首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated whether attenuation of sympathoadrenal responses to recurrent hypoglycemia is mediated by diminished noradrenergic activity in the hypothalamus. Male Sprague-Dawley rats received either once daily insulin (1.0 units/kg) injections or an equal administration of saline for 3 days. Both groups received an administration of insulin on the fourth day, during which blood glucose and plasma catecholamines were determined, and extracellular norepinephrine (NE) in the ventromedial hypothalamus (VMH) or paraventricular hypothalamic nucleus (PVN) was monitored with microdialysis. The peak response of plasma epinephrine to insulin-induced hypoglycemia (nadir approximately 3.2 mmol/l) was significantly reduced during the fourth hypoglycemic episode (774 +/- 134 pg/ml) compared with the first episode (2,561 +/- 410 pg/ml, P < 0.001). Baseline levels of extracellular NE were elevated approximately 25% (P = 0.07) in the VMH and approximately 46% (P = 0.03) in the PVN after multiple hypoglycemic episodes. There was no difference in noradrenergic activity during the first or fourth hypoglycemic episode in either brain area. The reduced sympathoadrenal output after recurrent hypoglycemia is likely postsynaptic from hypothalamic NE release or is mediated via a collateral pathway.  相似文献   

2.
Antecedent hypoglycemia leads to impaired counterregulation and hypoglycemic unawareness. To ascertain whether antecedent portal vein hypoglycemia impairs portal vein glucose sensing, thereby inducing counterregulatory failure, we compared the effects of antecedent hypoglycemia, with and without normalization of portal vein glycemia, upon the counterregulatory response to subsequent hypoglycemia. Male Wistar rats were chronically cannulated in the carotid artery (sampling), jugular vein (glucose and insulin infusion), and mesenteric vein (glucose infusion). On day 1, the following three distinct antecedent protocols were employed: 1) HYPO-HYPO: systemic hypoglycemia (2.52 +/- 0.11 mM); 2) HYPO-EUG: systemic hypoglycemia (2.70 +/- 0.03 mM) with normalization of portal vein glycemia (portal vein glucose = 5.86 +/- 0.10 mM); and 3) EUG-EUG: systemic euglycemia (6.33 +/- 0.31 mM). On day 2, all groups underwent a hyperinsulinemic-hypoglycemic clamp in which the fall in glycemia was controlled so as to reach the nadir (2.34 +/- 0.04 mM) by minute 75. Counterregulatory hormone responses were measured at basal (-30 and 0) and during hypoglycemia (60-105 min). Compared with EUG-EUG, antecedent hypoglycemia (HYPO-HYPO) significantly blunted the peak epinephrine (10.44 +/- 1.35 vs. 15.75 +/- 1.33 nM: P = 0.01) and glucagon (341 +/- 16 vs. 597 +/- 82 pg/ml: P = 0.03) responses to next-day hypoglycemia. Normalization of portal glycemia during systemic hypoglycemia on day 1 (HYPO-EUG) prevented blunting of the peak epinephrine (15.59 +/- 1.43 vs. 15.75 +/- 1.33 nM: P = 0.94) and glucagon (523 +/- 169 vs. 597 +/- 82 pg/ml: P = 0.66) responses to day 2 hypoglycemia. Consistent with hormonal responses, the glucose infusion rate during day 2 hypoglycemia was substantially elevated in HYPO-HYPO (74 +/- 12 vs. 49 +/- 4 micromol x kg(-1) x min(-1); P = 0.03) but not HYPO-EUG (39 +/- 7 vs. 49 +/- 4 micromol x kg(-1) x min(-1): P = 0.36). Antecedent hypoglycemia local to the portal vein is required for the full induction of hypoglycemia-associated counterregulatory failure with slow-onset hypoglycemia.  相似文献   

3.
We tested the hypothesis that increased endogenous cortisol secretion reduces autonomic neuroendocrine and neurogenic symptom responses to subsequent hypoglycemia. Twelve healthy young adults were studied on two separate occasions, once after infusions of a pharmacological dose of alpha-(1-24)-ACTH (100 microg/h) from 0930 to 1200 and 1330 to 1600, which raised plasma cortisol levels to approximately 45 microg/dl on day 1, and once after saline infusions on day 1. Hyperinsulinemic (2.0 mU x kg(-1) x min(-1)) stepped hypoglycemic clamps (90, 75, 65, 55, and 45 mg/dl glucose steps) were performed on the morning of day 2 on both occasions. These markedly elevated antecedent endogenous cortisol levels reduced the adrenomedullary (P = 0.004, final plasma epinephrine levels of 489 +/-64 vs. 816 +/-113 pg/ml), sympathetic neural (P = 0.0022, final plasma norepinephrine levels of 244 +/-15 vs. 342 +/-22 pg/ml), parasympathetic neural (P = 0.0434, final plasma pancreatic polypeptide levels of 312 +/- 37 vs. 424 +/- 56 pg/ml), and neurogenic (autonomic) symptom (P = 0.0097, final symptom score of 7.1 +/-1.5 vs. 10.6 +/- 1.6) responses to subsequent hypoglycemia. Growth hormone, but not glucagon or cortisol, responses were also reduced. The findings that increased endogenous cortisol secretion reduces autonomic neuroendocrine and neurogenic symptom responses to subsequent hypoglycemia are potentially relevant to cortisol mediation of hypoglycemia-associated autonomic failure, and thus a vicious cycle of recurrent iatrogenic hypoglycemia, in people with diabetes mellitus.  相似文献   

4.

Aims

Hypoglycemia is a severe side effect of intensive insulin therapy. Recurrent hypoglycemia (RH) impairs the counter-regulatory response (CRR) which restores euglycemia. During hypoglycemia, ventromedial hypothalamus (VMH) production of nitric oxide (NO) and activation of its receptor soluble guanylyl cyclase (sGC) are critical for the CRR. Hypoglycemia also increases brain reactive oxygen species (ROS) production. NO production in the presence of ROS causes protein S-nitrosylation. S-nitrosylation of sGC impairs its function and induces desensitization to NO. We hypothesized that during hypoglycemia, the interaction between NO and ROS increases VMH sGC S-nitrosylation levels and impairs the CRR to subsequent episodes of hypoglycemia. VMH ROS production and S-nitrosylation were quantified following three consecutive daily episodes of insulin-hypoglycemia (RH model). The CRR was evaluated in rats in response to acute insulin-induced hypoglycemia or via hypoglycemic-hyperinsulinemic clamps. Pretreatment with the anti-oxidant N-acetyl-cysteine (NAC) was used to prevent increased VMH S-nitrosylation.

Results

Acute insulin-hypoglycemia increased VMH ROS levels by 49±6.3%. RH increased VMH sGC S-nitrosylation. Increasing VMH S-nitrosylation with intracerebroventricular injection of the nitrosylating agent S-nitroso-L-cysteine (CSNO) was associated with decreased glucagon secretion during hypoglycemic clamp. Finally, in RH rats pre-treated with NAC (0.5% in drinking water for 9 days) hypoglycemia-induced VMH ROS production was prevented and glucagon and epinephrine production was not blunted in response to subsequent insulin-hypoglycemia.

Conclusion

These data suggest that NAC may be clinically useful in preventing impaired CRR in patients undergoing intensive-insulin therapy.  相似文献   

5.
To understand the mechanisms whereby recurrent hypoglycemia increases the risk of subsequent hypoglycemia, it was necessary to differentiate the effects of recurrent hyperinsulinemia from those of hyperinsulinemic hypoglycemia. We examined basal and hypoglycemic endocrine function in normal rats, streptozotocin-diabetic controls, and diabetic rats exposed to 4 days of 2 episodes/day of hyperinsulinemic hypoglycemia (DH) or hyperinsulinemic hyperglycemia (DI). DH and DI rats differentiated the effects of hyperinsulinemia from those of hypoglycemia. In diabetic controls, basal plasma ACTH tended to be increased, and plasma corticosterone, plasma somatostatin, and pancreatic prosomatostatin and proglucagon mRNA were increased (P < 0.05) vs. normal rats. These parameters were normalized in DH and DI rats. In diabetic controls, glucagon, epinephrine, norepinephrine, corticosterone, and peak glucose production responses to hypoglycemia were reduced (P < 0.05) vs. normal rats. In DI rats, epinephrine responses were normalized. Conversely, DH rats displayed marked further impairment of epinephrine and glucose production responses and increased peripheral insulin sensitivity (P < 0.05 vs. diabetic controls). Both insulin regimens partially normalized glucagon and fully normalized norepinephrine and corticosterone responses. In summary, recurrent hyperinsulinemia in diabetic rats normalized most pituitary-adrenal, sympathoadrenal, and pancreatic parameters. However, concurrent hypoglycemia further impaired epinephrine and glucose production responses and increased insulin sensitivity. We conclude that 1) recurrent hypoglycemia may increase the risk of subsequent hypoglycemia by increasing insulin sensitivity, and 2) epinephrine counterregulation is particularly sensitive to impairment by recurrent hypoglycemia.  相似文献   

6.
Alterations in circadian rhythm generation may be related to the development of mood disorders. Although it has been reported that the most popular antidepressant, selective serotonin reuptake inhibitors (SSRIs) affect circadian phase, no data are available that describe the effects of SSRIs on other circadian parameters (period, amplitude and damping rate) in dissociated cells. In the present study we used real-time monitoring of bioluminescence in rat-1 fibroblasts expressing the Period1-luciferase transgene, and that in Period1-luciferase transgenic mouse suprachiasmatic nucleus (SCN) explants, in order to characterize the effects of SSRI on circadian oscillator function in vitro. We found that mRNA of the serotonin transporter (SERT), a target of SSRIs, was expressed in rat-1 fibroblasts. Sertraline, fluoxetine, fluvoxamine, citalopram and paroxetine all significantly shortened the period of Period1-bioluminescence rhythms in rat-1 fibroblasts. The amplitude was reduced by sertraline, and the damping rate was decreased by sertraline, fluoxetine, flvoxamine and paroxetine. The effect of sertraline was dose-dependent, and it also shortened the circadian period in the SCN. SERT is associated with lipid microdomains, which are required for efficient SERT activity. Indeed, cholesterol chelating reagent methyl-beta-cyclodextrin significantly reduced the period and the amplitude in rat-1 fibroblasts. Furthermore, lipid binding reagent xylazine significantly reduced the period. In summary our data present evidence that SSRIs affect circadian rhythmicity. The action of SSRIs is likely mediated by suppression of SERT activity. A better understanding of the relationship between mental illness and biological timing may yield new insight into disease etiology and avenues for treatment.  相似文献   

7.
Hypoglycemia-induced counterregulatory failure is a dangerous complication of insulin use in diabetes mellitus. Controlled hypoglycemia studies in gene knockout models, which require the use of mice, would aid in identifying causes of defective counterregulation. Because stress can influence counterregulatory hormones and glucose homeostasis, we developed glucose clamps with remote blood sampling in conscious, unrestrained mice. Male C57BL/6 mice implanted with indwelling carotid artery and jugular vein catheters were subjected to 2 h of hyperinsulinemic glucose clamps 24 h apart, with a 6-h fast before each clamp. On day 1, blood glucose was maintained (euglycemia, 178 +/- 4 mg/dl) or decreased to 62 +/- 1 mg/dl (hypoglycemia) by insulin (20 mU x kg(-1) x min(-1)) and variable glucose infusion. Donor blood was continuously infused to replace blood sample volume. Baseline plasma epinephrine (32 +/- 8 pg/ml), corticosterone (16.1 +/- 1.8 microg/dl), and glucagon (35 +/- 3 pg/ml) were unchanged during euglycemia but increased significantly during hypoglycemia, with a glycemic threshold of approximately 80 mg/dl. On day 2, all mice underwent a hypoglycemic clamp (blood glucose, 64 +/- 1 mg/dl). Compared with mice that were euglycemic on day 1, previously hypoglycemic mice had significantly higher glucose requirements and significantly lower plasma glucagon and corticosterone (n = 6/group) on day 2. Epinephrine tended to decrease, although not significantly, in repeatedly hypoglycemic mice. Pre- and post-clamp insulin levels were similar between groups. We conclude that counterregulatory responses to acute and repeated hypoglycemia in unrestrained, chronically cannulated mice reproduce aspects of counterregulation in humans, and that repeated hypoglycemia in mice is a useful model of counterregulatory failure.  相似文献   

8.
Obesity blunts catecholamine and growth hormone (GH) responses to exercise in adults, but the effect of obesity on these exercise-associated hormonal responses in children is unclear. Therefore, the aim of the present study was to asses the effect of childhood obesity on the counterregulatory hormonal response to acute exercise. Twenty-five obese children (Ob; body mass index > 95%), and 25 age, gender, and maturity-matched normal-weight controls (NW) participated in the study. Exercise consisted of ten 2-min bouts of constant-cycle ergometry above the anaerobic threshold, with 1-min rest intervals between each bout. Pre-, post-, and 120-min postexercise blood samples were collected for circulating components of the GH-IGF-I axis and catecholamines. There were no differences in peak exercise heart rate, serum lactate, and peak O2 uptake normalized to lean body mass between the groups. Obesity attenuated the GH response to exercise (8.9 +/- 1.1 vs. 3.4 +/- 0.7 ng/ml in NW and Ob participants, respectively; P < 0.02). No significant differences in the response to exercise were found for other components of the GH-IGF-I axis. Obesity attenuated the catecholamine response to exercise (epinephrine: 52.5 +/- 12.7 vs. 18.7 +/- 3.7 pg/ml, P < 0.02; norepinephrine: 479.5 +/- 109.9 vs. 218.0 +/- 26.0 pg/ml, P < 0.04; dopamine: 17.2 +/- 2.9 vs. 3.5 +/- 1.9 pg/ml, P < 0.006 in NW and Ob, respectively). Insulin levels were significantly higher in the obese children and dropped significantly after exercise in both groups. Despite the elevated insulin levels and the blunted counterregulatory response, none of the participants developed hypoglycemia. Childhood obesity was associated with attenuated GH and catecholamine response to acute exercise. These abnormalities were compensated for, so that exercise was not associated with hypoglycemia, despite increased insulin levels in obese children.  相似文献   

9.
Type 2 corticotropin-releasing factor (CRF) receptors (CRFR2) within the ventromedial hypothalamus (VMH), a key glucose-sensing region, play a major role in regulating the hormonal counterregulatory responses (CRRs) to acute hypoglycemia. The VMH expresses both subtypes of CRF receptors, CRFR1 and CRFR2. The objective of this study was to examine the role of the CRFR1 receptor in the VMH in the regulation of the CRR to acute hypoglycemia. To compare the hormonal CRR to hypoglycemia, awake and unrestrained Sprague-Dawley rats were bilaterally microinjected to the VMH with either 1) aECF, 2) CRF (1 pmol/side), 3) CRFR1 antagonist Antalarmin (500 pmol/side), or 4) CRF + Antalarmin prior to undergoing a hyperinsulinemic hypoglycemic (2.8 mM) clamp. A second series of studies also incorporated an infusion of [(3)H]glucose to allow the calculation of glucose dynamics. In addition the effect of CRFR1 antagonism in the paraventricular nucleus (PVN) was studied. Activation of VMH CRFR1 increased, whereas inhibition of CRFR1 suppressed hypoglycemia-induced CRRs. Inhibition of VMH CRFR1 also increased peripheral glucose utilization and reduced endogenous glucose production during hypoglycemia, whereas VMH CRF reduced peripheral glucose utilization. In contrast CRFR1 inhibition in the PVN blunted corticosterone but not epinephrine or glucagon CRR to hypoglycemia. In contrast to CRFR2 activation, CRFR1 activation within the VMH amplifies CRRs to acute hypoglycemia. The balance between these two opposing CRFRs in this key glucose-sensing region may play an important role in determining the magnitude of CRRs to acute hypoglycemia.  相似文献   

10.
The aim of this study was to determine whether activation of central type II glucocorticoid receptors can blunt autonomic nervous system counterregulatory responses to subsequent hypoglycemia. Sixty conscious unrestrained Sprague-Dawley rats were studied during 2-day experiments. Day 1 consisted of either two episodes of clamped 2-h hyperinsulinemic (30 pmol x kg(-1) x min(-1)) hypoglycemia (2.8 +/- 0.1 mM; n = 12), hyperinsulinemic euglycemia (6.2 +/- 0.1 mM; n = 12), hyperinsulinemic euglycemia plus simultaneous lateral cerebroventricular infusion of saline (24 microl/h; n = 8), or hyperinsulinemic euglycemia plus either lateral cerebral ventricular infusion (n = 8; LV-DEX group), fourth cerebral ventricular (n = 10; 4V-DEX group), or peripheral (n = 10; P-DEX group) infusion of dexamethasone (5 microg/h), a specific type II glucocorticoid receptor analog. For all groups, day 2 consisted of a 2-h hyperinsulinemic (30 pmol x kg(-1) x min(-1)) or hypoglycemic (2.9 +/- 0.2 mM) clamp. The hypoglycemic group had blunted epinephrine, glucagon, and endogenous glucose production in response to subsequent hypoglycemia. Consequently, the glucose infusion rate to maintain the glucose levels was significantly greater in this group vs. all other groups. The LV-DEX group did not have blunted counterregulatory responses to subsequent hypoglycemia, but the P-DEX and 4V-DEX groups had significantly lower epinephrine and norepinephrine responses to hypoglycemia compared with all other groups. In summary, peripheral and fourth cerebral ventricular but not lateral cerebral ventricular infusion of dexamethasone led to significant blunting of autonomic counterregulatory responses to subsequent hypoglycemia. These data suggest that prior activation of type II glucocorticoid receptors within the hindbrain plays a major role in blunting autonomic nervous system counterregulatory responses to subsequent hypoglycemia in the conscious rat.  相似文献   

11.
To elucidate the type of spinal afferent involved in hypoglycemic detection at the portal vein, we considered the potential role of capsaicin-sensitive primary sensory neurons. Specifically, we examined the effect of capsaicin-induced ablation of portal vein afferents on the sympathoadrenal response to hypoglycemia. Under anesthesia, the portal vein was isolated in rats and either capsaicin (CAP) or the vehicle (CON) solution applied topically. During the same surgery, the carotid artery (sampling) and jugular vein (infusion) were cannulated. One week later, all animals underwent a hyperinsulinemic hypoglycemic clamp, with glucose (variable) and insulin (25 mU x kg(-1) x min(-1)) infused via the jugular vein. Systemic hypoglycemia (2.76 +/- 0.05 mM) was induced by minute 75 and sustained until minute 105. By design, no significant differences were observed in arterial glucose or insulin concentrations between groups. When hypoglycemia was induced in CON, the plasma epinephrine concentration increased from 0.67 +/- 0.05 nM at basal to 36.15 +/- 2.32 nM by minute 105. Compared with CON, CAP animals demonstrated an 80% suppression in epinephrine levels by minute 105, 7.11 +/- 0.55 nM (P < 0.001). A similar response to hypoglycemia was observed for norepinephrine, with CAP values suppressed by 48% compared with CON. Immunohistochemical analysis of the portal vein revealed an 85% decrease in the number of calcitonin gene-related peptide-reactive nerve fibers following capsaicin-induced ablation. That the suppression in the sympathoadrenal response was comparable to our previous findings for total denervation of the portal vein indicates that hypoglycemic detection at the portal vein is mediated by capsaicin-sensitive primary sensory neurons.  相似文献   

12.
OBJECTIVES: The aim of this study was to examine hormonal counterregulation during insulin-induced hypoglycemia in type-1 diabetic patients during long-term near normoglycemic insulin therapy and intensive clinical care. METHODS: Type-1 diabetic patients (age 35.3 +/- 2 years, body mass index 22.8 +/- 1 kg x m(-2), mean diabetes duration 13.6 (11-17 years), mean HbA1c during the last year 6.6 +/- 0.1%) and nondiabetic subjects were studied during (0-120 min) and after (120-240 min) hypoglycemic (3.05 mmol/l) hyperinsulinemic (approximately 330 pmol/l) clamp tests. RESULTS: During hypoglycemia peak plasma concentrations of glucagon (199 +/- 16 vs. 155 +/- 11 ng/l, p < 0.05), epinephrine (4,514 +/- 644 vs. 1,676 +/- 513 pmol/l, p < 0.001), norepinephrine (2.21 +/- 0.14 vs. 1.35 +/- 0.19 nmol/l, p < 0.01) and cortisol (532 +/- 44 vs. 334 +/- 61 nmol/l) were reduced in the diabetic patients. Plasma lactate did not change from baseline values (0.51 +/- 0.06 mmol/l) in diabetic but doubled in healthy subjects (1.13 +/- 0.111 mmol/l, p < 0.001 vs. control). During the posthypoglycemic recovery period plasma concentrations of free fatty acids were higher in diabetic patients at 240 min (1.34 +/- 0.12 vs. 2.01 +/- 0.23 mmol/l, p < 0.05). CONCLUSION: Despite long-term near physiologic insulin substitution and the low incidence of hypoglycemia, hormonal hypoglycemia counterregulation was impaired in type-1 diabetic patients after a diabetes duration of more than 10 years.  相似文献   

13.
To better understand the involvement of hindbrain catecholamine neurons in hypovolemia-induced secretion of AVP, we injected antidopamine beta-hydroxylase saporin (DSAP) or unconjugated saporin (SAP) control solution into the hypothalamic paraventricular nucleus (PVH) of anesthetized rats to retrogradely lesion catecholamine neurons innervating magnocellular areas of the hypothalamus. Subsequently, hypotensive hypovolemia was induced by remote blood withdrawal (4.5 ml, 1 ml/min) using an intra-atrial catheter. Blood was sampled at 2, 5, 20, and 50 min after onset of blood withdrawal. The AVP response was severely impaired by DSAP. Peak responses at 50 min were 51 pg/ml in SAP control and 17 pg/ml in DSAP-lesioned rats, indicating the importance of catecholamine neurons for this response. We also measured AVP responses to osmotic challenge induced by administration of hypertonic saline (1 M, 15 ml/kg, sc) and to insulin-induced hypoglycemia. Osmotic challenge increased AVP levels, but the response was not impaired by DSAP, indicating that AVP neurons were not damaged by the DSAP injection. Insulin-induced hypoglycemia did not increase AVP levels in either DSAP- or SAP-treated rats. However, the same dose of insulin increased food intake and corticosterone secretion in SAP controls, and these responses were profoundly impaired by DSAP. Thus catecholamine neurons are required for both the AVP response to hypotensive hypovolemia and for feeding and corticosterone responses to hypoglycemia. Lack of an AVP response to insulin-induced hypoglycemia in intact rats therefore indicates that responses to hypovolemia and hypoglycemia are mediated by different catecholamine neurons under distinct sensory controls.  相似文献   

14.
The aim of this study was to test the hypothesis that antecedent short-term administration of estradiol or progesterone into the central nervous system (CNS) reduces levels of neuroendocrine counterregulatory hormones during subsequent hypoglycemia. Conscious unrestrained male Sprague-Dawley rats were studied during randomized 2-day experiments. Day 1 consisted of an 8-h lateral ventricle infusion of estradiol (1 mug/mul; n = 9), progesterone (1 mug/mul; n = 9), or saline (0.2 mul/min; n = 10). On day 2, a 2-h hyperinsulinemic (30 pmol.kg(-1).min(-1)) hypoglycemic (2.9 +/- 0.2 mM) clamp was performed on all rats. Central administration of estradiol on day 1 resulted in significantly lower plasma epinephrine levels during hypoglycemia compared with saline, whereas central administration of progesterone resulted in increased levels of plasma norepinephrine and decreased levels of corticosterone both at baseline and during hypoglycemia. Glucagon responses during hypoglycemia were unaffected by prior administration of estradiol or progesterone. Endogenous glucose production following day 1 estradiol was significantly lower during day 2 hypoglycemia, and consequently, the glucose infusion rate to maintain the glycemia was significantly greater after estradiol administration compared with saline. These data suggest that 1) CNS administration of both female reproductive hormones can have rapid effects in modulating levels of counterregulatory hormones during subsequent hypoglycemia in conscious male rats, 2) forebrain administration of reproductive hormones can significantly reduce pituitary adrenal and sympathetic nervous system drive during hypoglycemia, 3) reproductive steroid hormones produce differential effects on sympathetic nervous system activity during hypoglycemia, and 4) reduction of epinephrine resulted in significantly blunted metabolic counterregulatory responses during hypoglycemia.  相似文献   

15.
To examine the influence of endogenous opioids on the hormonal response to isotonic exercise, eight males were studied 2 h after oral administration of placebo or 50 mg naltrexone, a long-lasting opioid antagonist. Venous blood samples were obtained before, during, and after 30 min of bicycle exercise at 70% VO2max. Naltrexone had no effect on resting cardiovascular, endocrine, or serum variables. During exercise epinephrine was higher [mean 433 +/- 100 (SE) pg/ml] at 30 min with naltrexone than during placebo (207 +/- 26 pg/ml, P less than 0.05). Plasma norepinephrine showed the same trend but the difference (2,012 +/- 340 pg/ml with naltrexone and 1,562 +/- 241 pg/ml with placebo) was not significant. Plasma glucose was higher at all times with naltrexone. However, the difference was significant only 10 min into recovery from exercise (104.7 +/- 4.7 vs. 94.5 +/- 2.8 mg/dl). Plasma growth hormone and cortisol increased during recovery and these elevations were significantly (P less than 0.05) augmented by naltrexone. Plasma vasopressin and prolactin increased with exercise as did heart rate, blood pressure, lactic acid, and several serum components; these increases were not affected by naltrexone. Psychological tension or anxiety was lower after exercise compared with before and this improved psychological state was not influenced by the naltrexone treatment. These data suggest that exercise-induced activation of the endogenous opioid system may serve to regulate the secretion of several important hormones (i.e., epinephrine) during and after exercise.  相似文献   

16.
Despite significant technological and pharmacological advancements, insulin replacement therapy fails to adequately replicate β-cell function, and so glucose control in type 1 diabetes mellitus (T1D) is frequently erratic, leading to periods of hypoglycemia. Moreover, the counterregulatory response (CRR) to falling blood glucose is impaired in diabetes, leading to an increased risk of severe hypoglycemia. It is now clear that the brain plays a significant role in the development of defective glucose counterregulation and impaired hypoglycemia awareness in diabetes. In this review, the basic intracellular glucose-sensing mechanisms are discussed, as well as the neural networks that respond to and coordinate the body's response to a hypoglycemic challenge. Subsequently, we discuss how the body responds to repeated hypoglycemia and how these adaptations may explain, at least in part, the development of impaired glucose counterregulation in diabetes.  相似文献   

17.
The mineralocorticoid (MC) receptor antagonist spironolactone (SL) improves morbidity and mortality in patients with congestive heart failure (CHF). We tested the hypothesis that the central nervous system actions of SL contribute to its beneficial effects. SL (100 ng/h for 28 days) or ethanol vehicle (VEH) was administered intracerebroventricularly or intraperitoneally to rats with CHF induced by coronary artery ligation (CL) and to SHAM-operated controls. The intracerebroventricular SL treatment prevented the increase in sodium appetite and the decreases in sodium and water excretion observed within a week of CL in VEH-treated CHF rats. Intraperitoneal SL also improved volume regulation in the CHF rats, but only after 3 wk of treatment. Four weeks of SL treatment, either intracerebroventricularly or intraperitoneally, ameliorated both the increase in sympathetic drive and the impaired baroreflex function observed in VEH-treated CHF rats. These findings suggest that activation of MC receptors in the central nervous system plays a critical role in the altered volume regulation and augmented sympathetic drive that characterize clinical heart failure.  相似文献   

18.
The anatomic connections of the paraventricular nucleus of the hypothalamus (PVN) are such that it is ideally situated to modulate and/or control autonomic responses to a variety of stressors, including hypoglycemia. In our experimental model of hypoglycemia-associated autonomic failure (HAAF), a syndrome in which the counterregulatory response to hypoglycemia is partially compromised via unknown mechanisms, activation of the PVN is blunted (15). We hypothesized that this blunted PVN activation during HAAF may be sufficient to cause the impaired counterregulatory response. To test this hypothesis, we anesthetized the PVN with lidocaine during insulin-induced hypoglycemia in rats and measured counterregulatory hormone levels. PVN inactivation decreased indexes of the sympathoadrenal response (plasma epinephrine and norepinephrine) and the hypothalamic-pituitary axis response (ACTH). Inactivation decreased the peak epinephrine response to hypoglycemia by almost half (-42 +/- 6% from control; P = 0.04) and the peak norepinephrine response by 34 +/- 5% (P = 0.01). The peak plasma ACTH levels attained were suppressed by 35 +/- 6% (P = 0.02). Adrenal corticosterone and pancreatic glucagon responses were not impaired. This pattern of neuroendocrine response is unlike that previously seen with our HAAF model. Control infusions of lidocaine >or=1 mm anterior or posterior to the PVN did not simulate this neuroendocrine pattern. Thus it appears that decreased PVN activation, as occurs with HAAF, may be involved in specific components of HAAF (i.e., blunting the sympathoadrenal and hypothalamic-pituitary-adrenocortical axis response), but not in others (i.e., blunting the glucagon response).  相似文献   

19.
We studied whether the previously reported intensified beta-endorphin response to exercise after training might result from a training-induced general increase in anterior pituitary secretory capacity. Identical hypoglycemia was induced by insulin infusion in 7 untrained (VO2max 49 +/- 4 ml X (kg X min)-1, mean and SE) and 8 physically trained (VO2max 65 +/- 4 ml X (kg X min)-1) subjects. In response to hypoglycemia, levels of beta-endorphin and prolactin immunoreactivity in serum increased similarly in trained (from 41 +/- 2 pg X ml-1 and 6 +/- 1 pg X ml-1 before hypoglycemia to 103 +/- 11 pg X ml-1 and 43 +/- 9 pg X ml-1 during recovery, P less than 0.05) and untrained (from 35 +/- 7 pg X ml-1 and 7 +/- 2 pg X ml-1 to 113 +/- 18 pg X ml-1 and 31 +/- 8 pg X ml-1, P less than 0.05) subjects. Growth hormone (GH) was higher 90 min after glucose nadir in trained (61 +/- 13 mU X l-1) than in untrained (25 +/- 6 mU X l-1) subjects (P less than 0.05). Levels of thyrotropin (TSH) changed in neither of the groups. It is concluded that, in contrast to what has been formerly proposed, training does not result in a general increase in secretory capacity of the anterior pituitary gland. TSH responds to hypoglycemia neither in trained nor in untrained subjects. Finally, differences in beta-endorphin responses to exercise between trained and untrained subjects cannot be ascribed to differences in responsiveness to hypoglycemia.  相似文献   

20.
This study aimed to differentiate the effects of repeated antecedent hypoglycemia, antecedent marked hyperinsulinemia, and antecedent increases in corticosterone on counterregulation to subsequent hypoglycemia in normal rats. Specifically, we examined whether exposure to hyperinsulinemia or elevated corticosterone per se could impair subsequent counterregulation. Four groups of male Sprague-Dawley rats were used: 1) normal controls (N) had 4 days of sham antecedent treatment; 2) an antecedent hypoglycemia group (AH) had 7 episodes of hyperinsulinemic hypoglycemia over 4 days; 3) an antecedent hyperinsulinemia group (AE) had 7 episodes of hyperinsulinemic euglycemia; and 4) an antecedent corticosterone group (AC) had 7 episodes of intravenous corticosterone to simulate the hypoglycemic corticosterone levels in AH rats. On day 5, hyperinsulinemic euglycemic-hypoglycemic clamps were performed. Epinephrine responses to hypoglycemia were impaired (P < 0.05 vs. N) after antecedent hypoglycemia and hyperinsulinemia. This correlated with diminished (P < 0.05 vs. N) absolute glucose production responses in AH rats and diminished incremental glucose production responses in AE rats. Paradoxically, norepinephrine responses were increased (P < 0.05 vs. N) after antecedent hypoglycemia. Glucagon and corticosterone responses were unaffected by antecedent hypoglycemia and hyperinsulinemia. In AC rats, incremental but not absolute glucose production responses were decreased (P < 0.05 vs. N). However, neuroendocrine counterregulation was unaltered. We conclude that both antecedent hypoglycemia and hyperinsulinemia impair epinephrine and glucose production responses to subsequent hypoglycemia, suggesting that severe recurrent hyperinsulinemia may contribute to the development of hypoglycemia-associated autonomic failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号