首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species.  相似文献   

2.
Evidence of climatic niche shift during biological invasion   总被引:10,自引:1,他引:9  
Niche-based models calibrated in the native range by relating species observations to climatic variables are commonly used to predict the potential spatial extent of species' invasion. This climate matching approach relies on the assumption that invasive species conserve their climatic niche in the invaded ranges. We test this assumption by analysing the climatic niche spaces of Spotted Knapweed in western North America and Europe. We show with robust cross-continental data that a shift of the observed climatic niche occurred between native and non-native ranges, providing the first empirical evidence that an invasive species can occupy climatically distinct niche spaces following its introduction into a new area. The models fail to predict the current invaded distribution, but correctly predict areas of introduction. Climate matching is thus a useful approach to identify areas at risk of introduction and establishment of newly or not-yet-introduced neophytes, but may not predict the full extent of invasions.  相似文献   

3.
Aim The use of ecological niche models (ENMs) to predict potential distributions of species is steadily increasing. A necessary assumption is that climatic niches are conservative, but recent findings of niche shifts during biological invasion indicate that this assumption is not always valid. Selection of predictor variables may be one reason for the observed shifts. In this paper we assess differences in climatic niches in the native and invaded ranges of the Mediterranean house gecko (Hemidactylus turcicus) in terms of commonly applied climate variables in ENMs. We analyse which variables are more conserved versus relaxed (i.e. subject to niche shift). Furthermore, we study the predictive power of different sets of climate variables. Location The Mediterranean region and North America. Methods We developed models using Maxent and various subsets of variables out of 19 bioclimatic layers including: (1) two subsets comprising almost all variables excluding only highly collinear ones; (2) two subsets with minimalistic variable sets of water availability and energy measures; (3) two subsets focused on temperature‐related parameters; (4) two subsets with precipitation‐related parameters; and (5) one subset comprising variables combining temperature and precipitation characteristics. Occurrence data from the native Mediterranean range were used to predict the potential introduced range in North America and vice versa. Degrees of niche similarity and conservatism were assessed using both Schoener's index and Hellinger distances. The significance of the results was tested using null models. Results The degree of niche similarity and conservatism varied greatly among the predictors and variable sets applied. Shifts observed in some variables could be attributed to active habitat selection while others apparently reflected background effects. Main conclusions The study was based on comprehensive occurrence data from all regions where Hemidactylus turcicus is present in Europe and North America, providing a robust foundation. Our results clearly indicate that the degree of conservatism of niches in H. turcicus largely varies among predictors and variable sets applied. Therefore, the extent of niche conservatism of variables applied should always be tested in ENMs. This has an important impact on studies of biological invasion, impacts of climate change and niche evolution.  相似文献   

4.
Past climate change has caused shifts in species distributions and undoubtedly impacted patterns of genetic variation, but the biological processes mediating responses to climate change, and their genetic signatures, are often poorly understood. We test six species‐specific biologically informed hypotheses about such processes in canyon live oak (Quercus chrysolepis) from the California Floristic Province. These hypotheses encompass the potential roles of climatic niche, niche multidimensionality, physiological trade‐offs in functional traits, and local‐scale factors (microsites and local adaptation within ecoregions) in structuring genetic variation. Specifically, we use ecological niche models (ENMs) to construct temporally dynamic landscapes where the processes invoked by each hypothesis are reflected by differences in local habitat suitabilities. These landscapes are used to simulate expected patterns of genetic variation under each model and evaluate the fit of empirical data from 13 microsatellite loci genotyped in 226 individuals from across the species range. Using approximate Bayesian computation (ABC), we obtain very strong support for two statistically indistinguishable models: a trade‐off model in which growth rate and drought tolerance drive habitat suitability and genetic structure, and a model based on the climatic niche estimated from a generic ENM, in which the variables found to make the most important contribution to the ENM have strong conceptual links to drought stress. The two most probable models for explaining the patterns of genetic variation thus share a common component, highlighting the potential importance of seasonal drought in driving historical range shifts in a temperate tree from a Mediterranean climate where summer drought is common.  相似文献   

5.
Studies of realized niche shifts in alien species typically ignore the potential effects of intraspecific niche variation and different invaded‐range environments on niche lability. We incorporate our detailed knowledge of the native‐range source populations and global introduction history of the delicate skink Lampropholis delicata to examine intraspecific variation in realized niche expansion and unfilling, and investigate how alternative niche modelling approaches are affected by that variation. We analyzed the realized niche dynamics of L. delicata using an ordination method, ecological niche models (ENMs), and occurrence records from 1) Australia (native range), 2) New Zealand, 3) Hawaii, 4) the two distinct native‐range clades that were the sources for the New Zealand and Hawaii introductions, and 5) the species’ global range (including Lord Howe Island, Australia). We found a gradient of realized niche change across the invaded ranges of L. delicata: niche stasis on Lord Howe Island, niche unfilling in New Zealand (16%), and niche unfilling (87%) and expansion (14%) in Hawaii. ENMs fitted to native‐range data generally identified suitable climatic conditions at sites where the species has established non‐native populations, whereas ENMs based on native‐range source clades and non‐native populations had lower spatial transferability. Our results suggest that the extent to which realized niches are maintained during invasion does not depend on species‐level traits. When realized niche shifts are predominately due to niche unfilling, fully capturing species’ responses along climatic gradients by basing ENMs on native distributions may be more important for accurate invasion forecasts than incorporating phylogenetic differentiation, or integrating niche changes in the invaded range.  相似文献   

6.
Rice (Oryza sativa L.) is a staple crop cultivated on a global scale that plays an essential role in feeding the rapidly expanding human population. However, its ability to do so may be affected by climate change, especially if it exhibits strong niche and range stability. It is therefore important to clarify whether rice shows strong niche and range lability. Here, we used niche dynamics and species distribution models (SDMs) to investigate niche and range shifts between rice and its wild progenitor. Our results showed that niche expansion of rice in response to cultivation may have been much more rapid than niche expansion by natural selection in the wild progenitor, enabling rice to become a global staple crop. Rice cultivation, which causes rice to grow in climatic conditions different from those of its wild progenitor, has promoted niche shifts. These shifts have resulted in range shifts between rice and its wild progenitor; small niche shifts can result in large range shifts, and the former may therefore require much more attention. However, rice did not show high niche lability: it conserved the niche spaces inherited from its wild progenitor despite its long history of cultivation, although it exhibited greater niche breadth than its wild progenitor and has expanded its niche to hotter, colder, drier, and more fluctuating environments. This result suggests that rice may not show strong adaptability to future climate change. Significant attention should be paid to rice responses to future climate change scenarios and to the effects of changes in rice production on global food security.  相似文献   

7.
To generate realistic projections of species’ responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species’s climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species. Using historical records of the phenology and spatial distribution of British plants under a warming climate, we revealed that: (i) perennial species, as well as those with weaker or lagged phenological responses to temperature, experienced a greater increase in temperature during flowering (i.e. failed to maintain climatic niche via phenological changes); (ii) species that failed to maintain climatic niche via phenological changes showed greater northward range shifts; and (iii) there was a complementary relationship between the levels of climatic niche conservatism via phenological changes and range shifts. These results indicate that even species with high climatic niche conservatism might not show range shifts as instead they track warming temperatures during flowering by advancing their phenology.  相似文献   

8.
Rapid evolutionary adjustments to novel environments may contribute to the successful spread of invasive species, and can lead to niche shifts making range dynamics unpredictable. These effects might be intensified by artificial selection in the course of breeding efforts, since many successful plant invaders were deliberately introduced and cultivated as ornamentals. We hypothesized that the invasion success of Buddleja davidii, the ornamental butterfly bush, is facilitated by local adaptation to minimum temperatures and thus, exhibits unpredictable range dynamics. To assess the potential effects of adaptive evolution and artificial selection on the spread of B. davidii, we combined a common garden experiment investigating local adaptation to frost, with ecological niche modelling of the species’ native and invasive ranges. We expected that populations naturalized in sub‐continental climate are less susceptible to frost than populations from oceanic climate, and that the invasive range does not match predictions based on climatic data from the native range. Indeed, we revealed significant variation among invasive B. davidii populations in frost resistance. However, frost hardiness was not related to geographic location or climatic variables of the populations’ home site, suggesting that invasive B. davidii populations are not locally adapted to minimum temperatures. This is in line with results of our ecological niche model that did not detect a niche shift between the species’ native range in China, and its invasive range in Europe and North America. Furthermore, our niche model showed that the potential invasive range of B. davidii is still not completely occupied. Together with the frost resistance data obtained in our experiment, the results indicate that climatic conditions are currently not limiting the further spread of the species in Europe and North America.  相似文献   

9.
Anolis sagrei, a Cuba and Bahama native lizard, is a successful invader in Florida and adjacent areas. Herein, we focus on conservatism in its climate niche axes and possible congruencies with its natural history properties. The not mutually exclusive hypotheses of the present study explaining its northern range limit are: (1) climatic conditions within species' native and invasive ranges are identical; (2) the species is pre‐adapted to novel conditions as a result of historical climate variations; and (3) only some niche axes limit the species' invasive distribution and the observed pattern is explained by an interplay between the potential niche within its native range and life‐history. Species distribution models for native and invasive distributions were built on ten bioclimatic variables. Using Schoener's niche overlap index, the degree of niche conservatism among variables was identified. Significances of hypothesis (1) were tested using null‐model approaches. Possible climatic pre‐adaptations were evaluated by comparing its actual tolerance within its invasive range with that of the Last Glacial Maximum (LGM) within its native range (hypothesis 2). Results of (1) and (2) are discussed in relation to natural history, approaching hypothesis 3. We detect varying overlaps in niche axes, indicating that natural history properties are associated with conservative niche axes. Climatic comparisons with LGM of native and current conditions of invasive range suggest that pre‐adaptations are unlikely. Possible shifts in the fundamental niche of the species may have been facilitated by enhanced genetic diversity in northern invasive populations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 943–954.  相似文献   

10.
Climatic niche shifts have been documented in a number of invasive species by comparing the native and adventive climatic ranges in which they occur. However, these shifts likely represent changes in the realized climatic niches of invasive species, and may not necessarily be driven by genetic changes in climatic affinities. Until now the role of rapid niche evolution in the spread of invasive species remains a challenging issue with conflicting results. Here, we document a likely genetically-based climatic niche expansion of an annual plant invader, the common ragweed (Ambrosia artemisiifolia L.), a highly allergenic invasive species causing substantial public health issues. To do so, we looked for recent evolutionary change at the upward migration front of its adventive range in the French Alps. Based on species climatic niche models estimated at both global and regional scales we stratified our sampling design to adequately capture the species niche, and localized populations suspected of niche expansion. Using a combination of species niche modeling, landscape genetics models and common garden measurements, we then related the species genetic structure and its phenotypic architecture across the climatic niche. Our results strongly suggest that the common ragweed is rapidly adapting to local climatic conditions at its invasion front and that it currently expands its niche toward colder and formerly unsuitable climates in the French Alps (i.e. in sites where niche models would not predict its occurrence). Such results, showing that species climatic niches can evolve on very short time scales, have important implications for predictive models of biological invasions that do not account for evolutionary processes.  相似文献   

11.
Global change is predicted to alter environmental conditions for populations in numerous ways; for example, invasive species often experience substantial shifts in climatic conditions during introduction from their native to non-native ranges. Whether these shifts elicit a phenotypic response, and how adaptation and phenotypic plasticity contribute to phenotypic change, are key issues for understanding biological invasions and how populations may respond to local climate change. We combined modeling, field data, and a laboratory experiment to test for changing thermal tolerances during the introduction of the tropical lizard Anolis cristatellus from Puerto Rico to Miami, Florida. Species distribution models and bioclimatic data analyses showed lower minimum temperatures, and greater seasonal and annual variation in temperature for Miami compared to Puerto Rico. Two separate introductions of A. cristatellus occurred in Miami about 12 km apart, one in South Miami and the other on Key Biscayne, an offshore island. As predicted from the shift in the thermal climate and the thermal tolerances of other Anolis species in Miami, laboratory acclimation and field acclimatization showed that the introduced South Miami population of A. cristatellus has diverged from its native-range source population by acquiring low-temperature acclimation ability. By contrast, the introduced Key Biscayne population showed little change compared to its source. Our analyses predicted an adaptive response for introduced populations, but our comparisons to native-range sources provided evidence for thermal plasticity in one introduced population but not the other. The rapid acquisition of thermal plasticity by A. cristatellus in South Miami may be advantageous for its long-term persistence there and expansion of its non-native range. Our results also suggest that the common assumption of no trait variation when modeling non-native species distributions is invalid.  相似文献   

12.
Although of crucial importance for invasion biology and impact assessments of climate change, it remains widely unknown how species cope with and adapt to environmental conditions beyond their currently realized climatic niches (i.e., those climatic conditions existing populations are exposed to). The African clawed frog Xenopus laevis, native to southern Africa, has established numerous invasive populations on multiple continents making it a pertinent model organism to study environmental niche dynamics. In this study, we assess whether the realized niches of the invasive populations in Europe, South, and North America represent subsets of the species’ realized niche in its native distributional range or if niche shifts are traceable. If shifts are traceable, we ask whether the realized niches of invasive populations still contain signatures of the niche of source populations what could indicate local adaptations. Univariate comparisons among bioclimatic conditions at native and invaded ranges revealed the invasive populations to be nested within the variable range of the native population. However, at the same time, invasive populations are well differentiated in multidimensional niche space as quantified via n‐dimensional hypervolumes. The most deviant invasive population are those from Europe. Our results suggest varying degrees of realized niche shifts, which are mainly driven by temperature related variables. The crosswise projection of the hypervolumes that were trained in invaded ranges revealed the south‐western Cape region as likely area of origin for all invasive populations, which is largely congruent with DNA sequence data and suggests a gradual exploration of novel climate space in invasive populations.  相似文献   

13.
During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions – niches – to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard Phrynosoma platyrhinos, a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post‐LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change.  相似文献   

14.
Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species’ native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species’ native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger’s I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species’ dynamics in the invaded range.  相似文献   

15.
应用生态位模型研究外来入侵物种生态位漂移   总被引:4,自引:0,他引:4  
由于基础生态位和实际生态位的改变,外来入侵物种在入侵地成功定殖、扩散后常会发生生态位漂移,而物种生态位漂移往往很难直接证明。生态位模型在假设入侵物种的生态位需求保守的前提下,以物种在其原产地的生态位需求为基础,预测其在入侵地的潜在分布,通过比较预测分布与实际分布的差异可以从一定程度上得到外来入侵物种的生态位是否发生漂移的间接证据。以我国入侵杂草胜红蓟在原产地的生态位需求为基础,应用生态位模型预测其在其他地区的潜在分布。研究结果表明,生态位模型可以很好地预测胜红蓟在亚太平洋地区和非洲地区的分布,但在我国,其预测分布与实际分布存在较大差别。胜红蓟在我国预测分布主要为云南、海南、台湾部分地区,而胜红蓟入侵我国后现已广泛分布于长江以南地区,其实际分布比预测分布广泛得多,由此推测胜红蓟在入侵我国后其生态位已经产生了漂移。  相似文献   

16.
粗毛牛膝菊在中国的入侵与生态位漂移有关 在外来物种入侵和扩散过程中,生态位的漂移可能起到了重要作用。粗毛牛膝菊(Galinsoga quadriradiata) 在中国已造成了较为严重的入侵,占据了许多与其原产地不同的气候区。为此,本研究力图揭示粗毛牛膝菊入侵过程中的气候生态位漂移,分析其在该物种入 侵中国过程中可能发挥的作用。本研究结合粗毛牛膝菊原 产地和入侵地的分布点与气候数据, 采用Maxent模型预测了其在中国潜在的分布,并采用主成分分析的方法评估 了在入侵中国过程中粗毛牛膝菊气候生态位的漂移。模型结果显示,该物种原产地种群和入侵地种群之间只 有32.7%的生态位重叠,两个种群的生态位相似性较低(Schoener's D = 0.093, P < 0.005),这暗示了在其入侵过程中发生了生态位漂移。相比于其原产地种群,其在中国的入侵种群气候生态位的整体范围和中心都明 显地漂移向了温度更低、降水更少的区域;中国南方大部分区域属于粗毛牛膝菊的稳定适生区,而位于入侵 前沿的北方地区则存在局域适应和潜在拓殖区域。这些研究结果说明,粗毛牛膝菊在中国的入侵种群仍处于准平衡阶段,未来有可能继续向新的适生区扩散入侵,其生态位的变化有力地解释了为什么该物种在中国的入侵性强、危害范围大。  相似文献   

17.
Shifts between native and alien climatic niches pose a major challenge for predicting biological invasions. This is particularly true for insular species because geophysical barriers could constrain the realization of their fundamental niches, which may lead to underestimates of their invasion potential. To investigate this idea, we estimated the frequency of shifts between native and alien climatic niches and the magnitude of climatic mismatches using 80,148 alien occurrences of 46 endemic insular amphibian, reptile, and bird species. Then, we assessed the influence of nine potential predictors on climatic mismatches across taxa, based on species' characteristics, native range physical characteristics, and alien range properties. We found that climatic mismatch is common during invasions of endemic insular birds and reptiles: 78.3% and 55.1% of their respective alien records occurred outside of the environmental space of species' native climatic niche. In comparison, climatic mismatch was evident for only 16.2% of the amphibian invasions analyzed. Several predictors significantly explained climatic mismatch, and these varied among taxonomic groups. For amphibians, only native range size was associated with climatic mismatch. For reptiles, the magnitude of climatic mismatch was higher for species with narrow native altitudinal ranges, occurring in topographically complex or less remote islands, as well as for species with larger distances between their native and alien ranges. For birds, climatic mismatch was significantly larger for invasions on continents with higher phylogenetic diversity of the recipient community, and when the invader was more evolutionarily distinct. Our findings highlight that apparently common niche shifts of insular species may jeopardize our ability to forecast their potential invasions using correlative methods based on climatic variables. Also, we show which factors provide additional insights on the actual invasion potential of insular endemic amphibians, reptiles, and birds.  相似文献   

18.
The rate of climatic‐niche evolution is important to many research areas in ecology, evolution, and conservation biology, including responses of species to global climate change, spread of invasive species, speciation, biogeography, and patterns of species richness. Previous studies have implied that clades with higher rates of climatic‐niche evolution among species should have species with narrower niche breadths, but there is also evidence suggesting the opposite pattern. However, the relationships between rate and breadth have not been explicitly analyzed. Here, we examine the relationships between the rate of climatic‐niche evolution and climatic‐niche breadth using phylogenetic and climatic data for 250 species in the salamander family Plethodontidae, a group showing considerable variation in both rates of climatic‐niche evolution and climatic‐niche breadths. Contrary to some expectations, we find no general relationship between climatic‐niche breadth and the rate of climatic‐niche evolution. Climatic‐niche breadths for some ecologically important climatic variables considered separately (temperature seasonality and annual precipitation) do show significant relationships with the rate of climatic‐niche evolution, but rates are faster in clades in which species have broader (not narrower) niche breadths. In summary, our results show that narrower niche breadths are not necessarily associated with faster rates of niche evolution.  相似文献   

19.
Climatic niche conservatism shapes patterns of diversity in many taxonomic groups, while ecological opportunity (EO) can trigger rapid speciation that is less constrained by the amount of time a lineage has occupied a given habitat. These two processes are well studied, but limited research has considered their joint and relative roles in shaping diversity patterns. We characterized climatic and biogeographic variables for 102 species of arvicoline rodents (Arvicolinae, Cricetidae), testing the effects of climatic niche conservatism and EO on arvicoline diversification as lineages transitioned between biogeographic regions. We found that the amount of time a lineage has occupied a precipitation niche is positively correlated with diversity along a precipitation gradient, suggesting climatic niche conservatism. In contrast, shift in diversification rate explained diversity patterns along a temperature gradient. Our results suggest that an indirect relationship exists between temperature and diversification that is associated with EO as arvicoline rodents colonized warm Palearctic environments. Climatic niche conservatism alone did not fully explain diversity patterns under density‐dependence, highlighting the additional importance of EO‐related processes in promoting the explosive radiation in arvicoline rodents and shaping diversity pattern among biogeographic regions and along climatic gradients.  相似文献   

20.

The intermediate disturbance hypothesis (IDH) has been thoroughly investigated, but much controversy has been found for supporting its assumptions, which rely largely on the nature of the disturbance, spatial scale, and biological predictors tested. In this paper, richness of native and non-native species along a suite of Neotropical aquatic ecosystems across a broad latitudinal and geographical range was used to test the IDH predictions. An extensive literature survey was performed to compile native species richness and the occurrence of several taxonomic groups listed as non-native for twenty-four coastal rivers and bays evenly distributed into three climatic zones (tropical, transitional, and subtropical). The climatic gradient was confirmed by NMDS and PERMANOVA, but IDH predictions were only significantly supported for native and total species richness in the coastal bays. The distribution patterns of non-native marine species showed a linear instead unimodal pattern of increase with latitudinal climatic gradient, but the responses are complex and dependent of many non-exclusive factors, such as the sampling effort per ecosystem and the potential interference of other disturbance gradients that should be further addressed to unravel the role of IDH for non-native species distribution.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号