首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The major problem in stem cell therapy includes viability and engraftment efficacy of stem cells after transplantation. Indeed, the vast majority of host-transfused cells do not survive beyond 24-72 hrs. To increase the survival and engraftment of implanted cardiac stem cells in the host, we developed a technique of treating these cells with resveratrol, and tested it in a rat model of left anterior descending (LAD) occlusion. Multi-potent clonogenic cardiac stem cells isolated from rat heart and stably transfected with EGFP were pre-treated with 2.5 μM resveratrol for 60 min. Rats were anaesthetized, hearts opened and the LAD occluded to induce heart attack. One week later, the cardiac reduced environment was confirmed in resveratrol treated rat hearts by the enhanced expression of nuclear factor-E2-related factor-2 (Nrf2) and redox effector factor-1 (Ref-1). M-mode echocardiography after stem cell therapy, showed improvement in cardiac function (left ventricular ejection fraction, fractional shortening and cardiac output) in both, the treated and control group after 7 days, but only resveratrol-modified stem cell group revealed improvement in cardiac function at the end of 1, 2 and 4 months time. The improvement of cardiac function was accompanied by enhanced stem cell survival and engraftment as demonstrated by the expression of cell proliferation marker Ki67 and differentiation of stem cells towards the regeneration of the myocardium as demonstrated by the expression of EGFP up to 4 months after LAD occlusion in the resveratrol-treated stem cell group. Expression of stromal cell-derived factor and myosin conclusively demonstrated homing of stem cells in the infarcted myocardium, its regeneration leading to improvement of cardiac function.  相似文献   

3.
Ke Q  Yang Y  Rana JS  Chen Y  Morgan JP  Xiao YF 《生理学报》2005,57(6):673-681
我们以往的研究表明,直接在心肌梗塞(myocardial infarction,MI)动物的心脏缺血区注射胚胎干细胞(embryonic stemceils,ESCs)可以提高其心肌功能,干细胞组织工程学可以使组织再生、修复。本研究旨在观察将ESCs接种到生物降解膜内并移植到梗塞部位的效果。通过结扎小鼠左冠状动脉制作MI模型,将培养3d的带有小鼠ESCs的聚羟基乙酸膜(polyglycolicacid,PGA)移植到心肌缺血及边缘区表面。实验小鼠分成4组:假手术组、MI组、MI+PGA组、MI+ESC组,移植操作8周后检测血流动力学和心肌功能。MI组的血压和左心室功能显著降低。与MI组和MI+PGA组相比,MI+ESC组的血压和心室功能显著改善,存活率也显著增高,在梗塞区检测到GFP阳性组织,表明ESCs存活,并可能有心肌再生。以上结果表明,移植生物降解膜内的ESCs可修复小鼠梗塞区心肌细胞并提高心脏功能。将ESCs和生物降解材料联合运用可能为修复受损心脏提供一个新的治疗方法。  相似文献   

4.
To study the efficiency of maintaining the reduced tissue environment via pre-treatment with natural antioxidant resveratrol in stem cell therapy, we pre-treated male Sprague-Dawley rats with resveratrol (2.5 mg/kg/day gavaged for 2 weeks). After occlusion of the left anterior descending coronary artery (LAD), adult cardiac stem cells stably expressing EGFP were injected into the border zone of the myocardium. One week after the LAD occlusion, the cardiac reduced environment was confirmed in resveratrol-treated rat hearts by the enhanced expression of nuclear factor-E2-related factor-2 (Nrf2) and redox effector factor-1 (Ref-1). In concert, cardiac functional parameters (left ventricular ejection fraction and fractional shortening) were significantly improved. The improvement of cardiac function was accompanied by the enhanced stem cell survival and proliferation as demonstrated by the expression of cell proliferation marker Ki67 and differentiation of stem cells towards the regeneration of the myocardium as demonstrated by the enhanced expression of EGFP 28 days after LAD occlusion in the resveratrol-treated hearts. Our results demonstrate that resveratrol maintained a reduced tissue environment by overexpressing Nrf2 and Ref-1 in rats resulting in an enhancement of the cardiac regeneration of the adult cardiac stem cells as demonstrated by increased cell survival and differentiation leading to cardiac function.  相似文献   

5.
Tissue engineering with muscle-derived stem cells   总被引:7,自引:0,他引:7  
Tissue engineering and cell therapy approaches aim to take advantage of the repopulating ability and plasticity of multipotent stem cells to regenerate lost or diseased tissue. Researchers continue to investigate stem cells in mature tissues and demonstrate the potential ability of organ-specific cells to differentiate into multiple lineages. One stem cell that displays such promise is the muscle-derived stem cell (MDSC). Data supporting the existence of MDSCs have emerged as part of investigations to improve myoblast cell transplantation for the treatment of muscular dystrophies. As these efforts continue, the potential for MDSC-based therapy for other musculoskeletal injuries, as well as for cardiac and smooth muscle injuries, is currently being explored.  相似文献   

6.
We investigated global and regional effects of myocardial transplantation of human induced pluripotent stem cell (iPSC)‐derived mesenchymal stem cells (iMSCs) in infarcted myocardium. Acute myocardial infarction (MI) was induced by ligation of left coronary artery of severe combined immunodeficient mice before 2 × 105 iMSCs or cell‐free saline were injected into peri‐infarcted anterior free wall. Sham‐operated animals received no injection. Global and regional myocardial function was assessed serially at 1‐week and 8‐week by segmental strain analysis by using two dimensional (2D) speckle tracking echocardiography. Early myocardial remodelling was observed at 1‐week and persisted to 8‐week with global contractility of ejection fraction and fractional area change in saline‐ (32.96 ± 14.23%; 21.50 ± 10.07%) and iMSC‐injected (32.95 ± 10.31%; 21.00 ± 7.11%) groups significantly depressed as compared to sham control (51.17 ± 11.69%, P < 0.05; 34.86 ± 9.82%, P < 0.05). However, myocardial dilatation was observed in saline‐injected animals (4.40 ± 0.62 mm, P < 0.05), but not iMSCs (4.29 ± 0.57 mm), when compared to sham control (3.74 ± 0.32 mm). Furthermore, strain analysis showed significant improved basal anterior wall strain (28.86 ± 8.16%, P < 0.05) in the iMSC group, but not saline‐injected (15.81 ± 13.92%), when compared to sham control (22.18 ± 4.13%). This was corroborated by multi‐segments deterioration of radial strain only in saline‐injected (21.50 ± 5.31%, P < 0.05), but not iMSC (25.67 ± 12.53%), when compared to sham control (34.88 ± 5.77%). Improvements of the myocardial strain coincided with the presence of interconnecting telocytes in interstitial space of the infarcted anterior segment of the heart. Our results show that localized injection of iMSCs alleviates ventricular remodelling, sustains global and regional myocardial strain by paracrine‐driven effect on neoangiogenesis and myocardial deformation/compliance via parenchymal and interstitial cell interactions in the infarcted myocardium.  相似文献   

7.
8.
Hu S  Cao W  Lan X  He Y  Lang J  Li C  Hu J  An R  Gao Z  Zhang Y 《Molecular imaging》2011,10(4):227-237
The purpose of this study was to investigate and compare the feasibility of rat sodium iodide symporter (rNIS) and human sodium iodide symporter (hNIS) as reporter genes for noninvasive monitoring of rat bone marrow mesenchymal stem cells (rBMSCs) transplanted into infarcted rat myocardium. rBMSCs were isolated from rat bone marrow. Adenovirus (Ad) was reconstructed to contain rNIS-enhanced green fluorescent protein (eGFP) or hNIS-eGFP. The transfection efficiency of Ad/eGFP/rNIS and Ad/eGFP/hNIS to rBMSCs was measured by real-time polymerase chain reaction, flow cytometry, Western blot, and immunofluorescence staining. The transfected rBMSCs were transplanted into infarcted rat myocardium followed by a single-photon emission computed tomography (SPECT) study with (99m)Tc-pertechnetate as the radiotracer and by autoradiography. The isolated rBMSCs were CD29, CD44, and CD90 positive and CD34, CD45, and CD11b negative. The expression of rNIS and hNIS in the transfected rBMSCs at both gene and protein levels was obviously higher than that without transfection. The myocardium of rats transplanted with transfected rBMSCs could be visualized by SPECT owing to the accumulation of (99m)Tc-pertechnetate in rBMSCs mediated by exogenous NIS genes. The accumulation of (99m)Tc-pertechnetate in myocardium mediated by rNIS was higher than that by hNIS, which was also confirmed by autoradiography. Both rNIS and hNIS are useful reporter genes to monitor BMSCs transplanted into infarcted myocardium in vivo with rNIS being superior to hNIS as the reporter gene.  相似文献   

9.
Long-term self-renewal of postnatal muscle-derived stem cells   总被引:13,自引:0,他引:13       下载免费PDF全文
The ability to undergo self-renewal is a defining characteristic of stem cells. Self-replenishing activity sustains tissue homeostasis and regeneration. In addition, stem cell therapy strategies require a heightened understanding of the basis of the self-renewal process to enable researchers and clinicians to obtain sufficient numbers of undifferentiated stem cells for cell and gene therapy. Here, we used postnatal muscle-derived stem cells to test the basic biological assumption of unlimited stem cell replication. Muscle-derived stem cells (MDSCs) expanded for 300 population doublings (PDs) showed no indication of replicative senescence. MDSCs preserved their phenotype (ScaI+/CD34+/desmin(low)) for 200 PDs and were capable of serial transplantation into the skeletal muscle of mdx mice, which model Duchenne muscular dystrophy. MDSCs expanded to this level exhibited high skeletal muscle regeneration comparable with that exhibited by minimally expanded cells. Expansion beyond 200 PDs resulted in lower muscle regeneration, loss of CD34 expression, loss of myogenic activity, and increased growth on soft agar, suggestive of inevitable cell aging attributable to expansion and possible transformation of the MDSCs. Although these results raise questions as to whether cellular transformations derive from cell culturing or provide evidence of cancer stem cells, they establish the remarkable long-term self-renewal and regeneration capacity of postnatal MDSCs.  相似文献   

10.
Cell transplantation has become an attractive option for cardiac regenerative therapy. However, poor cell survival and extensive redistribution throughout the body can drastically affect the outcome and safety of cell therapy. Although various approaches have been attempted to support the survival and engraftment of implanted cells, we need to apply a new comprehensive strategy by melding the in vitro and in vivo approaches to recondition the cells and infarcted myocardium. Here we summarize our understanding of cell survival and migration after transplantation into the damaged heart.  相似文献   

11.
肌源干细胞研究进展   总被引:1,自引:0,他引:1  
目前已证实肌肉是具有多向分化潜能的成体干细胞的一个储存库。研究者认为骨骼肌中至少有两种干细胞:肌卫星细胞(muscle satellite cells)和肌源干细胞(muscle-derived stem cells, MDSCs),并且使用几种方法从肌肉中分离获得不同类群的MDSCs。研究发现分离这些细胞的方法影响干细胞的特征。本文对MDSCs的行为、生物学特征、分离、分化及其在治疗组织器官修复和再生中应用的可能性等作一概括介绍。  相似文献   

12.
Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with diverse cytoprotective effects, and reported to have an important role in angiogenesis recently. Here we investigated whether HO-1 transduced by mesenchymal stem cells (MSCs) can induce angiogenic effects in infarcted myocardium. HO-1 was transfected into cultured MSCs using an adenoviral vector. 1 × 106 Ad-HO-1-transfected MSCs (HO-1-MSCs) or Ad-Null-transfected MSCs (Null-MSCs) or PBS was respectively injected into rat hearts intramyocardially at 1 h post-myocardial infarction. The results showed that HO-1-MSCs were able to induce stable expression of HO-1 in vitro and in vivo. The capillary density and expression of angiogenic growth factors, VEGF and FGF2 were significantly enhanced in HO-1-MSCs-treated hearts compared with Null-MSCs-treated and PBS-treated hearts. However, the angiogenic effects of HO-1 were abolished by treating the animals with HO inhibitor, zinc protoporphyrin. The myocardial apoptosis was marked reduced with significantly reduced fibrotic area in HO-1-MSCs-treated hearts; Furthermore, the cardiac function and remodeling were also significantly improved in HO-1-MSCs-treated hearts. Our current findings support the premise that HO-1 transduced by MSCs can induce angiogenic effects and improve heart function after acute myocardial infarction.  相似文献   

13.
The present study was to determine the effects of the heme oxygenase-1 (HO-1) modified mesenchymal stem cells (MSCs) transplantation into acute MI hearts on normalizing the ratio of MMPs/TIMPs and remodeling in infarcted myocardium. HO-1 was transfected into cultured MSCs using an adenoviral vector. 1 × 106 Ad-HO-1-transfected MSCs (HO-1-MSCs) or Ad-Null-transfected MSCs (Null-MSCs) or PBS was respectively injected into rat hearts 1 h intramyocardially after myocardial infarction. The cardiac performance was significantly improved and left ventricular dilatation was significantly attenuated in HO-1-MSCs transplanted hearts. Moreover, a significant increase in microvessel density was observed in HO-1-MSCs transplanted hearts. TIMP2,3 expression in HO-1-MSCs transplanted hearts was significantly increased, and MMP2,9 expression in HO-1-MSCs transplanted hearts was significantly lower than Null-MSCs transplanted and PBS-treated hearts. TIMP1 expression did not vary significantly. Null-MSCs transplantation did not decrease the expression of MMP2,9 significantly compared with PBS-treated hearts. The ratio of TIMP2 to MMP2, and TIMP3 to MMP9 in cell-grafted hearts was increased significantly. HO-1-MSCs transplantation normalize the ratio of MMPs/TIMPs, contributing to the reversion of myocardial extracellular remodeling.  相似文献   

14.
We investigated relationship between the maturity and density of muscle cells and developed a rapid isolation method to acquire stem cells from skeletal muscle. Mononuclear cells were isolated from the lower hind-limb muscles of 7-d-old male Sprague–Dawley rats and separated by Percoll density gradient centrifugation. After centrifugation, the cells were layered in the interfaces between each Percoll density layer. Flow cytometry was used to investigate the Sca-1, Pax7, CD34, CD45, M-cadherin, and myosin expression of the cells in each density layer. We found that CD45-positive cells were not present in freshly isolated muscle cells. CD34-, Pax7-positive cells were mainly observed at the interface between the 15% and 25% Percoll layers and had a density of 1.0235–1.0355 g/ml. Cells positive for M-cadherin were at the 25–35% Percoll density interface and had a density of 1.0355–1.0492 g/ml. We conclude that because there appears to be a correlation between maturity and density, muscle-derived stem cells may be isolated successfully from the 15–25% Percoll interface.  相似文献   

15.
Cardiomyocyte differentiation from embryonic and adult stem cells   总被引:3,自引:0,他引:3  
In recent years multiple reports indicating that embryonic as well as adult stem cells can differentiate to cardiomyocytes have ignited discussions on whether these stem cells could lead to new therapies for patients with heart disease. Recent developments have been made in the generation of cardiomyocytes from both embryonic and adult stem cells, and progress towards clinical applications in patients with heart failure has been made. Nevertheless, controversies surrounding safety and transdifferentiation issues will need to be overcome before these stem cell approaches can reach their full potential.  相似文献   

16.
We tested the hypothesis that granulocyte colony-stimulating factor (G-CSF) administration would enhance the efficacy of cellular cardiomyoplasty with embryonic stem (ES) cell-derived cardiomyocytes in infarcted myocardium. Three weeks after myocardial infarction by cryoinjury, Sprague-Dawley rats were randomized to receive either an injection of medium, ES cell-derived cardiomyocyte transplantation, G-CSF administration, or a combination of G-CSF administration and ES cell-derived cardiomyocyte transplantation. Eight weeks after treatment, the cardiac tissue formation, neovascularization, and apoptotic activity in the infarct regions were evaluated by histology and immunohistochemistry. The left ventricular (LV) dimensions and function of the treated heart were evaluated by echocardiography. Transplanted ES cell-derived cardiomyocytes survived and participated in the myocardial regeneration in the infarcted heart. A combination of G-CSF treatment and ES cell-derived cardiomyocyte transplantation significantly promoted angiogenesis and reduced the infarct area and cell apoptosis in the infarcted myocardium compared with ES cell-derived cardiomyocyte transplantation alone. The combination therapy also attenuated LV dilation, as compared with ES cell-derived cardiomyocyte transplantation alone. G-CSF treatment can enhance the efficacy of cellular cardiomyoplasty by ES cell-derived cardiomyocyte transplantation to treat myocardial infarction.  相似文献   

17.
Mesenchymal stem cells are multipotent cells that can differentiate into cardiomyocytes and vascular endothelial cells. Here we show, using cell sheet technology, that monolayered mesenchymal stem cells have multipotent and self-propagating properties after transplantation into infarcted rat hearts. We cultured adipose tissue-derived mesenchymal stem cells characterized by flow cytometry using temperature-responsive culture dishes. Four weeks after coronary ligation, we transplanted the monolayered mesenchymal stem cells onto the scarred myocardium. After transplantation, the engrafted sheet gradually grew to form a thick stratum that included newly formed vessels, undifferentiated cells and few cardiomyocytes. The mesenchymal stem cell sheet also acted through paracrine pathways to trigger angiogenesis. Unlike a fibroblast cell sheet, the monolayered mesenchymal stem cells reversed wall thinning in the scar area and improved cardiac function in rats with myocardial infarction. Thus, transplantation of monolayered mesenchymal stem cells may be a new therapeutic strategy for cardiac tissue regeneration.  相似文献   

18.
Bone marrow mesenchymal stem cells (BMSCs) emerge as a promising approach for treating heart diseases. However, the effects of BMSCs‐based therapy on cardiac electrophysiology disorders after myocardial infarction were largely unclear. This study was aimed to investigate whether BMSCs transplantation prevents cardiac arrhythmias and reverses potassium channels remodelling in post‐infarcted hearts. Myocardial infarction was established in male SD rats, and BMSCs were then intramyocardially transplanted into the infarcted hearts after 3 days. Cardiac electrophysiological properties in the border zone were evaluated by western blotting and whole‐cell patch clamp technique after 2 weeks. We found that BMSCs transplantation ameliorated the increased heart weight index and the impaired LV function. The survival of infarcted rats was also improved after BMSCs transplantation. Importantly, electrical stimulation‐induced arrhythmias were less observed in BMSCs‐transplanted infarcted rats compared with rats without BMSCs treatment. Furthermore, BMSCs transplantation effectively inhibited the prolongation of action potential duration and the reduction of transient and sustained outward potassium currents in ventricular myocytes in post‐infarcted rats. Consistently, BMSCs‐transplanted infarcted hearts exhibited the increased expression of KV4.2, KV4.3, KV1.5 and KV2.1 proteins when compared to infarcted hearts. Moreover, intracellular free calcium level, calcineurin and nuclear NFATc3 protein expression were shown to be increased in infarcted hearts, which was inhibited by BMSCs transplantation. Collectively, BMSCs transplantation prevented ventricular arrhythmias by reversing cardiac potassium channels remodelling in post‐infarcted hearts.  相似文献   

19.
Atorvastatin (ATV) may support mesenchymal stem cells (MSC) survival in post-infarct myocardium (MI) as inflammatory reactions, oxidative stress and hypoxia condition get started in such tissues after damage. However, limited aqueous insolubility and rapid first-pass metabolism reduce the systemic availability of ATV. The aim of the present investigation was to develop ATV loaded nanoparticles (ATVNPs) which might ensure the maximum availability of ATV in systemic circulation for longer duration and to strengthen the support to MSC survival. ATVNPs were synthesized using double emulsion solvent evaporation method and characterized as spherical shape, positive charged, nanoparticles of uniform size distribution and higher entrapment efficiency. ATVNPs were non-cytotoxic and showed sustained release (up to 28 days). Assessment of cardiac function (in terms of echocardiographic and left heart catheterization parameters) and cytokines estimation revealed efficient improvement in post-infarct myocardium condition of rat. In conclusion, ATVNP was developed successfully that may ensure safe, cost effective, and efficacious treatment of post-infarct myo-cardium when compared with that of MSC alone and MSC supplemented with ATV solution.  相似文献   

20.
It is unclear whether green fluorescent protein (GFP) expression is maintained during the course of multilineage differentiation of muscle-derived stem cells (MDSCs). We isolated MDSCs from GFP-transgenic mice and transferred them to chondrogenic, neurogenic or myogenic media. Multilineage differentiation was examined by morphological observation, histological staining, immunocytochemical staining, real-time RT-PCR and Western blot. Both differentiated cells and non-differentiated cells maintained stable GFP expression until the cells exhibited a senescent phenotype. Thus, MDSCs from GFP-transgenic mice have multilineage potential in vitro and that GFP expression does not influence the multilineage potential of MDSCs (or vice versa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号