共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Eisuke Kato Natsuka Kushibiki Yosuke Inagaki Mihoko Kurokawa Jun Kawabata 《Bioscience, biotechnology, and biochemistry》2017,81(9):1699-1705
Type 2 diabetes mellitus (T2DM) is a common global health problem. Prevention of this disease is an important task, and functional food supplements are considered an effective method. We found potent pancreatic α-amylase inhibition in Astilbe thunbergii root extract (AT) and confirmed that AT treatment in a T2DM rat model reduces post-starch administration blood glucose levels. Activity-guided isolation revealed procyanidin (AT-P) as the α-amylase inhibitory component with IC50 = 1.7 μg/mL against porcine pancreatic α-amylase. Structure analysis of AT-P revealed it is a B-type procyanidin comprised of four types of flavan-3-ols, some with a galloyl group, and catechin attached as the terminal unit. The abundant AT-P content and its comparable α-amylase inhibition to acarbose, the anti-diabetic medicine, suggest that AT is a promising food supplement for diabetes prevention. 相似文献
3.
Woerle HJ Szoke E Meyer C Dostou JM Wittlin SD Gosmanov NR Welle SL Gerich JE 《American journal of physiology. Endocrinology and metabolism》2006,290(1):E67-E77
To assess mechanisms for postprandial hyperglycemia, we used a triple-isotope technique ([\3-(3)H]glucose and [(14)C]bicarbonate and oral [6,6-dideutero]glucose iv) and indirect calorimetry to compare components of glucose release and pathways for glucose disposal in 26 subjects with type 2 diabetes and 15 age-, weight-, and sex-matched normal volunteers after a standard meal. The results were as follows: 1) diabetic subjects had greater postprandial glucose release (P<0.001) because of both increased endogenous and meal-glucose release; 2) the greater endogenous glucose release (P<0.001) was due to increased gluconeogenesis (P<0.001) and glycogenolysis (P=0.01); 3) overall tissue glucose uptake, glycolysis, and storage were comparable in both groups (P>0.3); 4) glucose clearance (P<0.001) and oxidation (P=0.004) were reduced, whereas nonoxidative glycolysis was increased (P=0.04); and 5) net splanchnic glucose storage was reduced by approximately 45% (P=0.008) because of increased glycogen cycling (P=0.03). Thus in type 2 diabetes, postprandial hyperglycemia is primarily due to increased glucose release; hyperglycemia overcomes the effects of impaired insulin secretion and sensitivity on glucose transport, but intracellular defects persist so that pathways of glucose metabolism are abnormal and glucose is shunted away from normal sites of storage (e.g., liver and muscle) into other tissues. 相似文献
4.
5.
K Taylor D Kim L L Nielsen M Aisporna A D Baron M S Fineman 《Hormones et métabolisme》2005,37(10):627-632
Exenatide (exendin-4) is an incretin mimetic with potential antidiabetic activity. This study examined the effects of a continuous subcutaneous (SC) infusion of exenatide (0.2, 0.4, 0.6, or 0.8 microg/kg/day) or placebo (PBO) on glycemic control over 23 h intervals. Twelve subjects with type 2 diabetes treated with metformin and/or diet received 10 infusions (4 exenatide, 6 PBO) on consecutive days. Exenatide was given in a dose-increasing design with at least one placebo infusion between each exenatide infusion, and with meals and a snack provided during the first 14 h of infusion. Plasma exenatide concentrations were dose-proportional. Plasma glucose (4-23 h) was lower in all exenatide arms compared to placebo (p<0.0001). The change in insulin/glucagon ratio and amylin concentrations from pre-infusion to post-infusion was increased (p<0.005, p<0.05, respectively) in the combined exenatide arms, but remained unchanged in the placebo groups. Nausea and vomiting were the most common treatment emergent adverse events. Exenatide infusion also appeared to have positive effects on beta-cell and alpha-cell function as measured by proinsulin/insulin ratios and mean glucagon concentrations. In summary, exenatide lowered plasma glucose during both prandial and fasting states when delivered as a continuous SC infusion over twenty-three hours, suggesting that exenatide can provide day-long glycemic control in patients with type 2 diabetes. 相似文献
6.
Tentolouris N Stylianou A Lourida E Perrea D Kyriaki D Papavasiliou EC Tselepis AD Katsilambros N 《Journal of lipid research》2007,48(1):218-225
Microalbuminuria (MA) is an independent risk factor for atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Postprandial lipemia is also associated with excess cardiovascular risk. However, the association between MA and postprandial lipemia in diabetes has not been investigated. A total of 64 patients with T2DM, 30 with and 34 without MA, were examined. Plasma total triglycerides (TGs), triglycerides contained in chylomicrons (CM-TG), and TGs in CM-deficient plasma were measured at baseline and every 2 h for 6 h after a mixed meal. Postheparin LPL and HL activities were also determined. Plasma levels of apolipoprotein A-V (apoA-V), apoC-II, and apoC-III were measured in the fasting state and 2 h postprandially. Patients with MA had higher postprandial total TG levels than those without MA (P < 0.001); this increase been attributed mainly to CM-TG. LPL activity and fasting concentrations of the measured apolipoproteins were not different between the studied groups, whereas HL activity was higher in the patients with MA. ApoC-II and apoC-III levels did not change postprandially in either study group, whereas apoA-V increased more in the patients with MA. These data demonstrate for the first time that MA is characterized by increased postprandial lipemia in patients with T2DM and may explain in part the excess cardiovascular risk in these patients. 相似文献
7.
Sathyanarayana P Jogi M Muthupillai R Krishnamurthy R Samson SL Bajaj M 《Obesity (Silver Spring, Md.)》2011,19(12):2310-2315
We examined the effects of combined pioglitazone (peroxisome proliferator‐activated receptor‐γ (PPAR‐γ) agonist) and exenatide (GLP‐1 receptor agonist) therapy on hepatic fat content and plasma adiponectin levels in patients with type 2 diabetes (T2DM). Twenty‐one T2DM patients (age = 52 ± 3 years, BMI = 32.0 ± 1.5, hemoglobin A1c (HbA1c) = 8.2 ± 0.4%) on diet and/or metformin received additional treatment with either pioglitazone 45 mg/day for 12 months (n = 10) or combined therapy with pioglitazone (45 mg/day) and exenatide (10 µg subcutaneously twice daily) for 12 months (n = 11). At baseline, hepatic fat content and plasma adiponectin levels were similar between the two treatment groups. Pioglitazone reduced fasting plasma glucose (FPG) (P < 0.05), fasting free fatty acid (FFA) (P < 0.05), and HbA1c (Δ = 1.0%, P < 0.01), while increasing plasma adiponectin concentration by 86% (P < 0.05). Hepatic fat (magnetic resonance spectroscopy (MRS)) was significantly reduced following pioglitazone treatment (11.0 ± 3.1 to 6.5 ± 1.9%, P < 0.05). Plasma triglyceride concentration decreased by 14% (P < 0.05) and body weight increased significantly (Δ = 3.7 kg). Combined pioglitazone and exenatide therapy was associated with a significantly greater increase in plasma adiponectin (Δ = 193%) and a significantly greater decrease in hepatic fat (12.1 ± 1.7 to 4.7 ± 1.3%) and plasma triglyceride (38%) vs. pioglitazone therapy despite the lack of a significant change in body weight (Δ = 0.2 kg). Hepatic injury biomarkers aspartate aminotransferase and alanine aminotransferase (ALT) were significantly decreased by both treatments; however, the reduction in ALT was significantly greater following combined pioglitazone and exenatide therapy. We conclude that combined in patients with T2DM, pioglitazone and exenatide therapy is associated with a greater reduction in hepatic fat content as compared to the addition of pioglitazone therapy (Δ = 61% vs. 41%, P < 0.05). 相似文献
8.
H. Carlijne Hassing R. Preethi Surendran Bruno Derudas An Verrijken Sven M. Francque Hans L. Mooij Sophie J. Bernelot Moens Leen M.'t Hart Giel Nijpels Jacqueline M. Dekker Kevin Jon Williams Erik S. G. Stroes Luc F. Van Gaal Bart Staels Max Nieuwdorp Geesje M. Dallinga‐Thie 《Obesity (Silver Spring, Md.)》2014,22(5):1309-1316
9.
Alteration in lipoprotein lipase activity bound to triglyceride-rich lipoproteins in the postprandial state in type 2 diabetes 总被引:1,自引:0,他引:1
Pruneta-Deloche V Sassolas A Dallinga-Thie GM Berthezène F Ponsin G Moulin P 《Journal of lipid research》2004,45(5):859-865
Postprandial lipid metabolism is largely dependent upon lipoprotein lipase (LPL), which hydrolyses triglycerides (TGs). The time course of LPL activity in the postprandial state following a single meal has never been studied, because its determination required heparin injection. Recently, we have shown that LPL activity could be accurately measured in nonheparinized VLDL using a new assay aiming to determine the LPL-dependent VLDL-TG hydrolysis. Based on the same principle, we used in this study TG-rich lipoprotein (TRL)-bound LPL-dependent TRL-TG hydrolysis (LTTH) to compare the time course of LPL activity of 10 type 2 diabetics to that of 10 controls, following the ingestion of a lipid-rich meal. The peak TG concentration, reached after 4 h, was 67% higher in diabetics than in controls (P < 0.005). Fasting LTTHs were 91.3 +/- 15.6 in controls versus 70.1 +/- 4.8 nmol NEFA/ml/h in diabetics (P < 0.001). LTTH was increased 2 h postprandially by 190% in controls and by only 89% in diabetics, resulting in a 35% lowering of the LTTH area under the curve in diabetics. Postprandial LTTH was inversely correlated with TG or remnant concentrations in controls but not in diabetics, and with insulin resistance in both groups. These data show that TRL-bound LPL activity increases in the postprandial state and is strongly reduced in type 2 diabetes, contributing to postprandial hypertriglyceridemia. 相似文献
10.
11.
Kitasato L Tojo T Hatakeyama Y Kameda R Hashikata T Yamaoka-Tojo M 《Cardiovascular diabetology》2012,11(1):79
ABSTRACT: The risk of cardiovascular complication in a diabetes patient is similar to that in a nondiabetic patient with a history of myocardial infarction. Although intensive control of glycemia achieved by conventional antidiabetic agents decreases microvascular complications such as retinopathy and nephropathy, no marked effect has been reported on macrovascular complications or all-cause mortality. Evidence from VADT, ACCORD, and ADVANCE would suggest that glycemic control has little effect on macrovascular outcomes. Moreover, in the case of ACCORD, intensive glycemic control may be associated with an increased risk of mortality. There is sufficient evidence that suggests that postprandial hyperglycemia may be an independent risk factor for cardiovascular disease in diabetes patients. However, there are no prospective clinical trials supporting the recommendation that lowering postprandial blood glucose leads to lower risk of cardiovascular outcomes. Mitiglinide is a short-acting insulinotropic agent used in type 2 diabetes treatment. It has a rapid stimulatory effect on insulin secretion and reduces postprandial plasma glucose level in patients with type 2 diabetes. Because of its short action time, it is unlikely to exert adverse effects related to hypoglycemia early in the morning and between meals. Mitiglinide reduces excess oxidative stress and inflammation, plays a cardioprotective role, and improves postprandial metabolic disorders. Moreover, mitiglinide add-on therapy with pioglitazone favorably affects the vascular endothelial function in type 2 diabetes patients. These data suggest that mitiglinide plays a potentially beneficial role in the improvement of postprandial hyperglycemia in type 2 diabetes patients and can be used to prevent cardiovascular diseases. Although the results of long-term, randomized, placebo-controlled trials for determining the cardiovascular effects of mitiglinide on clinical outcomes are awaited, this review is aimed at summarizing substantial insights into this topic. 相似文献
12.
13.
K Brozyński J Loba W Torzecka 《Polski tygodnik lekarski (Warsaw, Poland : 1960)》1989,44(21-22):514-518
The most important causes of hyperglycaemia in the course of diabetes mellitus type 2 are discussed. Those include: insulin secretion disorders, resistance to the insulin and overproduction of glucose in the liver. Affected secretory function of B cells in the pancreatic islets results, first of all, from the primary genetic error and secondary regulatory disorders, chiefly hyperglycaemia. Resistance to the insulin caused by decreased insulin activity in the muscle tissue and adipose tissue includes so-called receptor and postreceptor defects. Mechanism of these disorders is partially explained. Overproduction of glucose in the liver is probably secondary to the above metabolic disturbances and decides on the basic hyperglycaemia. Pathogenetic aspects of the insulin independent diabetes mellitus therapy with particular reference to the role of sulfonylurea derivatives are also discussed. 相似文献
14.
Ravikumar B Carey PE Snaar JE Deelchand DK Cook DB Neely RD English PT Firbank MJ Morris PG Taylor R 《American journal of physiology. Endocrinology and metabolism》2005,288(4):E789-E797
Liver and skeletal muscle triglyceride stores are elevated in type 2 diabetes and correlate with insulin resistance. As postprandial handling of dietary fat may be a critical determinant of tissue triglyceride levels, we quantified postprandial fat storage in normal and type 2 diabetes subjects. Healthy volunteers (n = 8) and diet-controlled type 2 diabetes subjects (n = 12) were studied using a novel 13C magnetic resonance spectroscopy protocol to measure the postprandial increment in liver and skeletal muscle triglyceride following ingestion of 13C-labeled fatty acids given with a standard mixed meal. The postprandial increment in hepatic triglyceride was rapid in both groups (peak increment controls: +7.3 +/- 1.5 mmol/l at 6 h, P = 0.002; peak increment diabetics: +10.8 +/- 3.4 mmol/l at 4 h, P = 0.009). The mean postprandial incremental AUC of hepatic 13C enrichment between the first and second meals (0 and 4 h) was significantly higher in the diabetes group (6.1 +/- 1.4 vs. 1.7 +/- 0.6 mmol x l(-1) x h(-1), P = 0.019). Postprandial increment in skeletal muscle triglyceride in the control group was small compared with the diabetic group, the mean 24-h postprandial incremental AUC being 0.2 +/- 0.3 vs. 1.7 +/- 0.4 mmol x l(-1) x h(-1) (P = 0.009). We conclude that the postprandial uptake of fatty acids by liver and skeletal muscle is increased in type 2 diabetes and may underlie the elevated tissue triglyceride stores and consequent insulin resistance. 相似文献
15.
Tamio Ohno Yuki Miyasaka Kanta Yoshida Misato Kobayashi Fumihiko Horio Norihide Yokoi Masashi Mizuno Hiroshi Ikegami 《Experimental Animals》2022,71(4):510
Various mouse models of type 2 diabetes have been established, but few of these show early onset and persistent hyperglycemia. We have established a congenic mouse strain (NSY.B6-Tyr+,Ay) in which a spontaneous mutation of the agouti yellow (Ay) gene, which causes obesity by hyperphagia, was introduced into the NSY strain, which shows increased glucose intolerance with age. This strain has been maintained as a segregating inbred strain by mating obese yellow (Ay/a) males with normal black (a/a) females. All yellow males showed marked obesity and hyperglycemia (mean blood glucose level >400 mg/dl) from 10 to 24 weeks of age. The yellow males also showed glucose intolerance and insulin resistance. They provide a potentially valuable model mouse for research into type 2 diabetes, hyperlipidemia, fatty liver, and renal glomerular complications. Yellow female mice also showed marked obesity, but the incidence of diabetes and the severity of various pathological conditions were milder than in yellow males. None of the black mice showed hyperglycemia in either sex. NSY.B6-Tyr+,Ay strain has good fertility and does not display inter-male aggression, making them useful as a new model for type 2 diabetes with early onset and persistent hyperglycemia. 相似文献
16.
Galassetti PR Iwanaga K Pontello AM Zaldivar FP Flores RL Larson JK 《American journal of physiology. Endocrinology and metabolism》2006,290(5):E833-E839
The proinflammatory cytokine interleukin-6 (IL-6) may modulate the onset and progression of complications of diabetes. As this cytokine increases after exercise, and many other exercise responses are altered by prior glycemic fluctuations, we hypothesized that prior hyperglycemia might exacerbate the IL-6 response to exercise. Twenty children with type 1 diabetes (12 boys/8 girls, age 12-15 yr) performed 29 exercise studies (30-min intermittent cycling at approximately 80% peak O2 uptake). Children were divided into four groups based on highest morning glycemic reading [blood glucose (BG) < 150, BG 151-200, BG 201-300, or BG > 300 mg/dl]. All exercise studies were performed in the late morning, after hyperglycemia had been corrected and steady-state conditions (plasma glucose < 120 mg/dl, basal insulin infusion) had been maintained for > or = 90 min. Blood samples for IL-6, growth factors, and counterregulatory hormones were drawn at pre-, end-, and 30 min postexercise time points. At all time points, circulating IL-6 was lowest in BG < 150 and progressively higher in the other three groups. The exercise-induced increment also followed a similar dose-response pattern (BG < 150, 0.6 +/- 0.2 ng/ml; BG 151-200, 1.2 +/- 0.8 ng/ml; BG 201-300, 2.1 +/- 1.1 ng/ml; BG > 300, 3.2 +/- 1.4 ng/ml). Other measured variables (growth hormone, IGF-I, glucagon, epinephrine, cortisol) were not influenced by prior hyperglycemia. Recent prior hyperglycemia markedly influenced baseline and exercise-induced levels of IL-6 in a group of peripubertal children with type 1 diabetes. While exercise is widely encouraged and indeed often considered part of diabetic management, our data underscore the necessity to completely understand all adaptive mechanisms associated with physical activity, particularly in the context of the developing diabetic child. 相似文献
17.
M Nannipieri G Seghieri C Catalano T Prontera S Baldi E Ferrannini 《Hormones et métabolisme》2002,34(5):265-270
Increased plasma atrial natriuretic peptide (ANP) levels and impaired ANP action have been reported in patients with diabetes or insulin resistance. The aim of this study was to assess the interaction between insulin and ANP in type 2 diabetes. In 12 normotensive, normoalbuminuric type 2 diabetics, we infused insulin at a high (6.6 pmol/min/kg) or, on a different day, at a low rate (0.6 pmol/min/kg) during 4 hours of isoglycemia under isovolumic, isoosmolar conditions. The normal response was established in 12 healthy volunteers using an identical protocol. Despite higher baseline ANP levels (17.7 +/- 2.8 vs. 10.8 +/- 1.8 pg/ml, p = 0.04), urinary sodium excretion was similar in diabetics and controls (113 +/- 8.5 vs. 102 +/- 8.8 mEq/24 hours, p = ns). In both groups, hyperinsulinemia caused a decrease in blood volume (0.33 +/- 0.10 l, p < 0.01), diastolic blood pressure (6 %, p < 0.02), and natriuresis. However, plasma ANP decreased in controls (from 12.7 +/- 1.9 to 8.6 +/- 1.4 pg/ml, p = 0.01) but not in type 2 diabetics (15.1 +/- 2.7 vs. 17.2 +/- 3.8 pg/ml, p = ns). We conclude that ANP release is resistant to volume stimulation in type 2 diabetic patients, and natriuresis is resistant to ANP action. This dual disruption of ANP control may play a role in blood pressure regulation in diabetes. 相似文献
18.
19.
Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes 总被引:2,自引:0,他引:2
Little JP Gillen JB Percival ME Safdar A Tarnopolsky MA Punthakee Z Jung ME Gibala MJ 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,111(6):1554-1560
Low-volume high-intensity interval training (HIT) is emerging as a time-efficient exercise strategy for improving health and fitness. This form of exercise has not been tested in type 2 diabetes and thus we examined the effects of low-volume HIT on glucose regulation and skeletal muscle metabolic capacity in patients with type 2 diabetes. Eight patients with type 2 diabetes (63 ± 8 yr, body mass index 32 ± 6 kg/m(2), Hb(A1C) 6.9 ± 0.7%) volunteered to participate in this study. Participants performed six sessions of HIT (10 × 60-s cycling bouts eliciting ~90% maximal heart rate, interspersed with 60 s rest) over 2 wk. Before training and from ~48 to 72 h after the last training bout, glucose regulation was assessed using 24-h continuous glucose monitoring under standardized dietary conditions. Markers of skeletal muscle metabolic capacity were measured in biopsy samples (vastus lateralis) before and after (72 h) training. Average 24-h blood glucose concentration was reduced after training (7.6 ± 1.0 vs. 6.6 ± 0.7 mmol/l) as was the sum of the 3-h postprandial areas under the glucose curve for breakfast, lunch, and dinner (both P < 0.05). Training increased muscle mitochondrial capacity as evidenced by higher citrate synthase maximal activity (~20%) and protein content of Complex II 70 kDa subunit (~37%), Complex III Core 2 protein (~51%), and Complex IV subunit IV (~68%, all P < 0.05). Mitofusin 2 (~71%) and GLUT4 (~369%) protein content were also higher after training (both P < 0.05). Our findings indicate that low-volume HIT can rapidly improve glucose control and induce adaptations in skeletal muscle that are linked to improved metabolic health in patients with type 2 diabetes. 相似文献
20.
Gissette Reyes-Soffer Steve Holleran Wahida Karmally Colleen I. Ngai Niem-Tzu Chen Margarita Torres Rajasekhar Ramakrishnan William S. Blaner Lars Berglund Henry N. Ginsberg Catherine Tuck 《Journal of lipid research》2009,50(9):1901-1909
Individuals with type 2 diabetes mellitus (DM) characteristically have elevated fasting and postprandial (PP) plasma triglycerides (TG). Previous case-control studies indicated that PPTG levels predict the presence of coronary artery disease (CAD) in people without DM; however, the data for patients with DM are conflicting. Therefore, we conducted a case-control study in DM individuals, 84 with (+) and 80 without (−) CAD. Our hypothesis was that DM individuals with or without CAD would have similar PPTG levels, but CAD+ individuals would have more small d<1.006 g/L lipoprotein particles. Several markers of PP lipid metabolism were measured over 10 h after a fat load. PP lipoprotein size and particle number were also determined. There was no significant difference in any measure of PP lipid metabolism between CAD+ and CAD−, except for apoB48, which was actually higher in CAD−. We followed 69 CAD− participants for a mean 8.7 years; 33 remained free of any cardiovascular event. There were no PP differences at baseline between these 33 who remained CAD− and either the 36 original CAD− who subsequently developed CAD or the original CAD+ group.PP measurements of TG-rich lipoproteins do not predict the presence of CAD in individuals with DM. 相似文献