首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: We have previously demonstrated that the copper chelator tetraethylenepentamine (TEPA) enables preferential expansion of early hematopoietic progenitor cells (CD34+CD38-, CD34+CD38-Lin-) in human umbilical cord blood (CB)-derived CD34+ cell cultures. This study extends our previous findings that copper chelation can modulate the balance between self-renewal and differentiation of hematopoietic progenitor cells. METHODS: In the present study we established a clinically applicative protocol for large-scale ex vivo expansion of CB-derived progenitors. Briefly, CD133+ cells, purified from CB using Miltenyi Biotec's (Bergisch Gladbach, Germany) CliniMACS separation device and the anti-CD133 reagent, were cultured for 3 weeks in a clinical-grade closed culture bag system, using the chelator-based technology in combination with early-acting cytokines (SCF, thrombopoietin, IL-6 and FLT-3 ligand). This protocol was evaluated using frozen units derived from accredited cord blood banks. RESULTS: Following 3 weeks of expansion under large-scale culture conditions that were suitable for clinical manufacturing, the median output value of CD34+ cells increase by 89-fold, CD34+CD38- increase by 30-fold and CFU cells (CFUc) by 172-fold over the input value. Transplantation into sublethally irradiated non-obese diabetic (NOD/SCID) mice indicated that the engraftment potential of the ex vivo expanded CD133+ cells was significantly superior to that of unexpanded cells: 60+/-5.5% vs. 21+/-3.5% CD45+ cells, P=0.001, and 11+/-1.8% vs. 4+/-0.68% CD45+CD34+ cells, P=0.012, n=32, respectively. DISCUSSION: Based on these large-scale experiments, the chelator-based ex vivo expansion technology is currently being tested in a phase 1 clinical trial in patients undergoing CB transplantation for hematological malignancies.  相似文献   

2.
Ex vivo expansion of umbilical cord blood   总被引:4,自引:0,他引:4  
The efficacy of cord blood (CB) transplantation is limited by the low cell dose available. Low cell doses at transplant are correlated with delayed engraftment, prolonged neutropenia and thrombocytopenia and elevated risk of graft failure. To potentially improve the efficacy of CB transplantation, approaches have been taken to increase the cell dose available. One approach is the transplantation of multiple cord units, another the use of ex vivo expansion. Evidence for a functional and phenotypic heterogeneity exists within the HSC population and one concern associated with ex vivo expansion is that the expansion of lower 'quality' hematopoietic progenitor cells (HPC) occurs at the expense of higher 'quality' HPC, thereby impacting the reserve of the graft. There is evidence that this is a valid concern while other evidence suggests that higher quality HPC are preserved and not exhausted. Currently, ex vivo expansion processes include: (1) liquid expansion: CD34+ or CD133+ cells are selected and cultured in medium containing factors targeting the proliferation and self-renewal of primitive hematopoietic progenitors; (2) co-culture expansion: unmanipulated CB cells are cultured with stromal components of the hematopoietic microenvironment, specifically mesenchymal stem cells (MSC), in medium containing growth factors; and (3) continuous perfusion: CB HPC are cultured with growth factors in 'bioreactors' rather than in static cultures. These approaches are discussed. Ultimately, the goal of ex vivo expansion is to increase the available dose of the CB cells responsible for successful engraftment, thereby reducing the time to engraftment and reducing the risk of graft failure.  相似文献   

3.
BACKGROUND: During the last few years there has been increasing interest, from both biologic and clinical points of view, in the ex vivo expansion of umbilical cord blood (UCB)-derived hematopoietic cells. This has brought about the need to characterize different cell populations present in UCB, and to explore different ex vivo approaches for the culture, expansion and biologic manipulation of these cells. METHODS: By using a negative-selection method, two UCB cell populations were obtained that were enriched for primitive lineage-negative (Lin-) cells, including those expressing the CD34 Ag (35-93% of the total cells in each fraction). Population I was enriched for CD34+ Lin- cells, whereas population II was enriched for CD34+ CD38- Lin- cells. Both populations were cultured in serum-free liquid cultures supplemented with different combinations of early and late-acting recombinant cytokines (all of them added at 10 ng/mL). Every 5-7 days proliferation, expansion and differentiation capacities of each population were determined, for a total period of 25-42 days. RESULTS: Both cell populations showed extensive proliferation and expansion capacities; however, population II [2300- and 232-fold increase in nucleated and colony-forming cell (CFC) numbers, respectively] was clearly superior in both parameters compared with population I (1120- and 20-fold increase in nucleated and CFC numbers, respectively). Depending on the cytokine combination used, granulocytes, macrophages and erythroblasts were preferentially produced. We also observed that both populations were highly sensitive to the inhibitory effects of tumor necrosis factor-alpha, even in the presence of stimulatory cytokines. DISCUSSION: This study demonstrates that the two progenitor cell-enriched populations obtained by negative selection possess extensive proliferation and expansion potentials in vitro, generating significant numbers of both primitive and mature cells. These cells may be a good alternative to purified CD34+ cells, obtained by positive selection, for pre-clinical and clinical protocols aimed at the ex vivo expansion of UCB cells.  相似文献   

4.
Ex vivo expansion of residual autologous hematopoietic stem and progenitor cells collected from victims soon after accidental irradiation (autologous cell therapy) may represent an additional or alternative approach to cytokine therapy or allogeneic transplantation. Peripheral blood CD34+ cells could be a useful source of cells for this process provided that collection and ex vivo expansion of hematopoietic stem and progenitor cells could be optimized. Here we investigated whether mesenchymal stem cells could sustain culture of irradiated peripheral blood CD34+ cells. In vitro irradiated (4 Gy 60Co gamma rays) or nonirradiated mobilized peripheral blood CD34+ cells from baboons were cultured for 7 days in a serum-free medium supplemented with stem cell factor+thrombopoietin+interleukin 3+FLT3 ligand (50 ng/ml each) in the presence or absence of mesenchymal stem cells. In contrast to cultures without mesenchymal stem cells, irradiated CD34+ cells cultured with mesenchymal stem cells displayed cell amplification, i.e. CD34+ (4.9-fold), CD34++ (3.8-fold), CD34++/Thy-1+ (8.1-fold), CD41+ (12.4-fold) and MPO+ (50.6-fold), although at lower levels than in nonirradiated CD34+ cells. Fourteen times more clonogenic cells, especially BFU-E, were preserved when irradiated cells were cultured on mesenchymal stem cells. Moreover, we showed that the effect of mesenchymal stem cells is related mainly to the reduction of apoptosis and involves cell-cell contact rather than production of soluble factor(s). This experimental model suggests that mesenchymal stem cells could provide a crucial tool for autologous cell therapy applied to accidentally irradiated victims.  相似文献   

5.
BACKGROUND: Multiple studies have demonstrated that 'purging' of autografts with 4-hydroperoxycyclophosphamide (4HC) or the related compound mafosfamide (Mf), to eradicate residual leukemia, produces the best results associated with autologous blood and marrow transplantation for AML. However, 4HC purging results in prolonged aplasia. Therefore, we evaluated the potential of ex vivo expansion of Mf-treated CD34+ cells from mobilized PBPC. METHODS: CD34+ cells were isolated from PBPC products and treated with 30 microg/mL Mf. The Mf-treated CD34+ cells were washed and cultured for 14 days in StemLine II-defined media containing recombinant human (rh) SCF, G-CSF and thrombopoietin (Tpo). RESULTS: Treatment with Mf resulted in 90% killing of progenitor cells (GM-CFC) but maintenance of SCID-repopulating cells (SRC). Ex vivo culture of the Mf-treated CD34+ cells resulted in decreased cell numbers (10-20% of the starting cell dose) during the first week. Nevertheless, in the second week of culture the total cell numbers expanded to approximately 20-fold above starting cell numbers and progenitor cells returned to approximately pre-treatment levels. DISCUSSION: These studies demonstrate the potential of ex vivo culture to expand both total cell numbers and progenitor cells following treatment of PBPC CD34+ cells with Mf. Clinical studies are currently being initiated to evaluate the engraftment potential of these purged and expanded products.  相似文献   

6.
Fei XM  Wu YJ  Chang Z  Miao KR  Tang YH  Zhou XY  Wang LX  Pan QQ  Wang CY 《Cytotherapy》2007,9(4):338-347
BACKGROUND: The major challenge for cord blood transplantation (CBT) is higher rates of delayed and failed engraftment. In an attempt to broaden the application of CBT to more candidates, ex vivo expansion of hematopoietic stem/progenitor cells in CB is a major area of investigation. The purpose of this study was to employ human BM mesenchymal stromal cells (hBM-MSC) as the feeding-layer to expand CB cells ex vivo. METHODS: In this study, hBM-MSC were isolated and characterized by morphologic, mmunophenotypic and RT-PCR analysis. The hBM-MSC at passage 3 were employed as the feeding-layer to expand CB CD34(+) cells in vivo in the presence of thrombopoietin, flt3/flk2 ligand, stem cell factor and G-CSF. The repopulating capacity of the ex vivo-expanded CB cells was also evaluated in a NOD/SCID mice transplant experiment. RESULTS: After 1 or 2 weeks of in vitro expansion, hBM-MSC supported more increasing folds of CB in total nucleated cells, CD34(+) cells and colony-forming units (CFU) compared with CB without hBM-MSC. Furthermore, although NOD/SCID mice transplanted with CB cells expanded only in the presence of cytokines showed a higher percentage of human cell engraftment in BM than those with unexpanded CB CD34(+) cells, expanded CB cells co-cultured with hBM-MSC were revealed to enhance short-term engraftment further in recipient mice. DISCUSSION: Our study suggests that hBM-MSC enhance in vitro expansion of CB CD34(+) cells and short-term engraftment of expanded CB cells in NOD/SCID mice, which may be valuable in a clinical setting.  相似文献   

7.
体外培养脐血单个核细胞与CD34+富集细胞   总被引:1,自引:0,他引:1  
对比MNC和CD34 +富集细胞在SCF +IL 3+IL 6 +FL +Tpo细胞因子组合下的体外扩增特性 ,发现 :CD34 +富集细胞具有很高的扩增潜力 ,在本实验条件下其总细胞持续扩增了 8周 ,扩增倍数达 312 70 9± 86 40 5倍 ;而MNC在培养至第 4周扩增就已呈现下降趋势 ,最大仅扩增了 5 3 3± 6 2倍。对比集落和CD34 +细胞的扩增发现 ,MNC的集落密度和CD34 +细胞含量由第 0天至第 7天有一个上升的过程 ,而CD34 +富集细胞在培养过程中 ,集落密度和CD34 +细胞含量却始终呈下降趋势。在体外培养过程中 ,CD34 +富集细胞的CFU GM和CD34 +细胞最大分别扩增了 185 7± 14 1和 191 7± 188 8倍 ,明显高于MNC的 12 4± 3 2和 5 0 6± 33 2倍 ;而CD34 +富集细胞和MNC的BFU E则只实现了少量扩增 ,分别为 7 2± 5 2和 10 1± 3 4倍。结果显示 ,从CD34 +富集细胞出发扩增造血干 祖细胞 ,可以得到更多的CD34 +细胞和CFU GM集落形成细胞  相似文献   

8.
IL-2-activated cord blood mononuclear cells   总被引:1,自引:0,他引:1  
Derzic S  Slone V  Sender L 《Cytotherapy》2005,7(5):408-416
BACKGROUND: [corrected] Recent findings in cord blood (CB) research indicate the potential clinical usefulness of IL-2-activated CB in eradication of minimal malignant residual disease after hematopoietic stem cell transplantation. This feasible approach to immunotherapy merits further pre-clinical investigations using human tumor models of hematologic malignancy. METHODS: The aim of our study was to compare the anti-tumor potential of CB mononuclear cells (MNC), matured in the presence of IL-2, to BM, and to determine phenotype and cytokine secretion in IL-2 CB MNC culture during the peak of their anti-leukemia cytotoxic activity. Phenotype change was analysed with flow cytometry, cytokine secretion with ELISA tests and cytotoxic activity with cytotoxicity assays. RESULTS: Following IL-2 maturation, the phenotype of CB MNC was remarkably changed. Lengthening IL-2 culture to 8 days significantly increased CD8+, CD16+ CD56+, CD56+ and CD56+ CD8+ populations. Interestingly, FACS analyzes revealed the occurrence of CD8+ CD56+ cells that were not present in non-stimulated CB. Cultures progressively produced higher levels of INF-gamma, TNF-alpha and GM-SCF. The IL-2-activated cells manifested potent lytic capabilities against both NK- and LAK-sensitive tumor cell targets. DISCUSSION: At the peak of cytotoxic activity during 8-day IL-2 CB MNC culture, we found increased numbers of various cytotoxic cells and increased secretion of cytokines that may contribute further to their potential therapeutic effect. The duration of CB IL-2 cultures may be crucial for successful application of CB in transplant situations to boost the CB GvL.  相似文献   

9.
BACKGROUND: The major problem in cord blood (CB) transplantation for adult patients is shortage of stem cell number. To overcome this disadvantage, several studies on ex vivo expansion have been performed. However, such efforts are always troubled by the lack of a reliable and simple assay system for stem cells. Our aim was to establish an in vivo assay system to compare the directly repopulating ability of two populations of human hematopoietic stem cells using a xenogeneic transplant system. METHODS: Thirty CB samples from infants of each sex were pooled and enriched for CD34(+) progenitor cells. Enriched CD34(+) cells were transplanted into irradiated NOD/SCID mice at different male to female ratios, and human hematopoietic cells recovered 7 weeks after transplantation were analyzed by a quantitative DNA sex test using competitive PCR for the amelogenin gene. Using this assay system, ex vivo cultured and non-cultured CB cells were compared for repopulating ability. RESULTS: The sex ratio of human CB cells transplanted was found to be maintained for 7 weeks in matured and progenitor cells. The competitive repopulation assay of cultured and non-cultured CB cells showed a marked defect in the repopulating ability of cultured cells, although the LTCIC count was maintained during cultivation. DISCUSSION: Our assay system is a simple and reliable quantitative method that permits direct comparison of two stem cell compartments. The assay system will be useful for the assessment of the functional abilities of various human hematopoietic stem cells.  相似文献   

10.
BACKGROUND: Umbilical cord blood (UCB) is an important source of hematopoietic stem and progenitor cells (HSC/HPC) for the reconstitution of the hematopoietic system after clinical transplantation. Cryopreservation of these cells is critical for UCB banking and transplantation as well as for research applications by providing readily available specimens. The objective of this study was to optimize cryopreservation conditions for CD34+ HSC/HPC from UCB. METHODS: Cryopreservation of CD34+ HSC/HPC from UCB after mononuclear cell (MNC) preparation was tested in a research-scale setup. Experimental variations were concentration of the cryoprotectant, the protein additive and cell concentration. In addition, protocols involving slow, serial addition and removal of DMSO were compared with standard protocols (fast addition and removal of DMSO) in order to avoid osmotic stress for the cryopreserved cells. Viability and recoveries of MNC, CD34+ cells and total colony-forming units (CFU) were calculated as read-outs. In addition, sterility testing of the collected UCB units before further processing was performed. RESULTS: The optimal conditions for cryopreservation of CD34+ HPC in MNC preparations were 10% DMSO and 2% human albumin at high cell concentrations (5 x 10(7) MNC/mL) with fast addition and removal of DMSO. After cryopreservation using a computer-controlled freezer, high viabilities (89%) and recoveries for CD34+ cells (89%) as well as for CFU (88%) were observed. Microbial contamination of the collected UCB samples was reduced to a rate of 6.4%. DISCUSSION: Optimized cryopreservation conditions were developed for UCB MNC in respect of the composition of the cryosolution. In addition, our results showed that fast addition of DMSO is essential for improved cryopreservation and post-thaw quality assessment results, whereas the speed of DMSO removal after thawing has little influence on the recoveries of CD34+ cells and CFU.  相似文献   

11.
Ex vivo expansion of hematopoietic stem cells (HSCs) is very important for clinical applications of cord blood (CB). With the aim to find proper culture duration for ex vivo expansion, mononuclear cells (MNC) was applied as starting culture cells to expand HSCs and the repopulating potential of seven-day and fourteen-day cultured CD34+ cells were compared. The average expansion of total cells and CD34+ cells cultured for 7 days were higher than those cultured for 14 days. The results of phenotypic analysis of fresh and cultured cells showed that the percentage of CD3+ cells declined and the percentage of CD33+ cells increased during culture. The engraftment levels of fourteen-day cultured CD34+ cells were higher than those of fresh and seven-day cultured CD34+ cells. Fourteen-day cultured CD34+ cells also showed better multilineage reconstitution ability than fresh and seven-day cultured CD34+ cells. The results of the present study demonstrated that prolonged culture could preserve the hematopoietic reconstitution ability of ex vivo cultured CB cells and improve the engraftment level in NOD/SCID mice.  相似文献   

12.
不同降温速率对脐血干细胞冷冻复苏后生物学特性的影响   总被引:4,自引:0,他引:4  
考察了不同降温速率对脐血造血干细胞各种生物学特性的影响。在4℃~-40℃的降温范围内,分别选择-0.5℃/min, -1℃/min, -5℃/min的降温速率进行降温,对复苏后的脐血单个核细胞的回收率、活性和CD34+含量的变化以及BFU-E、CFUGM和CFU-MK集落的回收率进行了考察,发现在-1℃/min的降温速率下,脐血MNC回收率可达93.3%±1.8%,活性可达95.0%±3.9%, CD34细胞回收率达80.0%±17.9%,BFUE回收率为87.1%±5.5%,CFUGM回收率达88.5%±8.9%,CFUMK的回收率也达到86.2%±7.4%。并且对复苏后的细胞进一步进行体外培养,发现在-1℃/min的降温速率下复苏的细胞仍然具有与未经冷冻细胞相似的扩增能力,而-0.5℃/min和-5℃/min这两种降温速率条件下复苏的细胞与未经冷冻的细胞相比差距较大。因而-1℃/min的降温速率对冻存脐血干细胞比较合适。  相似文献   

13.
Although umbilical cord blood is increasingly being used in allogeneic marrow transplantation, delayed platelet engraftment is often a concern for cord blood transplant recipients. We evaluated the potential of ex vivo expansion and clonality in CD34+ cells separated from a bone marrow source, and cord blood, in a serum-free Media. The CD34+ cells, selected from bone marrow (BM) and umbilical cord blood (CB), were expanded with hematopoietic growth factors. They were then cultured for burst-forming units of erythrocytes (BFU-E), colony-forming units of granulocytes and monocytes (CFU-GM) and colony-forming units of megakaryocytes (CFU-Mk) at days 0, 4, 7, and 14 under the combination of growth factors, with cell counts. The cytokines included the recombinant human megakaryocyte growth and development (100 ng/ml), interleukin-3 (10 ng/ml), stem cell factor (100 ng/ml), flt-3 ligand (50 ng/ml) and interleukin-11 (200 ng/ml). The CB-selected CD34+ cells showed significantly higher total cell expansion than those from the BM at day 7 (3.0 fold increase than BM), day 14 (2.4 fold), and day 17 (2.6 fold). The colony count of the BFU-E/CFU-E per CD34+ cell at day 0 was 0.14 +/- 0.023 in the CB, which was significantly higher than 0.071 +/- 0.015 in the BM. The CB-selected CD34+ cells produced more BFU-E colonies than the BM on culture days 4, 7, and 14. The BFU-E colonies from the CB cells increased markedly on culture days 4 and 7, with a 4-fold increase at day 14. The colony count of the CFU-Mk per CD34+ cell at day 0 was 0.047 +/- 0.011 in the CB-selected CD34+ cells cultures, which was higher than the 0.026 +/- 0.014 in the BM. The CB-selected CD34+ cells produced more CFU-Mk colonies than the BM on culture days 4, 7 and 14. In conclusion, the ex vivo expansion of the CB cells may be very promising in producing total cellular expansion, CFU-Mk and BFU-E compared with BM, especially at day 7. The ex vivo expansion of the CB may have rationale in making an ex vivo culture for 7 to 14 d.  相似文献   

14.
New sources of red blood cells (RBCs) would improve the transfusion capacity of blood centers. Our objective was to generate cells for transfusion by inducing a massive proliferation of hematopoietic stem and progenitor cells, followed by terminal erythroid differentiation. We describe here a procedure for amplifying hematopoietic stem cells (HSCs) from human cord blood (CB) by the sequential application of specific combinations of growth factors in a serum-free culture medium. The procedure allowed the ex vivo expansion of CD34+ progenitor and stem cells into a pure erythroid precursor population. When injected into nonobese diabetic, severe combined immunodeficient (NOD/SCID) mice, the erythroid cells were capable of proliferation and terminal differentiation into mature enucleated RBCs. The approach may eventually be useful in clinical transfusion applications.  相似文献   

15.
The ability to culture hematopoietic cells in readily characterizable and scalable stirred systems, combined with the capability to utilize serum-free medium, will aid the development of clinically attractive bioreactor systems for transplantation therapies. We thus examined the proliferation and differentiation characteristics of peripheral blood (PB) mononuclear cells (MNC), cord blood (CB) MNC, and PB CD34(+) cells in spinner flasks and (control) T-flask cultures in both serum-containing and serum-free media. Hematopoietic cultures initiated from all sources examined (PB MNC, CB MNC, and PB CD34(+) cells) grew well in spinner vessels with either serum-containing or serum-free medium. Culture proliferation in spinner flasks was dependent on both agitator design and RPM as well as on the establishment of critical inoculum densities (ID) in both serum-containing (2 x 10(5) MNC/mL) and serum-free (3 x 10(5) MNC/mL) media. Spinner flask culture of PB MNC in serum-containing medium provided superior expansion of total cells and colony-forming cells (CFC) at high ID (1.2 x 10(6) cells/mL) as compared to T-flask controls. Serum-free spinner culture was comparable, if not superior, to that observed in serum-containing medium. This is the first report of stirred culture of PB or CB MNC, as well as the first report of stirred CD34(+) cell culture. Additionally, this is the first account of serum-free stirred culture of hematopoietic cells from any source.  相似文献   

16.
In an effort to obtain defined culture conditions for ex vivo expansion of hematopoietic stem and progenitor cells which avoid the supplementation of serum, we cultured human CD34(+) hematopoietic progenitor cells in a chemically defined, serum-free medium in the presence of hematopoietic growth factors (HGFs), stem cell factor (SCF), interleukin (IL)-1beta, IL-3, IL-6, and erythropoietin (EPO). A medium, SFM-1, was prepared according to a protocol previously optimized for semisolid progenitor cell assays containing Iscove's Modified Dulbecco's Medium (IMDM) plus cholesterol, bovine serum albumin, transferrin, nucleotides and nucleosides, insulin, and beta-mercaptoethanol. In static cultures seeded with CD34(+)-enriched progenitor cells isolated from human peripheral blood, a mean 76.6-fold expansion of total nucleated cells and a mean 4.6-fold expansion of colony-forming cells (CFC) was recorded after 14 days. Morphological analysis of the expanded cells revealed formation of myeloid, erythroid, and megakaryocytic cells. Flow cytometric analysis indicated that CD34(+) antigen expressing cells were maintained to a limited degree only, and cell populations expressing surface markers for myeloid (CD33, CD14, and CD15) and megakaryocytic (CD41a) lineages predominated. Within SFM-1, bovine serum albumin (BSA), cholesterin, and transferrin represented the most critical components needed for efficient total cell and CFC expansion. Addition of autologous patient plasma (APP) or fetal calf serum (FCS) to SFM-1 resulted in inferior cell amplification and CFC formation compared to controls in SFM-1, indicating that the components used in SFM-1 could replace exogenous serum. Four commercially available serum-free media resulted in either comparable or lower total cell and CFC yields as SFM-1. The transplantation potential of CD34(+) cells after culture in SFM-1 was assayed using limiting dilution analysis on preformed irradiated bone marrow stroma and revealed maintenance of long-term bone marrow culture initiating cell (LTCIC) levels during the culture period. These data indicate that HGF-supported multilineage ex vivo expansion of human CD34(+) hematopoietic progenitor cells is feasible using an IMDM-based culture medium which contains a restricted number of additives, resulting in analogous or improved yields of both primitive and differentiated cells compared to previously established protocols. We suggest that this culture protocol is of advantage when working with pharmaceutical-grade preparations under serum-free conditions.  相似文献   

17.
Human bone marrow cells expressing CD34 but not HLA-DR were isolated by immunofluorescence flow cytometric cell sorting. These cells contained a hematopoietic cell (CFU-B1) capable of producing, in an in vitro semisolid culture system, blast-cell-containing colonies, which possessed the capacity for self-renewal and commitment to multipotential differentiation. In addition, CD34+ HLA-DR- marrow cells contained primitive megakaryocyte progenitor cells, the burst-forming unit-megakaryocyte (BFU-MK). A subset of CD34+ HLA-DR- marrow cells lacking the expression of CD15 and CD71 was obtained by flow cytometric cell sorting and was capable of sustaining in vitro hematopoiesis in suspension culture for up to 8 weeks in the absence of a preestablished adherent marrow cell layer. The combination of IL-3 + IL-1 alpha and IL-3 + IL-6 sustained proliferation of these cells for 8 weeks, induced maximal cellular expansion, and increased the numbers of assayable progenitor cells. These studies demonstrate that human CD34+ HLA-DR- marrow cells and their subsets contain primitive multipotential hematopoietic cells capable of self-renewal and of differentiation into multiple hematopoietic lineages.  相似文献   

18.
BACKGROUND: During long-term culture of primitive hematopoietic cells large numbers of mature cells are generated that, on the one hand, consume nutrients and cytokines present in the medium and, on the other hand, may produce or elicit the production of soluble factors that limit the growth of primitive cells. Thus it is possible that under standard culture conditions hematopoietic stem and progenitor cells are unable to display their true proliferation and expansion potentials. METHODS: Hematopoietic cell populations, enriched for CD34+ cells, were obtained from both umbilical cord blood (UCB) and mobilized peripheral blood (MPB), and cultured in cytokine-supplemented liquid culture, under continuous removal of mature cells by means of weekly re-selection of primitive, lineage-negative (Lin-) cells. Proliferation and expansion capacities of such cells were determined weekly for a 42-day culture period. RESULTS: As expected, based on our previous studies in standard liquid cultures, throughout the culture period there was a continuous decrease in the proportion of progenitor cells; however, after every re-selection on days 7, 14 and 21, there was a significant enrichment for both CD34+ cells and colony-forming cells (CFC). As a result of such an enrichment, the cumulative increase in the numbers of total cells and CFC in cultures with two, three or four selections was significantly higher than the increments observed in standard cultures, in which only a single selection was performed on day 0. Cultures of UCB cells showed consistently higher levels of both total cells and CFC than cultures of MPB cells. DISCUSSION: Taken together, these results indicate that continuous removal of mature cells from liquid cultures of primitive progenitors results in higher increments in the levels of both total cells and CFC.  相似文献   

19.
We have utilized differential display polymerase chain reaction to investigate the gene expression of hematopoietic progenitor cells from adult bone marrow and umbilical cord blood. A differentially expressed gene was identified in CD34+ hematopoietic progenitor cells, with low expression in CD34- cells. We have obtained the full coding sequence of this gene which we designated human mammalian ependymin-related protein 1 (MERP1). Expression of MERP1 was found in a variety of normal human tissues, and is 4- and 10-fold higher in adult bone marrow and umbilical cord blood CD34+ cells, respectively, compared to CD34- cells. Additionally, MERP1 expression in a hematopoietic stem cell enriched population was down-regulated with proliferation and differentiation. Conceptual translation of the MERP1 open reading frame reveals significant homology to two families of glycoprotein calcium-dependant cell adhesion molecules: ependymins and protocadherins.  相似文献   

20.
针对造血干/祖细胞体外扩增对培养环境的需求, 结合静/动态培养的特点, 开发了一种新型的生物反应器用于造血干/祖细胞的体外扩增。在该生物反应器内, 采用SCF+TPO+Flt-3细胞因子组合, 比较了静态和循环培养两种方式体外扩增脐血CD34+细胞的效果。培养7 d后, 总细胞分别扩增了(13.86 ± 4.26)和(7.23 ± 2.67)倍, 显示静态培养有利于总细胞的扩增; CD34+细胞扩增倍数、培养物中CD34+细胞含量均相近, 无显著性差异; 而CD34+CD38-细胞扩增倍数以及培养物中CD34+CD38?细胞的百分含量分别为(1.82 ± 0.58)和(3.90 ± 0.85)倍以及(9.45 ± 4.85)和(37.47 ± 14.06)%, 循环培养明显高于静态培养。可见, 在该生物反应器内, 采用静态和循环两种培养方式, 均能实现造血干/祖细胞的体外扩增, 但静态培养促使造血干细胞向定向祖细胞分化, 而循环培养则更有利于早期造血干细胞的扩增。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号