首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriophage PM2 DNA is a 10-kb covalently closed circular (ccc) molecule with a reported superhelical density of sigma = -0.12. Here we describe the binding of anti-Z-DNA antibodies to PM2 form I DNA under high and low salt conditions. The binding to PM2 DNA has been demonstrated by competitive radioimmunoassay (RIA), retardation of the DNA:antibody complexes in agarose gels and visualization by electron microscopy. The antibody binding is dependent on the degree of negative supercoiling. Thus, PM2 form II and form III did not bind the antibody. The low salt RIA results indicated the presence of 200-400 bp of left-handed DNA per PM2 molecule. This could reduce the effective superhelical density to sigma = -0.04 to -0.08, a range comparable with those found for other ccc DNAs in vivo. Electron microscopy revealed that a maximum of 22 antibody molecules bind to PM2. Single-site restriction with HpaII of the fixed DNA:antibody complex showed a cluster of four to five antibody molecules bound near one end of the linear DNA molecule. The evidence presented indicates that PM2 DNA contains regions of left-handed conformation under physiological conditions (low salt concentration) as well as at high salt concentrations. In addition, electrophoretic analyses of PM2 topoisomers indicate the presence of left-handed regions at superhelical densities less than that of isolated PM2 DNA.  相似文献   

2.
A non-self-complementary dodecamer duplex d(CCTAAATTTGCC).d(GGCAAATTTAGG) has been investigated in solution by high resolution 1H NMR. Almost complete resonance assignment of both non-exchangeable and exchangeable protons, has been achieved. The duplex is essentially B-type, with distortions apparent at the AT and TA steps. These distortions and their affects on dynamics have been probed by the measurement of base-pair lifetimes, and observation of water of hydration. Base-pair opening rates were derived from measurements of T1's and effects on linewidths of the T and G imino protons on addition of an exchange catalyst. Our results are generally in line with observations reported for other systems, but we see only a slight drop in the A.T base-pair lifetime on moving out from the central region. This observation is reinforced by the detection of DNA-water nOe's for residues distributed throughout the dodecamer sequence.  相似文献   

3.
The crystal structure of DNA dodecamer with the sequence of d(CGCAAATTXGCG), where X is 2'-deoxy-N4-methoxycytidine, has been determined by X-ray analysis. The dodecamers form a double helix with B-form conformation. The electron density indicates that the two modified cytosine bases respectively make a pair with the adenine bases on the opposite strand in a manner of Watson-Crick geometry and that the methoxy groups are in anti conformation to the N3 atom.  相似文献   

4.
A crystal structure analysis of the synthetic deoxydodecamer d(CGCAAATTIGCG) which contains two adenosine.inosine (A.I) mispairs has revealed that, in this sequence, the A.I base-pairs adopt a A(anti).I(syn) configuration. The refinement converged at R = 0.158 for 2004 reflections with F greater than or equal to 2 sigma(F) in the range 7.0-2.5A for a model consisting of the DNA duplex and 71 water molecules. A notable feature of the structure is the presence of an almost complete spine of hydration spanning the minor groove of the whole of the (AAATTI)2 core region of the duplex. pH-dependent ultraviolet melting studies have suggested that the base-pair observed in the crystal structure is, in fact, a protonated AH+ (anti).I(syn) species and that the A.I base-pairs in the sequence studied display the same conformational variability as A.G mispairs in the sequence d(CGCAAATTGGCG). The AH+(anti).I(syn) base-pair predominates below pH 6.5 and an A(anti).I(anti) mispair is the major species present between pH 6.5 and 8.0. The protonated base-pairs are held together by two hydrogen bonds one between N6(A) and O6(I) and the other between N1(A) and N7(I). This second hydrogen bond is a direct result of the protonation of the N1 of adenosine. The ultraviolet melting studies indicate that the A(anti).I(anti) base-pair is more stable than the A(anti).G(anti) base-pair but that the AH+(anti).I(syn) base pair is less stable than its AH+(anti).G(syn) analogue. Possible reasons for this observation are discussed.  相似文献   

5.
The three-dimensional solution structure of the self-complementary DNA dodecamer (CGT_GACGT_TACG above GCAT_TGCAG_TGC] which contains the thermodynamically destabilizing [TG_A above AT_T] motif was determined using two-dimensional NMR spectroscopy and simulated annealing protocols. Relaxation matrix analysis methods were used to yield accurate NOE derived distance restraints. Scalar coupling constants for the sugar protons were determined by quantitative simulations of DQF-COSY cross-peaks and used to determine sugar pucker populations. Twenty refined structures starting from random geometries converged to an average pairwise root mean square deviation of 0.49 A. Back calculated NOEs give Rc and Rx factors of 0.38 and 0.088, respectively. The final structure shows that each of the single G@T mismatches form a wobble pair with two hydrogen bonds where the guanine projects into the minor groove and the thymine projects into the major groove. The incorporation of the destabilizing [TG_A above AT_T] motif has little effect on the backbone torsion angles and helical parameters compared to standard B-form duplexes, which may explain why G.T mismatches are among the most commonly observed in DNA. The structure shows that perturbations caused by a G.T mismatch extend only to its neighboring Watson-Crick base pair, thus providing a structural basis for the applicability of the nearest-neighbor model to the thermodynamics of internal G.T mismatches.  相似文献   

6.
Structure and energy of a DNA dodecamer under tensile load   总被引:1,自引:0,他引:1  
Piana S 《Nucleic acids research》2005,33(22):7029-7038
  相似文献   

7.
Ribonucleotides are frequently incorporated into DNA during replication. They are recognized and processed by several cellular enzymes, and their continued presence in the yeast nuclear genome results in replicative stress and genome instability. Thus, it is important to understand the effects of isolated ribonucleotide incorporation on DNA structure. With this goal in mind, we describe the nuclear magnetic resonance structure of the self-complementary Dickerson dodecamer sequence [d(CGC)rGd(AATTCGCG)](2) containing two symmetrically positioned riboguanosines. The absence of an observable H(1)-H(2) scalar coupling interaction indicates a C3'-endo conformation for the ribose. Longer-range structural perturbations resulting from the presence of the ribonucleotide are limited to the adjacent and transhelical nucleotides, while the global B-form DNA structure is maintained. Because crystallographic studies have indicated that isolated ribonucleotides promote global B → A transitions, we also performed molecular modeling analyses to evaluate the structural consequences of higher ribonucleotide substitution levels. Increasing the ribonucleotide content increased the minor groove width toward values more similar to that of A-DNA, but even 50% ribonucleotide substitution did not fully convert the B-DNA to A-DNA. Comparing our structure with the structure of an RNase H2-bound DNA supports the conclusion that, as with other DNA-protein complexes, the DNA conformation is strongly influenced by the interaction with the protein.  相似文献   

8.
Nuclear magnetic resonance spectroscopy has been used to characterize the kinetics and energetics of opening of base pairs in the DNA dodecamer [d(CGCAAATTTGCG)]2. The dodecamer contains an A3T3 tract that induces intrinsic curvature of the helix axis. Previous studies from this and other laboratories have shown that the kinetics of base pair opening in AnTn tracts is unique: the opening rates of the A.T base pairs in the interior of the tract are much lower than that of the A.T base pair at the 5'-end of the tract. In the present work, we have investigated the energetics of the pathways for opening of the A.T base pairs in the A3T3 tract. The energetic parameters of the activated state(s) are obtained from the temperature dependence of the opening rate constants. The lower opening rates for the A.T base pairs situated in the interior of the tract are shown to originate from higher activation enthalpies which are compensated, in part, by increases in the activation entropies. We have also obtained an energetic characterization of the open state(s) of the A.T base pairs in the dodecamer by measuring the equilibrium constants for base pair opening and their temperature dependence. The results suggest that the transitions from closed to open state(s) in the A.T base pairs of the A3T3 tract are energetically similar.  相似文献   

9.
The DNA duplex d(CTCTCG*AGTCTC).d(GAGAC-TC*GAGAG) containing a single trans- diammine-dichloroplatinum(II) interstrand cross-link (where G* and C* represent the platinated bases) has been studied by two-dimensional NMR. All the exchangeable and non-exchangeable proton resonance lines were assigned (except H5'/H5") and the NOE intensities were transformed into distances via the RELAZ program. By combining the NOESY and COSY data (330 constraints) and NMR-constrained molecular mechanics using JUMNA, a solution structure of the cross-linked duplex has been determined. The duplex is distorted over two base pairs on each side of the interstrand cross-link and exhibits a slight bending of its axis ( approximately 20 degrees ) towards the minor groove. The platinated guanine G* adopts a syn conformation. The rotation results in a Hoogsteen-type pairing between the complementary G(6)* and C(19)* residues which is mediated by the platinum moiety and is stabilized by a hydrogen bond between O6(G(6)*) and N4H(C(19)*). The rise between the cross-linked residues and the adjacent residues is increased owing to the interaction between these adjacent residues and the ammine groups of the platinum moiety. These results are discussed in relation to the slow rate of closure of the monofunctional adducts into interstrand cross-links.  相似文献   

10.
The effect of adriamycin on Z-DNA formation and DNA synthesis.   总被引:1,自引:1,他引:0       下载免费PDF全文
The ability of adriamycin to inhibit Z-DNA formation induced by a high-salt environment was investigated. ADM inhibited this conversion, such that in poly (dG-dC) total inhibition was observed at 1 ADM: 9 base pairs and in eukaryotic DNA (calf thymus) at 1 ADM: 11,5 base pairs. Even at low ADM concentration, 1 ADM: 160 base pairs, some inhibition was observed. At similar ADM:DNA concentrations, an inhibition in DNA synthesis in cells in culture was observed, which showed some parallel with the inhibition of Z-DNA formation. A model is proposed where Z-DNA formation precedes DNA synthesis and where inhibition of the former could explain the antineoplastic nature of adriamycin.  相似文献   

11.
The native form of Drosophila melanogaster DNA topoisomerase II was purified from Schneider's S3 tissue culture cells and studied with two supercoiled minicircle preparations, mini and mini-CG, 354 bp and 370 bp in length, respectively. Mini-CG contains a d(CG)7 insert which assumes a left-handed Z-DNA conformation in negative supercoiled topoisomers with a negative linking number difference - delta Lk greater than or equal to 2. The interactions of topoisomerase II with topoisomer families of mini and mini-CG were studied by band-shift gel electrophoresis in which the individual topoisomers and their discrete or aggregated protein complexes were resolved. A monoclonal anti-Z-DNA IgG antibody (23B6) bound and aggregated only mini-CG, thereby confirming the presence of Z-DNA. Topoisomerase II bound and relaxed mini-CG more readily than mini. In both cases, there was a preference for more highly negatively supercoiled topoisomers. The topoisomerase II inhibitor VM-26 induced the formation of stable covalent DNA-protein intermediates. In addition, the non-hydrolyzable GTP analogue GTP gamma S inhibited the binding and relaxation activities. Experiments to detect topoisomerase cleavage sites failed to elicit specific loci on either minicircle preparation. We conclude that Drosophila topoisomerase II is able to bind and process small minicircles with lengths as short as 360 bp and negative superhelix densities, - sigma, which can exceed 0.1. Furthermore, the enzyme has a preferential affinity for topoisomers containing Z-DNA segments and relaxes these molecules, presumably by cleavage external to the inserts. Thus, a potentially functional relationship between topoisomerase II, an enzyme regulating the topological state of DNA-chromatin in vivo, and left-handed Z-DNA, a conformation stabilized by negative supercoiling, has been established.  相似文献   

12.
Searching for potential Z-DNA in genomic Escherichia coli DNA   总被引:3,自引:0,他引:3  
The Clarke-Carbon library with Escherichia coli DNA cloned into plasmid ColE1 was partially screened for Z-DNA with the monoclonal antibody Z-D11 using the retardation of the covalently closed circular DNA-protein complex by nitrocellulose filters. About 85% of the plasmids tested at "natural" supercoil density bound to the filter. Together with binding studies of the iodinated antibody, one Z-DNA segment per about 18,000 base-pairs of E. coli DNA is observed. One clone containing the region around the lactose operon, pLC20-30, was studied in detail. Subcloning a partial Sau3A digest and selection with antibodies gave three different Z-forming sites. They were mapped to within about +/- 20 base-pairs by preparing unidirectional deletion clones, selection of protein binding plasmids on nitrocellulose filters and subsequent sizing on agarose gels. The size of the Z-DNA-forming segments was estimated from two-dimensional gels of topoisomer mixtures. Together with results from sequencing of the plasmid DNA using exonuclease III to create single-stranded templates, stretches of alternating purine-pyrimidine tracts of 12 to 15 base-pairs were found to be responsible for Z-DNA formation. One of the sites was found in the middle of the lacZ gene, where it might be an obstacle for RNA polymerase. The methods used here should also be helpful for studying other DNA-protein sites, especially if they exist only in supercoiled DNA.  相似文献   

13.
Radiolytic signature of Z-DNA.   总被引:1,自引:1,他引:0       下载免费PDF全文
Ionizing radiations induce various damages in DNA via the hydroxyl radical OH. generated by the radiolysis of water. We compare here the radiosensitivity of B- and Z-DNA, by using a Z-prone stretch included in a plasmid. In the supercoiled plasmid, the stretch is in the Z-form, whereas it is in the B-form when the plasmid is relaxed. Frank strand breaks (FSB) and alkali-revealed breaks (ARB) were located and quantified using sequencing gel electrophoresis. We show that B- and Z-DNA have the same mean sensitivity towards radiolytic attack, for both FSB and ARB. Nevertheless, the guanine sites are more sensitive, and the cytosine sites less sensitive in Z- than in B-DNA, leading to a characteristic signature of the Z-form. The comparison of experiments with the outcome of a Monte Carlo simulation of OH. radical attack suggests that transfer of initial damage from a guanine base to its attached sugar or the adjacent 3' cytosine is more important in Z-DNA than in B-DNA.  相似文献   

14.
A detailed theoretical study has been carried out to examine the modes of DNA-DNA interactions on the basis of hard-sphere contact criteria. Two helices of identical structure and length are oriented side-by-side and their relative positions are controlled by translations along and rotations about specific axes. Short atomic contacts between pairs of atoms in the structures are assessed and contact-free configurations are compiled. The computed contact-free arrangements of A, B, and Z double helices are found to be remarkably similar to the packing motifs observed in DNA crystals and stretched fibers. Equally interesting in the study are the broad ranges of sterically acceptable arrangements that preserve the overall packing morphology of neighboring duplexes: Among the most notable morphological features in the helical complexes are extended "super" major and minor grooves which might facilitate the wrapping and packaging of DNA chains in supramolecular assemblies. The hard-sphere computations, however, are insufficient for quantitative interpretation of the packing of DNA helices in the solid state. The results are, nevertheless, a useful starting point for energy based studies as well as relevant to the analysis of long-range interactions in DNA supercoils and cruciforms.  相似文献   

15.
We investigated the ability of natural polyamines putrescine, spermidine, and spermine to provoke a left-handed Z-DNA conformation in a recombinant plasmid (pDHg16) with a 23-base pair insert of (dG-dC)n.(dG-dC)n sequences. Using a monoclonal anti-Z-DNA antibody (Z22) and an enzyme-linked immunosorbent assay protocol, we found that spermidine and spermine were capable of converting pDHg16 to the Z-DNA form. The concentrations of spermidine and spermine at the midpoint of the B-DNA to Z-DNA transition were 280 and 5 microM, respectively, in buffer containing 50 mM NaCl, 1 mM sodium cacodylate, and 0.15 mM EDTA, pH 7.4. A plot of ln[Na+] versus ln [spermine4+], where [Na+] is the bulk NaCl concentration and [spermine4+] is the spermine concentration at the midpoint of the B-DNA to Z-DNA transition, gave a straight line with a slope of 1.2. Structural specificity was clearly evident in the efficacy of three spermidine homologs to induce the Z-DNA conformation in pDHg16. Putrescine and acetylspermidines had no effect on the conformation of the plasmid DNA up to a 3 mM concentration. Control experiments with the parental plasmid (pDPL6) showed no binding of the plasmid DNA with Z22. These results indicate that spermidine and spermine are capable of provoking the left-handed Z-DNA conformation in small blocks of (dG-dC)n sequences embedded in a right-handed B-DNA matrix. Since blocks of (dG-dC)n sequences are found in certain native DNAs, conformational alterations of these regions to the Z-DNA form in the presence of polyamines may have important gene regulatory effects.  相似文献   

16.
The Z-Z junction: the boundary between two out-of-phase Z-DNA regions   总被引:4,自引:0,他引:4  
The boundary between two segments of Z-DNA that differ in the phase of their syn-anti alternation about the glycosidic bond is termed a Z-Z junction. Using chemical probes and two-dimensional gel electrophoresis, we examined a Z-Z junction consisting of the sequence d[(CG)8C(CG)8] inserted into a plasmid and used energy minimization techniques to devise a three-dimensional model that is consistent with the available data. We show that both alternating CG segments undergo the B-Z transition together to form a Z-Z junction. The junction is very compact, displaying a distinctive reactivity signature at the two base pairs at the junction. In particular, the 5' cytosine of the CC dinucleotide at the junction is hyperreactive toward hydroxylamine, and the two guanines of the GG dinucleotide on the complementary strand are less reactive toward diethyl pyrocarbonate than are the surrounding Z-DNA guanines. Statistical mechanical treatment of the 2-D gel data yields a delta G for forming the Z-Z junction equal to 3.5 kcal, significantly less than the cost of a B-Z junction and approximately equal to the cost of a base out of alternation (i.e., a Z-DNA pyrimidine in the syn conformation). The computer-generated model shows little distortion of the Z helix outside of the central two base pairs, and the energy of the structure and the steric accessibility of the reactive groups are consistent with the data.  相似文献   

17.
18.
In this work, we explore the influence of different solvents and ions on the crystallization behavior of an all‐AT dodecamer d(AATAAATTTATT)2 In all cases, the oligonucleotides are found as continuous columns of stacked duplexes. The spatial organization of such columns is variable; consequently we have obtained seven different crystal forms. The duplexes can be made to crystallize in either parallel or crossed columns. Such versatility in the formation of a variety of crystal forms is characteristic for this sequence. It had not been previously reported for any other sequence. In all cases, the oligonucleotide duplexes have been found to crystallize in the B form. The crystallization conditions determine the organization of the crystal, although no clear local interactions have been detected. Mg2+ and Ni2+ can be used in order to obtain compact crossed structures. DNA–DNA interactions in the crystals of our all‐AT duplexes present crossovers which are different from those previously reported for mixed sequence oligonucleotides. Our results demonstrate that changes in the ionic atmosphere and the crystallization solvent have a strong influence on the DNA–DNA interactions. Similar ionic changes will certainly influence the biological activity of DNA. Modulation of the crystal structure by ions should also be explored in DNA crystal engineering. Liquid crystals with a peculiar macroscopic shape have also been observed. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 123–133, 2015.  相似文献   

19.
The guanine-N7 monoadduct of [Pt(en)Cl(ACRAMTU)](NO3)2 (PT-ACRAMTU; en=ethane-1,2-diamine, ACRAMTU=1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea), a dual metalating/intercalating cytotoxic agent, was generated in a double-stranded dodecamer, d(CCTCTCG*TCTCC/GGAGACGAGAGG) (III*), and isolated by preparative reverse-phase high-performance liquid chromatography (HPLC). The adduct was characterized using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), circular-dichroism spectropolarimetry (CD), UV-melting curves, and NMR spectroscopy. In addition, a molecular mechanics/restrained molecular dynamics (MM/rMD) study was performed for this adduct using the AMBER force field. Monoadduction of the sequence leads to a pronounced increase in melting temperature, Tm=Tm(III*)–Tm(III)=9.7 °C. Because there is complete enthalpy–entropy compensation, binding occurs without noticeable thermodynamic destabilization. This feature and the CD (induced-ligand circular dichroism) and NMR (upfield shifts of aromatic acridine proton signals) data are indicative of a unique, nondenaturing dual-binding mode that involves partial intercalation of the acridine chromophore. An energy-minimized AMBER model of III* demonstrates that platination of G7-N7 of guanine in the major groove and partial insertion of the acridine moiety into the C6G19/G7C18 base step on the 5 face of the modified purine base is feasible and supportive of the experimental results. Differences in the biophysical properties between III* and duplexes containing adducts of the clinical-drug cisplatin are outlined, and possible biological consequences are discussed.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0534-3Abbreviations ACRAMTU 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea - dGuo 2-deoxyguanosine - dGuo* [Pt(en)(ACRAMTU-S)(dGuo-N7)]3+ - en ethane-1,2-diamine - ICD Induced circular dichroism - MALDI-TOF MS Matrix-assisted laser desorption ionization time-of-flight mass spectrometry - MM Molecular mechanics - PIPES 1,4-piperazinediethanesulfonic acid - PT-ACRAMTU [Pt(en)Cl(ACRAMTU)](NO3)2 - rMD Restrained molecular dynamics  相似文献   

20.
The crystal structure of the complex of Hoechst 33258 and the DNA dodecamer C-G-C-G-A-A-T-T-C-G-C-G has been solved from X-ray data collected at three different low temperatures (0, -25, and -100 degrees C). Such temperatures have permitted collection of higher resolution data (2.0, 1.9, and 2.0 A, respectively) than with previous X-ray studies of the same complex. In all three cases, the drug is located in the narrow central A-A-T-T region of the minor groove. Data analyses at -25 and -100 degrees C (each with a 1:1 drug/DNA ratio in the crystallizing solution) suggest a unique orientation for the drug. In contrast, two orientations of the drug were found equally possible at 0 degrees C with a 2:1 drug/DNA ratio in solution. Dihedral angles between the rings of Hoechst 33258 appear to change in a temperature-dependent manner. The drug/DNA complex is stabilized by single or bifurcated hydrogen bonds between the two N-H hydrogen-bond donors in the benzimidazole rings of Hoechst and adenine N3 and thymine O2 acceptors in the minor groove. A general preference for AT regions is conferred by electrostatic potential and by narrowing of the walls of the groove. Local point-by-point AT specificity follows from close van der Waals contacts between ring hydrogen atoms in Hoechst 33258 and the C2 hydrogens of adenines. Replacement of one benzimidazole ring by purine in a longer chain analogue of Hoechst 33258 could make that particular site GC tolerant in the manner observed at imidazole substitution for pyrrole in lexitropsins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号