首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
瘦素在禽类中的研究进展   总被引:1,自引:0,他引:1  
瘦素(leptin)是一种主要作用于下丘脑的重要激素,起到调控摄食和能量消耗的作用。另外,国内外越来越多的研究表明,leptin与动物的代谢、发育、繁殖和免疫调节等均有密切的联系。但是上述研究大多在哺乳动物中进行,在禽类中的研究还在起步阶段。现有的研究表明,禽类的leptin及leptin受体的作用与哺乳动物相比都有其特殊性。本文首先分析了禽类leptin及leptin受体的特点,在此基础上,从摄食、生长发育和繁殖三个方面综述了leptin对禽类的作用及可能机制。  相似文献   

2.
Several regulatory substances participate in the regulation of both food intake/energy metabolism and reproduction in mammals. Most of these neuropeptides originate and act in the central nervous system, mainly at specific hypothalamic areas. Leptin represents a signal integrating all these functions, but originating from the periphery (adipose tissue) and carrying information mainly to central structures. Observations in rodent models of leptin deficiency have suggested that leptin participates in the control of reproduction, in conjunction with that of food intake and energy expenditure. Indeed, leptin administration resulted in the restoration of normal body weight, food intake, and fertility in the ob mouse, lacking circulating leptin. Specific targets of leptin in the hypothalamus are neurons expressing neuropeptide Y, proopiomelanocortin and gonadotropin-releasing hormone, but the presence of leptin receptors in peripheral reproductive structures suggests that leptin might also act at these sites. Human obesity is often associated with reproductive disturbances. The situation in humans is more complex than in the animal models of leptin deficit and the presence of leptin resistance in these subjects is suggested. In conclusion, leptin fits many requirements for a molecule linking the regulation of energy balance and the control of reproduction.  相似文献   

3.
Obesity is the result of a positive balance between total energy intake and its catabolism. Although many factors are involved in the regulation of energy metabolism, the discovery of leptin led to energy homeostasis being investigated in greater depth. Since its identification, leptin has been considered important in the development of obesity, given its anorexigenic effect and influence on food intake and energy expenditure. Leptin is involved in diverse physiological processes such as energy balance, appetite and body weight control, fat and carbohydrate metabolism, and reproduction. However, to be able to function, this hormone has many specific receptors both centrally (hypothalamus) and peripherally in the skeletal muscle, lungs and kidneys. This study aims to review the key aspects relating leptin to the development of obesity and discusses its potential as an anorectic agent.  相似文献   

4.
Adipokines and the peripheral and neural control of energy balance   总被引:3,自引:0,他引:3  
Adipokines are secreted by adipose tissue and control various physiological systems. Low leptin levels during fasting stimulate feeding, reduce energy expenditure, and modulate neuroendocrine and immune function to conserve energy stores. On the other hand, rising leptin levels in the overfed state prevent weight gain by inhibiting food intake and increasing energy expenditure. These actions are mediated by neuronal circuits in the hypothalamus and brainstem. Leptin also controls glucose and lipid metabolism by targeting enzymes such as AMP-activated protein kinase and stearoyl-coenzyme A desaturase-1 in liver and muscle. Likewise, adiponectin and resistin control energy balance and insulin sensitivity via central and peripheral targets. As highlighted in this review, there are distinct as well as common signaling pathways for adipokines. Understanding adipokine signaling in the brain and other organs will provide insights into the pathogenesis and treatment of obesity, diabetes and various metabolic disorders.  相似文献   

5.
瘦素在哺乳动物体重调节、繁殖和免疫中的作用   总被引:4,自引:1,他引:3  
李兴升  王德华 《兽类学报》2003,23(2):168-174
瘦素(Leptin) 主要是由白色脂肪细胞分泌的、肥胖基因编码的、分子量为16 KD 的蛋白类激素。其N 端具有信号肽序列, 引导蛋白质进入分泌途径, 信号肽被切除后成为有生物学功能的成熟蛋白质。瘦素在动物的体重调节、发育与生殖、免疫和糖代谢等方面有重要作用。瘦素已经不仅仅是脂肪细胞分泌的蛋白类激素, 而是一个在许多方面发挥作用的神经内分泌调节因子。本文综述了瘦素在哺乳动物体重调节、繁殖和免疫中的作用及其调控机制, 主要包括: 动物血清瘦素浓度的季节性变化; 光周期、温度和食物等环境因子对瘦素浓度的影响; 瘦素与解偶联蛋白(Uncoupling proteins , UCPs) 在能量代谢和产热中的互作; 瘦素与下丘脑神经肽Y (Hypothalamus neuropeptide Y, NPY) 在体重调节和产热作用中的拮抗; 瘦素与甲状腺激素和胰岛素在能量代谢中的互作以及瘦素在生殖和免疫中的作用。  相似文献   

6.
Leptin, from fat to inflammation: old questions and new insights   总被引:21,自引:0,他引:21  
Leptin is 16 kDa adipokine that links nutritional status with neuroendocrine and immune functions. Initially thought to be a satiety factor that regulates body weight by inhibiting food intake and stimulating energy expenditure, leptin is a pleiotropic hormone whose multiple effects include regulation of endocrine function, reproduction, and immunity. Leptin can be considered as a pro-inflammatory cytokine that belongs to the family of long-chain helical cytokines and has structural similarity with interleukin-6, prolactin, growth hormone, IL-12, IL-15, granulocyte colony-stimulating factor and oncostatin M. Because of its dual nature as a hormone and cytokine, leptin links the neuroendocrine and the immune system. The role of leptin in the modulation of immune response and inflammation has recently become increasingly evident. The increase in leptin production that occurs during infection and inflammation strongly suggests that leptin is a part of the cytokine network which governs the inflammatory-immune response and the host defense mechanisms. Leptin plays an important role in inflammatory processes involving T cells and has been reported to modulate T-helper cells activity in the cellular immune response. Several studies have implicated leptin in the pathogenesis of autoimmune inflammatory conditions, such as experimental autoimmune encephalomyelitis, type 1 diabetes, rheumatoid arthritis, and intestinal inflammation. Very recently, a key role for leptin in osteoarthritis has been demonstrated: leptin indeed exhibits, in concert with other pro-inflammatory cytokines, a detrimental effect on articular cartilage by promoting nitric oxide synthesis in chondrocytes. Here, we review the recent advances regarding leptin biology with a special focus on those actions relevant to the role of leptin in the pathophysiology of inflammatory processes and immune responses.  相似文献   

7.
Leptin: an essential regulator of lipid metabolism   总被引:5,自引:0,他引:5  
This paper reviews the general mechanisms by which leptin acts as a regulator of lipid reserves through changes in food intake, energy expenditure and fuel selection, with an emphasis on its direct effects on cellular lipid metabolism. Briefly, when leptin levels increase, food consumption decreases via modulation of hypothalamic neuropeptides. As well, normal decreases in energy expenditures (e.g. with diurnal cycles or reduced caloric intake) do not occur. This is probably caused by an increase in mitochondrial proton leak mediated by leptin via increases in sympathetic nervous system stimulation and thyroid hormone release. The decrease in caloric input coupled with relatively higher energy expenditure, therefore, leads to negative energy balance. Leptin also changes the fuel source from which ATP is generated. Fuel preference switches from carbohydrate (glucose) to lipid (fatty acids). This effect arises through stimulation of triacylglycerol catabolism by leptin. In vitro studies show that leptin is a potent stimulator of lipolysis and fatty acid oxidation in adipocytes and other cell types. Consequently, leptin is also a regulator of cellular triacylglycerol content. Hormonal regulation of leptin, as well as its role in fasting and seasonal weight gain and energy expenditure are also briefly discussed.  相似文献   

8.
Leptin, the ob gene product, is involved in the regulation of body weight in rodents, primates and humans. It provides a molecular basis for the lipostatic theory of the regulation of energy balance. White adipose tissue and placenta are the main sites of leptin synthesis. There is also evidence of ob gene expression in brown fat. Leptin seems to play a key role in the control of body fat stores by coordinated regulation of feeding behaviour, metabolic rate, autonomic nervous system regulation and body energy balance. Apart from the function of leptin in the central nervous system on the regulation of energy balance, it may well be one of the hormonal factors that signal to the brain the body's readiness for sexual maturation and reproduction. During late pregnancy and at birth when maternal fat stores have been developed, leptin levels are high. During these developmental stages leptin could be a messenger molecule signalling the adequacy of the fat stores for reproduction and maintenance of pregnancy. At later stages of gestation leptin could signal the expansion of fat stores in order to prepare the expectant mother for the energy requirements of full-term gestation, labour and lactation. Leptin serum concentrations change during pubertal development in rodents, primates and humans. In girls, leptin serum concentrations increase dramatically as pubertal development proceeds. The pubertal rise in leptin levels parallels the increase in body fat mass. In contrast, leptin levels increase shortly before and during the early stages of puberty in boys and decline thereafter. Testosterone has been found to suppress leptin synthesis by adipocytes both in vivo and in vitro. The decline of leptin levels in late puberty in boys accompanies increased androgen production during that time and most likely reflects suppression of leptin by testosterone and a decrease in fat mass and relative increase in muscle mass during late puberty in males. This overview focuses on those topics of leptin research which are of particular interest in reproductive and adolescent medicine.  相似文献   

9.
AMP-activated protein kinase: balancing the scales   总被引:13,自引:0,他引:13  
Carling D 《Biochimie》2005,87(1):87-91
AMP-activated protein kinase (AMPK) is the central component of a protein kinase cascade that plays a key role in the regulation of energy control. AMPK is activated in response to an increase in the ratio of AMP:ATP within the cell. Activation requires phosphorylation of threonine 172 within the catalytic subunit of AMPK by an upstream kinase. The identity of the upstream kinase in the cascade remained frustratingly elusive for many years, but was recently identified as LKB1, a kinase that is inactivated in a rare hereditary form of cancer called Peutz-Jeghers syndrome. Once activated, AMPK initiates a series of responses that are aimed at restoring the energy balance within the cell. ATP-consuming, anabolic pathways, such as fatty acid synthesis and protein synthesis are switched-off, whereas ATP-generating, catabolic pathways, such as fatty acid oxidation and glycolysis, are switched-on. More recent studies have indicated, that AMPK plays an important role in the regulation of whole body energy metabolism. The adipocyte-derived hormones, leptin and adiponectin, activate AMPK in peripheral tissues, including skeletal muscle and liver, increasing energy expenditure. In the hypothalamus, AMPK is inhibited by leptin and insulin, hormones which suppress feeding, whilst ghrelin, a hormone that increases food intake, activates AMPK. Furthermore, direct pharmacological activation of AMPK in the hypothalamus by 5-aminoimidazole-4-carboxamide ribose increases food intake in rats, demonstrating that AMPK plays a direct role in the regulation of feeding. Taken together these findings indicate that AMPK has a pivotal role in regulating pathways that control both energy expenditure and energy intake.  相似文献   

10.
Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. In humans, leptin influences energy homeostasis and regulates neuroendocrine function primarily in states of energy deficiency. Initially described as an antiobesity hormone, leptin has subsequently been shown also to influence basal metabolism, hematopoiesis, thermogenesis, reproduction, and angiogenesis. As a cytokine, leptin can affect thymic homeostasis and the secretion of acute-phase reactants such as interleukin-1 (IL-1) and tumor-necrosis factor-alpha (TNF-α). Leptin links nutritional status and proinflammatory T helper 1 (Th1) immune responses and the decrease in leptin plasma concentration during food deprivation leads to impaired immune function. Similar to other pro-inflammatory cytokines, leptin promotes Th1-cell differentiation and can modulate the onset and progression of autoimmune responses in several animal models of disease. Here, we review the advances and controversy for a role of leptin in the pathophysiology of immune responses and discuss novel possible therapeutic implications for leptin modulators.  相似文献   

11.
Leptin is a protein hormone that acts within the hypothalamus to suppress food intake and decrease body adiposity, but it is increasingly clear that the hypothalamus is not the only site of leptin action, nor food intake the only biological effect of leptin. Instead, leptin is a pleiotropic hormone that impinges on many brain areas, and in doing so alters food intake, motivation, learning, memory, cognitive function, neuroprotection, reproduction, growth, metabolism, energy expenditure, and more. This diversity of function also means that a dysregulation of leptin secretion and signaling can have far reaching effects. To date research on leptin signaling has focused primarily on the hypothalamus, and the result is a relative lack of information regarding the impact of leptin signaling and leptin resistance in non-hypothalamic areas, despite a growing literature implicating leptin in the regulation of neuronal structure and function in the hippocampus, cortex and other brain areas associated with cognition.  相似文献   

12.
Kalra SP  Kalra PS 《Peptides》2007,28(2):413-418
The interactive network of neuropeptide Y (NPY) and cohorts is necessary for integrating the hypothalamic regulation of appetite and energy expenditure with the endocrine and neuroendocrine systems on a daily basis. Genetic and environmental factors that produce an insufficiency of leptin restraint on NPY and cognate receptors deregulate the homeostasis to engender various life-threatening risk factors. Recent studies from our laboratory show that neurotherapy consisting of a single central administration of recombinant adeno-associated virus vector encoding the leptin gene can repress the hypothalamic NPY system for the lifetime of rodents. A major benefit of this stable tonic restraint is deceleration of pathophysiologic sequalae that shorten life span. These include suppression of weight gain, fat accumulation, circulating adipokines, amelioration of major symptoms of metabolic syndrome, improved reproduction and bone health. Thus, sustained repression of NPY signaling in the hypothalamus by leptin transgene expression can improve the quality of life and extend longevity.  相似文献   

13.
SUSAN B. ROBERTS, MARGERY NICHOLSON, MYRLENE STATEN, GERALD E. DALLAL, ANA L. SAWAYA, MELVIN B. HEYMAN, PAUL FUSS, ANDREW S. GREENBERG. Relationship between circulating leptin and energy expenditure in adult men and women aged 18 years to 81 years. Recent studies suggest that leptin may be an important metabolic signal for energy regulation in rodents, but the role of leptin in human energy regulation remains uncertain. Because adaptive variations in energy expenditure play an important role in human energy regulation, we investigated the relationship between leptin and energy expenditure parameters in 61 weight-stable men and women aged 18 years to 81 years who were not obese. Measurements were made of circulating leptin in the fasting state, body fat and fat free mass, resting metabolic rate (n=61), free-living total energy expenditure (n=52), and the thermic effect of feeding (n=33). After statistically accounting for age, body fat, and fat free mass, there was no association between leptin and any measured energy expenditure parameter. In addition, there was no effect of age on the relationship between circulating leptin and body fat mass. These results indicate that physiological variations in circulating leptin are not linked with adaptive variations in energy expenditure in humans, in contrast to indications of this phenomenon in the ob/ob mouse.  相似文献   

14.
Activation of brain melanocortin-4 receptors (MC4-R) by α-melanocyte-stimulating hormone (MSH) or inhibition by agouti-related protein (AgRP) regulates food intake and energy expenditure and can modulate neuroendocrine responses to changes in energy balance. To examine the effects of AgRP inhibition on energy balance, a small molecule, non-peptide compound, TTP2515, developed by TransTech Pharma, Inc., was studied in vitro and in rodent models in vivo. TTP2515 prevented AgRP from antagonizing α-MSH-induced increases in cAMP in HEK 293 cells overexpressing the human MC4-R. When administered to rats by oral gavage TTP2515 blocked icv AgRP-induced increases in food intake, weight gain and adiposity and suppression of T4 levels. In both diet-induced obese (DIO) and leptin-deficient mice, TTP2515 decreased food intake, weight gain, adiposity and respiratory quotient. TTP2515 potently suppressed food intake and weight gain in lean mice immediately after initiation of a high fat diet (HFD) but had no effect on these parameters in lean chow-fed mice. However, when tested in AgRP KO mice, TTP2515 also suppressed food intake and weight gain during HFD feeding. In several studies TTP2515 increased T4 but not T3 levels, however this was also observed in AgRP KO mice. TTP2515 also attenuated refeeding and weight gain after fasting, an effect not evident in AgRP KO mice when administered at moderate doses. This study shows that TTP2515 exerts many effects consistent with AgRP inhibition however experiments in AgRP KO mice indicate some off-target effects of this drug. TTP2515 was particularly effective during fasting and in mice with leptin deficiency, conditions in which AgRP is elevated, as well as during acute and chronic HFD feeding. Thus the usefulness of this drug in treating obesity deserves further exploration, to define the AgRP dependent and independent mechanisms by which TTP2515 exerts its effects on energy balance.  相似文献   

15.
Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is synthesized principally in the stomach and is released in response to acute and chronic changes in nutritional state. In addition to having a powerful effect on the secretion of growth hormone, ghrelin stimulates food intake and transduces signals to hypothalamic regulatory nuclei that control energy homeostasis. Thus, it is interesting to note that the stomach may play an important role in not only digestion but also pituitary growth hormone release and central feeding regulation. We summarize recent findings on the integration of ghrelin into neuroendocrine networks that regulate food intake and energy balance.  相似文献   

16.
Martin NM  Smith KL  Bloom SR  Small CJ 《Peptides》2006,27(2):333-339
Recent studies of transgenic mice and humans have provided compelling evidence for the importance of the hypothalamic melanocortin system in the regulation of energy balance. Energy homeostasis is a balance between food intake (energy input) and energy expenditure. The melanocortin system regulates feeding via effects of the endogenous agonist, alpha-melanocyte stimulating hormone (alpha-MSH) and the endogenous antagonist agouti-related protein (AGRP) on melanocortin 3 and 4 receptors (MC3-Rs and MC4-Rs). It has been demonstrated that the melanocortin system interacts with the hypothalamo-pituitary-thyroid (HPT) axis. Thyroid hormones influence metabolism and hence energy expenditure. Therefore, an interaction between the HPT axis and the melanocortin system would allow control of both sides of the energy balance equation, by the regulation of both energy input and energy expenditure. Here we will discuss the evidence demonstrating interactions between the melanocortin system and the HPT axis.  相似文献   

17.
The regulation of adipose tissue mass and energy expenditure is currently subject to intensive research, which primarily relates to the discovery of leptin. Leptin is a peptide, which is the product of the obese (ob) gene expressed in adipose tissue of several species icluding humans. Leptin is supposed to serve both as an index of fat mass and as a sensor of energy balance. Administration of recombinant murine leptin in ob/ob-mice, which do not produce leptin, decreases food intake and increases thermogenesis both of which result in a reduction in body weight and adipose tissue mass. The calorigenic effect of leptin presumably acts through an increase in sympathetic outflow which in turn activates the beta3 adrenergic receptor in brown adipose tissue. The regulation and action of endogenous leptin in humans are less well understood, and clinical grade recombinant human leptin is so far not available. Serum leptin correlates logarithmically with total body fat in both normal weight and obese subjects, which suggest insensitivity to leptin in obese patients. Furthermore, more rapid excursions in serum leptin have been reported following short-term changes in caloric intake and administration of insulin. Growth hormone (GH) exerts pronounced effects on lipid metabolism and resting energy expenditure. The lipolytic actions of GH appear to involve both increased sensitivity to the beta-adrenergic pathway, and a suppression of adipose tissue lipoprotein lipase activity. The calorigenic effects of GH have been shown not only to be secondary to changes in lean body mass. Growth hormone administration furthermore increases the peripheral conversion of thyroxine to triiodothyronine, which may contribute to the overall actions of GH on fuel and energy metabolism. So far, little is known about the effects of GH and iodothyronines on serum leptin levels in humans. We therefore measured serum leptin levels and energy expenditure before and after the administration of GH and triiodothyronine, alone and in combinaion, in a randomized double-blind placebo-controlled study in healthy young male adults. The dose of triiodothyronine was selected to obtain serum levels comparable to those seen after GH administration.  相似文献   

18.
A new dimension to the regulation of energy balance has come from the identification of the ob (obese) gene and its protein product, leptin. Leptin is produced primarily in white adipose tissue, but synthesis also occurs in brown fat and the placenta. Several physiological functions have been described for leptin‐the inhibition of food intake, the stimulation/maintenance of energy expenditure, as a signal of energy reserves to the reproductive system, and as a factor in haematopoiesis. The production of leptin by white fat is influenced by a number of factors, including insulin and glucocorticoids (which are stimulatory), and fasting, cold exposure and ß‐adrenoceptor agonists (which are inhibitory). A key role in the regulation of leptin production is envisaged for the sympathetic nervous system, operating through ß3‐adreno‐ceptors. The leptin receptor gene is expressed in a wide range of tissues, and several splice variants are evident. A long form variant (Ob‐Rb) with an intracellular signalling domain is found particularly in the hypothalamus. Leptin exerts its central effects through neuropeptide Y, and through the glucagon‐like peptide‐1 and melanocortin systems, but it may also interact with other neuroendocrine pathways. The role and function of the leptin system in agricultural animals has not been established, but it offers a potential new target for the manipulation of body fat.  相似文献   

19.
Leptin is a hormone originally identified in adipocytes. It is involved in the regulation of fat deposition and energy expenditure and in other functions, such as reproduction. The presence of leptin has been reported in several reproductive organs. However, few studies have addressed its expression in the ovary. Moreover, the existing information is not consistent with regard to the particular cell types responsible for leptin expression. In this work we studied the distribution of leptin in the rat ovary by immunohistochemistry (IHC) and in situ hybridization (ISH). Leptin staining was found in steroid-producing cells: thecal, luteal, and interstitial cells. The strongest signal with both techniques was found in the cytoplasm of oocytes. A weak reaction for leptin mRNA was detected in granulosa of all growing follicles, although leptin protein was found only in the mature follicle. Western blotting analysis detects a strongly reactive 16-kD band, giving further support to the presence of leptin in the rat ovary. Variations in this immunoreactive band were found throughout the estrous cycle. Localization of leptin in the ovary may contribute to a better understanding of female reproductive function.  相似文献   

20.
Nahon JL 《Comptes rendus biologies》2006,329(8):623-38; discussion 653-5
A number of different neuropeptides exert powerful concerted controls on feeding behavior and energy balance, most of them being produced in hypothalamic neuronal networks under stimulation by anabolic and catabolic peripheral hormones such as ghrelin and leptin, respectively. These peptide-expressing neurons interconnect extensively to integrate the multiple opposing signals that mediate changes in energy expenditure. In the present review I have summarized our current knowledge about two key peptidic systems involved in regulating appetite and energy homeostasis, the melanocortin system (alpha-MSH, agouti and Agouti-related peptides, MC receptors and mahogany protein) and the melanin-concentrating hormone system (proMCH-derived peptides and MCH receptors) that contribute to satiety and feeding-initiation, respectively, with concurrent effects on energy expenditure. I have focused particularly on recent data concerning transgenic mice and the ongoing development of MC/MCH receptor antagonists/agonists that may represent promising drugs to treat human eating disorders on both sides of the energy balance (anorexia, obesity).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号