PDF全文
Sample preparation and high-pressure liquid-chromatography separation methods useful for the study of retinoic acid metabolism are reported. The sample preparation procedure does not cause significant degradation of retinoic acid, and the gradient high-pressure liquid-chromatography separation method gives excellent separation of the major metabolites of retinoic acid. These methods were used to examine the metabolites of retinoic acid in blood, trachea and lung, testes, kidneys and small intestine of vitamin A-deficient rats dosed subcutaneously with 2 micrograms of [11,12-3H] retinoic acid. At 6h after dosing, a total of eight metabolites of retinoic acid produced in vivo were found in the tissues examined. Of these, four were found in most of the epithelial tissues examined, and therefore may be of interest as possible active metabolites in the epithelial functions of vitamin A.  相似文献   

5.
Using immunohistochemical techniques, the keratin expression patterns in basal and columnar cells (mucus-producing and ciliated cells) were investigated in tracheal organ cultures. Tracheas were from either hamsters fed a control diet or from hamsters fed a vitamin A-deficient diet; tracheas from the latter group were treated in vitro with all-trans retinol. In tracheas from hamsters fed a control diet, basal cells generally reacted with the RCK102 antibody and columnar cells with the RGE53 and the HCK19 antibodies, and both basal and columnar cells were recognized by the RCK105 antibody. The squamous cell cytokeratin 10 (detected by the RKSE60 antibody) was not expressed in cultured tracheas from hamsters fed a normal or a vitamin A-deficient diet. In the course of the in vitro period a number of keratins were "switched on" or "switched off" in both basal and columnar cells. In tracheas from vitamin A-deprived hamsters the RCK102 antibody clearly recognized basal cells and cigarette smoke condensate-induced proliferating basal cells, whereas the RGE53 antibody reacted with mucus-producing and ciliated cells. During organ culture foci of columnar epithelial cells expressed basal cell properties (detected with the RCK102 antibody) after all-trans retinol treatment and were found negative for the RGE53 antibody. Furthermore, it appeared that the RGE53-negative columnar cells contained periodic acid-Schiff-positive mucous granules. These findings indicate that basal cells may differentiate into columnar cells. Tracheal epithelium did not appear to co-express vimentin next to keratins during organ culture, which may be due to the intact three-dimensional organization present in these organ cultures.  相似文献   

6.
As reported previously squamous cell differentiation of rabbit tracheal epithelial (RTE) cells in culture is a multi-step process. This program of differentiation is inhibited by retinoic acid and retinol; retinoic acid is about 100 times more effective than retinol. To examine the metabolism of these agents in this in vitro model system, RTE cells were grown in the presence of all-trans-[3H]retinol or all-trans-[3H]retinoic acid and their metabolites analyzed by high-pressure liquid chromatography. RTE cells converted most of the retinol to retinyl esters, predominantly retinyl palmitate. A small fraction was metabolized to polar compounds, one of which coeluted with retinoic acid. After methylation this compound eluted as 13-cis-methyl retinoate and as all-trans-methyl retinoate. Conversion to 13-cis-retinol was also observed. All-trans-retinoic acid was rapidly taken up by RTE cells and converted to more polar (peak 1) and less polar (peak 3) metabolites. A proportion of all-trans-[3H]retinoic acid was metabolized to 13-cis-[3H]retinoic acid. These metabolic reactions appeared to be constitutive and were not induced by pretreatment with retinoic acid. The peak 1 metabolites were rapidly secreted into the medium whereas the peak 3 metabolites were retained by the cells and were not detected in the medium. Alkaline hydrolysis of the metabolites in peak 3 yielded retinoic acid, indicating the formation of retinoyl derivatives. Our results establish that RTE cells can convert all-trans-retinol to 13-cis-retinol and retinoic acid. RTE can metabolize all-trans-retinoic acid to 13-cis-retinoic acid and to an unidentified ester of retinoic acid.  相似文献   

7.
Summary The pseudostratified tracheal epithelium, composed of a heterogeneous phenotypically varying cell population, was studied with respect to the in vitro cell proliferative activity of differentiated epithelial cells. Ciliated tracheal epithelial cells so far have been considered to be terminally differentiated, nonproliferating cells. Tracheal organ cultures obtained from vitamin A-deprived Syrian Golden hamsters were cultured in a vitamin A-deficient, serum-free, hormone-supplemented medium. In vitamin A-deprived tracheal epithelium treated with physiologically active all-trans retinol and low cigarette-smoke condensate concentrations it is possible to stimulate the cell proliferation of both basal and columnar cells. Therefore, the probability of finding proliferating columnar cells was increased compared with the in vivo and the vitamin A-deprived situation in which cell proliferative activity is relatively low. In the presence of cigarette-smoke condensate in a noncytotoxic concentration, basal, small mucous granule, ciliated, and indifferent tracheal epithelial cells incorporated [methyl-3H]-thymidine into the DNA during the S phase. The finding that ciliated cells were labeled was supported by serial sections showing the same labeled ciliated cell in two section planes separated by 2 to 3 μm, without labeled epithelial cells next to the ciliated cell. Furthermore, a ciliated tracheal epithelial cell incorporating [methyl-3H]thymidine into DNA was also seen in tracheal cultures of vitamin A-deprived hamsters treated with all-trans retinol in a physiologic concentration. The present study was financially supported by the Scientific Advisory Committee on Smoking and Health (Dutch Cigarette Industry Foundation) and the Ministry of Welfare, Health and Cutural Affairs.  相似文献   

8.
Summary The mechanism of action of retinoid in reversing keratinization in hamster trachea is yet unknown. The purpose of this study was to determine if cellular retinoic acid binding protein (CRABP) is present in tracheal epithelium following incubation in serum-free, vitamin A-deficient culture medium for 10 days, and if the effectiveness of a retinoid in reversing keratinization in organ culture is correlated with its ability to compete for CRABP sites. The cytosol prepared from tracheal cultures contained CRABP at a concentration of 2.61 pmoles per mg protein. Of the four retinoids with carboxyl end group selected for the study, two of the biological active retinoids competed for the CRABP sites. However, no correlation was observed between the biological activity of the inactive retinoids and their ability to associate with the CRABP sites. These results indicate that even though the action of retinoid may be mediated by retinoid binding protein, it cannot be used as a sole predicator of retinoid response in hamster trachea. This investigation was supported by Contract N01-CP-31012 and U. S. P. H. Grants CA30512 and CA32428, which were awarded by the Division of Cancer Etiology, National Cancer Institute, DHHS. Editor's Statement Tracheal organ cultures provide a useful model for the study of epithelial differentiation and carcinogenesis. Much attention has been given to the action of retinoids in this process. Mehta et al. demonstrate a lack of correlation between biological activity and specific cytosolic binding of members of this class of compounds, pointing out the need for a more complete biochemical understanding of the mechanism of action and active forms of retinoids in this and other systems in vivo and in vitro. David W. Barnes  相似文献   

9.
Summary Thirty-five years ago Honor Fell and Edward Mellanby were studying effects of high doses of vitamin A on skeletal development in chick embryos when they noticed that a piece of epidermis, accidentally included in an organ culture, had undergone mucous metaplasia. Further studies by Fell and others eventually led to an understanding of the important role of vitamin A in modulating epithelia in vivo. Fifteen years later another organ culture experiment showed me that excess vitamin A could also initiate the morphogenesis of branching and mucus-secreting glands from developing vibrissa follicles in upper lip skin of embryonic mice. Since then our group has shown that induction of this novel structure by naturally occurring retinoids resembles a normal embryonic induction in that it is stage-dependent, time-dependent, and irreversible. Tissue separation and recombination studies showed that isolated upper lip epidermis can form these glands when combined with retinoid-treated upper lip dermis. Untreated mouse epidermis can form similar glands after combination with chick dermis containing higher retinoid levels. The hamster cheek pouch, normally devoid of glandular structures, can also form mucous glands when treated with a retinoid, either in vivo or in vitro. Recombination studies in organ culture have now shown that mesenchyme exposed to retinoid is essential for gland morphogenesis from pouch epithelium. Evidences is accumulating that retinoic acid may even be the active morphogen in some normally developing systems.  相似文献   

10.
It has been of interest to determine whether the metabolites of physiological doses of retinoic acid represent active forms of vitamin A. Previous work (Biochem. J. 206, 33-41, 1982) studied the metabolites produced from 2-micrograms doses of all-trans-retinoic acid in the vitamin A-deficient rat. Four major metabolites common to all of the tissues studied were discovered. In the present work, three of these metabolites are isolated from vitamin A-deficient rats given physiological doses (5 micrograms) of all-trans-retinoic acid and from vitamin A-sufficient rats given high doses (1 mg) of all-trans-retinoic acid. Cochromatography on anion-exchange and reverse-phase high-performance liquid chromatography showed that metabolites resulting from high doses of retinoic acid contained the metabolites generated from physiological doses of retinoic acid. Quantities of these metabolites were isolated, purified, and tested for their epithelial-differentiating activity in the vitamin A-deficient rat vagina. The metabolites were inactive at all dose levels tested. These metabolites have less than 10% the biological activity of all-trans-retinoic acid. Therefore, these metabolites appear to be products of the inactivation of all-trans-retinoic acid. Based upon these and previous data, it seems likely that all-trans-retinoic acid or its beta-glucuronide derivative is the most likely active form of vitamin A in the maintenance of normal epithelial differentiation.  相似文献   

11.
Two synthetic retinoids were examined for their ability to support growth in male vitamin A-deficient rats. One of the compounds, (E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1 -propenyl]-benzoic acid (TTNPB), was found to be highly effective; it was 35-fold more active than all-trans-retinoic acid. Thus, the in vivo results were in agreement with the in vitro activity of this compound published by previous investigators, and support the view that this compound may be useful in determining the molecular mechanism of action of the retinoids. Another analog, 4,4-difluororetinoic acid, was only 12% as effective as retinoic acid. However, the possible instability of this compound and the electronegativity of the fluoro groups prohibited conclusions concerning the biological function of metabolic modification on the 4 position of retinoic acid.  相似文献   

12.
G M Morriss  C E Steele 《Teratology》1977,15(1):109-119
Rat embryos were explanted on day 8 or 9 of pregnancy and cultured for up to 48 hours in serum containing added retinol (vitamin A), retinoic acid (vitamin A acid), or absolute ethanol. They were examined morphologically and their protein content determined. Retinoic acid was more teratogenic and growth-retarding than retinol. Electron microscopy of embryos cultured for 30 minutes or one hour revealed that both forms of vitamin A brought about similar ultrastructural effects on the embryonic cells; however, the abnormally large intracellular lipid droplets observed in a previous study following exposure to retinol in vitro and retinyl palmitate in vivo were not observed in embryos exposed to retinoic acid. It is possible that the differential teratogenicity may be due to the inability of the embryonic cells to convert and store retinoic acid in a less teratogenic form.  相似文献   

13.
The effects of cytologic sampling by contact-smear on the viability and morphology of epithelial tissues maintained as explants in organ culture were studied. Tracheal and pancreatic tissues from Syrian golden hamsters were maintained for 30 days in culture, and sampled cytologically at weekly intervals. Analysis of sequential Papanicolaou-stained smears demonstrates that explant tissues can be evaluated cytologically over time in vitro without apparent effects on either the tissue viability, histochemistry or morphology. Microscopic examination further reveals that cellular samples retain diagnostically significant cytomorphologic features of the in vivo tissues. These observations indicate that this technique is useful for understanding the long-term response to carcinogens of epithelial tissue maintained in explant organ culture.  相似文献   

14.
The kinetics and metabolism of physiological doses of all-trans-retinoic acid were examined in blood and small intestinal mucosa of vitamin A-depleted rats. A major portion of intrajugularly injected retinoic acid is rapidly (within 2 min) sequestered by tissues; subsequently 13-cis-retinoic acid and polar metabolites are released into circulation. All-trans-retinoic acid appears in small intestinal epithelium within 2 min after dosing and is the major radioactive compound there for at least 2 h. Retinoyl glucuronide and 13-cis-retinoic acid are early metabolites of all-trans-retinoic acid in the small intestine of bile duct-cannulated rats. Retinoyl glucuronide, the major metabolite of retinoic acid intestinal epithelium, in contrast to other polar metabolites, was not detected in circulation. An examination of [3H]retinyl acetate metabolites under steady state conditions in vitamin A-repleted rats demonstrates the occurrence of all-trans-retinoic acid and 13-cis-retinoic acid in circulation and in intestinal epithelium, in a pattern similar to that found after injection of retinoic acid into vitamin A-depleted rats. Our data establish that all-trans-retinoic acid, 13-cis-retinoic acid, and retinoyl glucuronide are physiological metabolites of vitamin A in target tissues, and therefore are important candidates as mediators of the biological effect of the vitamin.  相似文献   

15.
This study was designed to obtain sister-chromatid exchange (SCE) frequencies in bone marrow and spleen cells of mice and Chinese hamsters under in vivo and in vivo/in vitro systems following treatment of animals with varying doses (15-405 micrograms/kg) of triethylenemelamine (TEM). A dose-related SCE response was found in both species, tissues, and systems analyzed following TEM treatment. In vivo, similar responses were noted for both tissues in both species. However, in vivo/in vitro, the response was lower than in vivo and it varied with the tissue. The spleen cells were more sensitive and gave higher numbers of SCEs than bone marrow of both species at the two highest doses tested (135 and 405 micrograms/kg). These differences may be attributed to cell-culturing effects, type of cells analyzed, species and tissue specificities, and pharmacokinetic properties of the chemical. This study lends support to recently established in vivo/in vitro cell culture methodologies employing mice and Chinese hamsters for comparative cytogenetic analysis.  相似文献   

16.
The effects of feeding retinoic acid for 2 and 6 days on the metabolism of labeled retinol in tissues of rats maintained on a vitamin A deficient diet was studied. The metabolites of retinol were analyzed by high performance liquid chromatography. Feeding retinoic acid for 2 days significantly reduced the blood retinol and retinyl ester levels without affecting the vitamin A content of the liver. In intestine and testis the content of labeled retinoic acid was decreased significantly by dietary retinoic acid. Addition of retinoic acid to the diet for 6 days resulted, in addition to decreased blood retinol and retinyl ester values, in an increase in the retinyl ester values in the liver. The accumulation of retinyl ester in the retinoic acid fed rat liver was accompanied by an absence of labeled retinoic acid. Kidney tissue was found to contain the highest levels of labeled retinoic acid, retinol, and retinyl esters; dietary retinoic acid did not alter the concentrations of these retinoids in the kidney during the experimental period. Since kidney retained more vitamin A when the liver vitamin A was low and also dietary retinoic acid did not affect the concentrations of radioactive retinoic acid in the kidney, it is suggested that the kidney may play a major role in the production of retinoic acid from retinol in the body.  相似文献   

17.
The response of bone cells in organ culture to retinol and retinoic acid was studied. Both stimulated incorporation of [3H]thymidine into DNA by 16-day embryonic chick calvaria, but the time-course of the responses differed; the peak responses to retinol and retinoic acid occurred at about 18 h and 48 h, respectively. Although retinol inhibited chick bone collagen synthesis retinoic acid had no effect, but it did stimulate non-collagenous protein synthesis, whereas the effect on the latter of retinol was, if anything, inhibitory. When present with retinol, retinoic acid was able to attenuate the inhibitory effect of the former on chick bone collagen synthesis, but preincubation with retinoic acid had no such effect. In neonatal murine calvarial cultures, retinoic acid inhibited collagen synthesis selectively in the same manner as did retinol. The ability of chick osteoblasts to respond differently to retinol and retinoic acid suggests that both forms of the vitamin may have a role in bone formation and that their intracellular models of action may differ although the attenuation response indicates there may be some interaction between the two.  相似文献   

18.
All-trans-retinoic acid is a biologically active derivative of vitamin A that regulates numerous physiological processes. The concentration of retinoic acid in the cells is tightly regulated, but the exact mechanisms responsible for this regulation are not completely understood, largely because the enzymes involved in the biosynthesis of retinoic acid have not been fully defined. Recent studies using in vitro and in vivo models suggest that several members of the short-chain dehydrogenase/reductase superfamily of proteins are essential for retinoic acid biosynthesis and the maintenance of retinoic acid homeostasis. However, the exact roles of some of these recently identified enzymes are yet to be characterized. The properties of the known contributors to retinoid metabolism have now been better defined and allow for more detailed understanding of their interactions with retinoid-binding proteins and other retinoid enzymes. At the same time, further studies are needed to clarify the interactions between the cytoplasmic and membrane-bound proteins involved in the processing of hydrophobic retinoid metabolites. This review summarizes current knowledge about the roles of various biosynthetic and catabolic enzymes in the regulation of retinoic acid homeostasis and outlines the remaining questions in the field.  相似文献   

19.
The metabolic activation of BP was examined in mouse and rat skin in vivo and in short-term organ culture. In mouse skin, larger quantities of ether- and water-soluble metabolites were formed and more BP became bound covalently to DNA and protein than in rat skin. Qualitative differences in the formation of dihydrodiol metabolites and of BP-deoxyribonucleoside adducts between mouse and rat skin were also observed. Organ culture techniques may not provide a true model of metabolic activation in vivo because it was found that the covalent binding of BP to DNA and protein was reduced in skin maintained in culture despite an accumulation of dihydrodiol and other ether-soluble metabolites. In addition, the proportions of the syn- and anti-isomers of BP-7,8-diol 9,10-oxide involved in the formation of adducts with deoxyguanosine differed between skin treated in organ culture and in vivo.  相似文献   

20.
The lining of the trachea consists of a pseudostratified, mucociliary epithelium that under a variety of conditions, such as vitamin A deficiency, toxic and mechanical injury, becomes a stratified squamous epithelium. Several in vitro cell culture models have been established to study the process of differentiation of airway epithelium. Such studies have indicated that mucosecretory differentiation of tracheal epithelial cells can be modulated by substratum. This study was undertaken to understand molecular mechanisms of squamous differentiation in tracheal epithelia. Primary cultured tracheal cells grown on uncoated filters were differentiated to single layer of squamous cells, whereas cells were grown as stratified columnar cells on collagen-I coated filters. The responses to secretagogues were altered according to culture conditions. DD-PCR revealed that FAK and a WD protein expression was increased in squamous tracheal epithelia. Expression of a WD protein was changed by the treatment of retinoic acid in various epithelial cells. These results indicated that squamous differentiation of tracheal cells changes the expression of a variety of genes, and that the experimental model for this study can be employed to study molecular mechanisms of squamous differentiation in airway epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号