首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
C-C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from Escherichia coli catalyses the hydrolytic C-C cleavage of the meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of E. coli MhpC has revealed a number of active-site amino acid residues that may participate in catalysis. Site-directed mutants of His263, Ser110, His114, and Ser40 have been analysed using steady-state and stopped-flow kinetics. Mutants H263A, S110A and S110G show 10(4)-fold reduced catalytic efficiency, but still retain catalytic activity for C-C cleavage. Two distinct steps are observed by stopped-flow UV/Vis spectrophotometry, corresponding to ketonisation and C-C cleavage: H263A exhibits very slow ketonisation and C-C cleavage, whereas S110A and S110G exhibit fast ketonisation, an intermediate phase, and slow C-C cleavage. H114A shows only twofold-reduced catalytic efficiency, ruling out a catalytic role, but shows a fivefold-reduced K(M) for the natural substrate, and an ability to process an aryl-containing substrate, implying a role for His114 in positioning of the substrate. S40A shows only twofold-reduced catalytic efficiency, but shows a very fast (500 s(-1)) interconversion of dienol (317 nm) to dienolate (394 nm) forms of the substrate, indicating that the enzyme accepts the dienol form of the substrate. These data imply that His263 is responsible for both ketonisation of the substrate and for deprotonation of water for C-C cleavage, a novel catalytic role in a serine hydrolase. Ser110 has an important but non-essential role in catalysis, which appears not to be to act as a nucleophile. A catalytic mechanism is proposed involving stabilisation of reactive intermediates and activation of a nucleophilic water molecule by Ser110.  相似文献   

2.
We report the refined structure of a ternary complex of an allosterically activated lactate dehydrogenase, including the important active site loop. Eightfold non-crystallographic symmetry averaging was utilized to improve the density maps. Interactions between the protein and bound coenzyme and oxamate are described in relation to other studies using site-specific mutagenesis. Fructose 1,6-bisphosphate (FruP2) is bound to the enzyme across one of the 2-fold axes of the tetramer, with the two phosphate moieties interacting with two anion binding sites, one on each of two subunits, across this interface. However, because FruP2 binds at this special site, yet does not possess an internal 2-fold symmetry axis, the ligand is statistically disordered and binds to each site in two different orientations. Binding of FruP2 to the tetramer is signalled to the active site principally through two interactions with His188 and Arg173. His188 is connected to His195 (which binds the carbonyl group of the substrate) and Arg173 is connected to Arg171 (the residue that binds the carboxylate group of the substrate).  相似文献   

3.
Morollo AA  Petsko GA  Ringe D 《Biochemistry》1999,38(11):3293-3301
The structure of alanine racemase from Bacillus stearothermophilus with the inhibitor propionate bound in the active site was determined by X-ray crystallography to a resolution of 1.9 A. The enzyme is a homodimer in solution and crystallizes with a dimer in the asymmetric unit. Both active sites contain a pyridoxal 5'-phosphate (PLP) molecule in aldimine linkage to Lys39 as a protonated Schiff base, and the pH-independence of UV-visible absorption spectra suggests that the protonated PLP-Lys39 Schiff base is the reactive form of the enzyme. The carboxylate group of propionate bound in the active site makes numerous interactions with active-site residues, defining the substrate binding site of the enzyme. The propionate-bound structure therefore approximates features of the Michaelis complex formed between alanine racemase and its amino acid substrate. The structure also provides evidence for the existence of a carbamate formed on the side-chain amino group of Lys129, stabilized by interactions with one of the residues interacting with the carboxylate group of propionate, Arg136. We propose that this novel interaction influences both substrate binding and catalysis by precisely positioning Arg136 and modulating its charge.  相似文献   

4.
Dipeptidyl peptidase IV (DPIV) is an alpha,beta-hydrolase-like serine exopeptidase, which removes dipeptides, preferentially with a C-terminal l-Pro residue, from the N terminus of longer peptide substrates. Previously, we determined the tetrameric 1.8A crystal structure of native porcine DPIV. Each monomer is composed of a beta-propeller and a catalytic domain, which together embrace an internal cavity housing the active centre. This cavity is connected to the bulk solvent by a "propeller opening" and a "side opening". Here, we analyse DPIV complexes with a t-butyl-Gly-Pro-Ile tripeptide, Pro-boroPro, a piperazine purine compound, and aminoethyl phenyl sulfonylfluoride. The latter two compounds bind to the active-site groove in a compact and a quite bulky manner, respectively, causing considerable shifts of the catalytic Ser630 side-chain and of the Tyr547 phenolic group, which forms the oxyanion hole. The tripeptide, mimicking a peptide substrate, is clamped to the active site through tight interactions via its N-terminal alpha-ammonium group, the P2 carbonyl group, the P1-l-Pro side-chain, the C-terminal carboxylate group, and the stable orthoacid ester amide formed between the scissile peptide carbonyl group and Ser630 O(gamma). This stable trapping of the tripeptide could be due to stabilization of the protonated His740 imidazolium cation by the adjacent negatively charged C-terminal carboxylate group, preventing proton transfer to the leaving group nitrogen atom. Docking experiments with the compact rigid 58 residue protein aprotinin, which had been shown to be processed by DPIV, indicate that the Arg1-Pro2 N terminus can access the DPIV active site only upon widening of its side openings, probably by separation of the first and the last propeller blades, and/or of the catalytic and the propeller domain.  相似文献   

5.
The objective of this study has been to investigate the effects on the structure and dynamics that take place with the breaking of the Asp-His hydrogen bond in the catalytic triad Asp175-His188-Ser120 of the serine esterase cutinase in the ground state. Four molecular dynamics simulations were performed on this enzyme in solution. The starting structures in two simulations had the Asp175-His188 hydrogen bond intact, and in two simulations the Asp175-His188 hydrogen bond was broken. Conformations of the residues comprising the catalytic triad are well behaved during both simulations containing the intact Asp175-His188 hydrogen bond. Short contacts of less than 2.6 A were observed in 1.2% of the sampled distances between the carboxylate oxygens of Asp175 and the NE2 of His188. The simulations showed that the active site residues exhibit a great deal of mobility when the Asp175-His188 hydrogen bond is broken. In the two simulations in which the Asp175-His188 hydrogen bond is not present, the final geometries for the residues in the catalytic triad are not in catalytically productive conformations. In both simulations, Asp175 and His188 are more than 6 A apart in the final structure from dynamics, and the side chains of Ser120 and Asp175 are in closer proximity to the NE2 of His188 than to ND1. Nonlocal effects on the structure of cutinase were observed. A loop formed by residues 26-31, which is on the opposite end of the protein relative to the active site, was greatly affected. Further changes in the dynamics of cutinase were determined from quasiharmonic mode analysis. The frequency of the second lowest mode was greatly reduced when the Asp175-His188 hydrogen bond was broken, and several higher modes showed lower frequencies. All four simulations showed that the oxyanion hole, composed of residues Ser42 and Gln121, is stable. Only one of the hydrogen bonds (Ser42 OG to Gln121 NE2) observed in the crystal structure that stabilize the conformation of Ser42 OG persisted throughout the simulations. This hydrogen bond appears to be enough for the oxyanion hole to retain its structural integrity.  相似文献   

6.
The complex formed by porcine pancreatic kallikrein A with the bovine pancreatic trypsin inhibitor (PTI) has been crystallized at pH 4 in tetragonal crystals of space group P41212 with one molecule per asymmetric unit. Its crystal structure has been solved applying Patterson search methods and using a model derived from the bovine trypsin-PTI complex (Huber et al., 1974) and the structure of porcine pancreatic kallikrein A (Bode et al., 1983). The kallikrein-PTI model has been crystallographically refined to an R-value of 0·23 including X-ray data to 2·5 Å.The root-mean-square deviation, including all main-chain atoms, is 0·45 Å and 0·65 Å for the PTI and for the kallikrein component, respectively, compared with the refined models of the free components. The largest differences are observed in external loops of the kallikrein molecule surrounding the binding site, particularly in the C-terminal part of the intermediate helix around His172. Overall, PTI binding to kallikrein is similar to that of the trypsin complex. In particular, the conformation of the groups at the active site is identical within experimental error (in spite of the different pH values of the two structures). Ser195 OG is about 2·5 Å away from the susceptible inhibitor bond Lys15 C and forms an optimal 2·5 Å hydrogen bond with His57 NE.The PTI residues Thr11 to Ile18 and Val34 to Arg39 are in direct contact with kallikrein residues and form nine intermolecular hydrogen bonds. The reactive site Lys15 protrudes into the specificity pocket of kallikrein as in the trypsin complex, but its distal ammonium group is positioned differently to accommodate the side-chain of Ser226. Ser226 OG mediates the ionic interaction between the ammonium group and the carboxylate group of Asp189. Model-building studies indicate that an arginine side-chain could be accommodated in this pocket. The PTI disulfide bridge 14–38 forces the kallikrein residue Tyr99 to swing out of its normal position. Model-building experiments show that large hydrophobic residues such as phenylalanine can be accommodated at this (S2) site in a wedge-shaped hydrophobic cavity, which is formed by the indole ring of Trp215 and by the phenolic side-chain of Tyr99, and which opens towards the bound inhibitor/substrate chain. Arg17 in PTI forms a favorable hydrogen bond and van der Waals' contacts with kallikrein residues, whereas the additional hydrogen bond formed in the trypsin-PTI complex between Tvr39 OEH and Ile19 N is not possible The kallikrein binding site offers a qualitative explanation of the unusual binding and cleavage at the N-terminal Met-Lys site of kininogen. Model-building experiments suggest that the generally restricted capacity of kallikrein to bind protein inhibitors with more extended binding segments might be explained by steric hindrance with some extruding external loops surrounding the kallikrein binding site (Bode et al., 1983).  相似文献   

7.
The X-ray crystal structure of the human alpha-thrombin-hirunorm IV complex has been determined at 2.5 A resolution, and refined to an R-factor of 0.173. The structure reveals an inhibitor binding mode distinctive of a true hirudin mimetic, which justifies the high inhibitory potency and the selectivity of hirunorm IV. This novel inhibitor, composed of 26 amino acids, interacts through the N-terminal end with the alpha-thrombin active site in a nonsubstrate mode, and binds specifically to the fibrinogen recognition exosite through the C-terminal end. The backbone of the N-terminal tripeptide Chg1"-Arg2"-2Na13" (Chg, cyclohexyl-glycine; 2Na1, beta-(2-naphthyl)-alanine) forms a parallel beta-strand to the thrombin main-chain segment Ser214-Gly216. The Chg1" side chain occupies the S2 site, Arg2" penetrates into the S1 specificity site, while the 2Na13" side chain occupies the aryl binding site. The Arg2" side chain enters the S1 specificity pocket from a position quite apart from the canonical P1 site. This notwithstanding, the Arg2" side chain establishes the typical ion pair with the carboxylate group of Asp189.  相似文献   

8.
The 3D structure of the flavoprotein D-amino acid oxidase (DAAO) from the yeast Rhodotorula gracilis (RgDAAO) in complex with the competitive inhibitor anthranilate was solved (resolution 1.9A) and structural features relevant for the overall conformation and for catalytic activity are described. The FAD is bound in an elongated conformation in the core of the enzyme. Two anthranilate molecules are found within the active site cavity; one is located in a funnel forming the entrance, and the second is in contact with the flavin. The anchoring of the ligand carboxylate with Arg285 and Tyr223 is found for all complexes studied. However, while the active site group Tyr238-OH interacts with the carboxylate in the case of the substrate D-alanine, of D-CF(3)-alanine, or of L-lactate, in the anthranilate complex the phenol group rotates around the C2-C3 bond thus opening the entrance of the active site, and interacts there with the second bound anthranilate. This movement serves in channeling substrate to the bottom of the active site, the locus of chemical catalysis. The absence in RgDAAO of the "lid" covering the active site, as found in mammalian DAAO, is interpreted as being at the origin of the differences in kinetic mechanism between the two enzymes. This lid has been proposed to regulate product dissociation in the latter, while the side-chain of Tyr238 might exert a similar role in RgDAAO. The more open active site architecture of RgDAAO is the origin of its much broader substrate specificity. The RgDAAO enzyme forms a homodimer with C2 symmetry that is different from that reported for mammalian D-amino acid oxidase. This different mode of aggregation probably causes the differences in stability and tightness of FAD cofactor binding between the DAAOs from different sources.  相似文献   

9.
L-Lactate oxidase (LOX) from Aerococcus viridans catalyzes the oxidation of L-lactate to pyruvate by the molecular oxygen and belongs to a large family of 2-hydroxy acid-dependent flavoenzymes. To investigate the interaction of LOX with pyruvate in structural details and understand the chemical mechanism of flavin-dependent L-lactate dehydrogenation, the LOX-pyruvate complex was crystallized and the crystal structure of the complex has been solved at a resolution of 1.90 Angstrom. One pyruvate molecule bound to the active site and located near N5 position of FMN for subunits, A, B, and D in the asymmetric unit, were identified. The pyruvate molecule is stabilized by the interaction of its carboxylate group with the side-chain atoms of Tyr40, Arg181, His265, and Arg268, and of its keto-oxygen atom with the side-chain atoms of Tyr146, Tyr215, and His265. The alpha-carbon of pyruvate is found to be 3.13 Angstrom from the N5 atom of FMN at an angle of 105.4 degrees from the flavin N5-N10 axis.  相似文献   

10.
The complex of porcine pancreatic elastase (PPE) with 7-amino-3-(2-bromoethoxy)-4-chloroisocoumarin, a potent mechanism-based inhibitor, was crystallized and the crystal structure determined at 1.9-A resolution with a final R factor of 17.1%. The unbiased difference Fourier electron density map showed continuous density from O gamma of Ser 195 to the benzoyl carbonyl carbon atom and from N epsilon 2 of His 57 to the carbon atom at the 4-position of the isocoumarin ring in the inhibitor. This suggested unambiguously that the inhibitor was doubly covalently bound to the enzyme. It represents the first structural evidence for irreversible binding of an isocoumarin inhibitor to PPE through both Ser 195 and His 57 in the active site. The PPE-inhibitor complex is only partially activated in solution by hydroxylamine and confirms the existence of the doubly covalently bound complex along with the acyl enzyme. The benzoyl carbonyl oxygen atom of the inhibitor is not situated in the oxyanion hole formed by the amide (greater than NH) groups of Gly 193 and Ser 195. The complex is stabilized by the hydrogen-bonding interactions in the active site (from the N epsilon 2 of Gln 192 to the bromine atom in the inhibitor and the amino group at the 7-position of the isocoumarin ring to the carbonyl oxygen of Thr 41) and by van der Waals interactions. The inhibition rates of several 7-substituted 4-chloro-3-(bromoalkoxy)isocoumarins toward PPE were measured.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Acetylsalicylic acid (aspirin) is an effective long-term prophylaxis of thrombotic events such as heart attacks and strokes. It covalently inhibits prostaglandin-H-synthase by interacting with Arg120 or Tyr385 at the active site allowing delivery of its acetyl group to Ser530. However the structure has not been optimized to fit the active site. We have designed acetylsalicylate analogues with an additional carboxylate substituent which allows simultaneous interaction with Arg120 and Tyr385 whilst positioning the acetyl group in close proximity to Ser530. One of these, an ester derivative which unlike acetylsalicylic acid is non-acidic, may act as useful lead compound for further exploitation of this approach.  相似文献   

12.
The zinc-dependent metallo-beta-lactamases are a group of bacterial enzymes that pose a threat to the future efficacy of present-day antibiotics. Their mechanism is poorly understood, and there are no clinically useful inhibitors. While most members of the group contain two tightly bound zinc ions in their active sites, the Bacillus cereus enzyme has a much lower affinity for its second zinc (Zn2), thought to be due to the presence of Arg121 immediately beneath the floor of the active site (cf. Cys/Ser/His121 in the bizinc enzymes). Crystal structures of the Arg121Cys mutant of the B. cereus 569/H/9 enzyme were solved at pH 7.0, 5.0, and 4.5, each in the presence of either 20 microM or 20 mM Zn(2+) to generate the mono- and bizinc forms, respectively. Surprisingly, the structure of the active site was unaffected by the mutation; a network of ordered water molecules replaced the interactions made by the arginine side chain, and the occupancy of Zn2 appeared minimally changed. As the pH was lowered, Zn2 moved away from one of its ligands, Asp120, but was "tracked" by two others, Cys221 and His263. Furthermore, the hydroxide ion (and proposed nucleophile for beta-lactam hydrolysis) was bound to Zn1 at pH 5 and above but absent at pH 4.5. This provides experimental evidence for an earlier proposed mechanism in which protonation of Asp120 and the Zn1-bound hydroxide are the two events that lead to the loss of activity at low pH.  相似文献   

13.
The backbone dynamics of Fusarium solani pisi cutinase in complex with a phosphonate inhibitor has been studied by a variety of nuclear magnetic resonance experiments to probe internal motions on different time scales. The results have been compared with dynamical studies performed on free cutinase. In solution, the enzyme adopts its active conformation only upon binding the inhibitor. While the active site Ser120 is rigidly attached to the stable alpha/beta core of the protein, the remainder of the binding site is very flexible in the free enzyme. The other two active site residues Asp175 and His188 as well as the oxyanion hole residues Ser42 and Gln121 are only restrained into their proper positions upon binding of the substrate-like inhibitor. The flap helix, which opens and closes the binding site in the free molecule, is also fixed in the cutinase-inhibitor complex. Our results are in contrast with the X-ray analysis results, namely that in the protein crystal, free cutinase has a well-defined active site and a preformed oxyanion hole and that it does not need any rearrangements to bind its substrate. Our solution studies show that cutinase does need conformational rearrangements to bind its substrate, which may form the rate-limiting step in catalysis.  相似文献   

14.
The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing the side chain peptide bond in beta-lactam antibiotics. Data base searches revealed that the enzyme contains an active site serine consensus sequence Gly-X-Ser-Tyr-X-Gly that is also found in X-prolyl dipeptidyl aminopeptidase. The serine hydrolase inhibitor p-nitrophenyl-p'-guanidino-benzoate appeared to be an active site titrant and was used to label the alpha-amino acid ester hydrolase. Electrospray mass spectrometry and tandem mass spectrometry analysis of peptides from a CNBr digest of the labeled protein showed that Ser(205), situated in the consensus sequence, becomes covalently modified by reaction with the inhibitor. Extended sequence analysis showed alignment of this Ser(205) with the catalytic nucleophile of some alpha/beta-hydrolase fold enzymes, which posses a catalytic triad composed of a nucleophile, an acid, and a base. Based on the alignments, 10 amino acids were selected for site-directed mutagenesis (Arg(85), Asp(86), Tyr(143), Ser(156), Ser(205), Tyr(206), Asp(338), His(370), Asp(509), and His(610)). Mutation of Ser(205), Asp(338,) or His(370) to an alanine almost fully inactivated the enzyme, whereas mutation of the other residues did not seriously affect the enzyme activity. Circular dichroism measurements showed that the inactivation was not caused by drastic changes in the tertiary structure. Therefore, we conclude that the catalytic domain of the alpha-amino acid ester hydrolase has an alpha/beta-hydrolase fold structure with a catalytic triad of Ser(205), Asp(338), and His(370). This distinguishes the alpha-amino acid ester hydrolase from the Ntn-hydrolase family of beta-lactam antibiotic acylases.  相似文献   

15.
The 3C-like protease of the Chiba virus, a Norwalk-like virus, is one of the chymotrypsin-like proteases. To identify active-site amino acid residues in this protease, 37 charged amino acid residues and a putative nucleophile, Cys139, within the GDCG sequence were individually replaced with Ala in the 3BC precursor, followed by expression in Escherichia coli, where the active 3C-like protease would cleave 3BC into 3B (VPg) and 3C (protease). Among 38 Ala mutants, 7 mutants (R8A, H30A, K88A, R89A, D138A, C139A, and H157A) completely or nearly completely lost the proteolytic activity. Cys139 was replaceable only with Ser, suggesting that an SH or OH group in the less bulky side chain was required for the side chain of the residue at position 139. His30, Arg89, and Asp138 could not be replaced with any other amino acids. Although Arg8 was also not replaceable for the 3B/3C cleavage and the 3C/3D cleavage, the N-terminal truncated mutant devoid of Arg8 significantly cleaved 3CD into 3C and 3D (polymerase), indicating that Arg8 itself was not directly involved in the proteolytic cleavage. As for position 88, a positively charged residue was required because the Arg mutant showed significant activity. As deduced by the X-ray structure of the hepatitis A virus 3C protease, Arg8, Lys88, and Arg89 are far away from the active site, and the side chain of Asp138 is directed away from the active site. Therefore, these are not catalytic residues. On the other hand, all of the mutants of His157 in the S1 specificity pocket tended to retain very slight activity, suggesting a decreased level of substrate recognition. These results, together with a sequence alignment with the picornavirus 3C proteases, indicate that His30 and Cys139 are active-site residues, forming a catalytic dyad without a carboxylate directly participating in the proteolysis.  相似文献   

16.
Naught LE  Regni C  Beamer LJ  Tipton PA 《Biochemistry》2003,42(33):9946-9951
In Pseudomonas aeruginosa, the dual-specificity enzyme phosphomannomutase/phosphoglucomutase catalyzes the transfer of a phosphoryl group from serine 108 to the hydroxyl group at the 1-position of the substrate, either mannose 6-P or glucose 6-P. The enzyme must then catalyze transfer of the phosphoryl group on the 6-position of the substrate back to the enzyme. Each phosphoryl transfer is expected to require general acid-base catalysis, provided by amino acid residues at the enzyme active site. An extensive survey of the active site residues by site-directed mutagenesis failed to identify a single key residue that mediates the proton transfers. Mutagenesis of active site residues Arg20, Lys118, Arg247, His308, and His329 to residues that do not contain ionizable groups produced proteins for which V(max) was reduced to 4-12% of that of the wild type. The fact that no single residue decreased catalytic activity more significantly, and that several residues had similar effects on V(max), suggested that the ensemble of active site amino acids act by creating positive electrostatic potential, which serves to depress the pK of the substrate hydroxyl group so that it binds in ionized form at the active site. In this way, the necessity of positioning the reactive hydroxyl group near a specific amino acid residue is avoided, which may explain how the enzyme is able to promote catalysis of both phosphoryl transfers, even though the 1- and 6-positions do not occupy precisely the same position when the substrate binds in the two different orientations in the active site. When Ser108 is mutated, the enzyme retains a surprising amount of activity, which has led to the suggestion that an alternative residue becomes phosphorylated in the absence of Ser108. (31)P NMR spectra of the S108A protein confirm that it is phosphorylated. Although the S108A/H329N protein had no detectable catalytic activity, the (31)P NMR spectra were not consistent with a phosphohistidine residue.  相似文献   

17.
Phosphoserine aminotransferase (PSAT; EC 2.6.1.52), a member of subgroup IV of the aminotransferases, catalyses the conversion of 3-phosphohydroxypyruvate to l-phosphoserine. The crystal structure of PSAT from Escherichia coli has been solved in space group P212121 using MIRAS phases in combination with density modification and was refined to an R-factor of 17.5% (Rfree=20.1 %) at 2.3 A resolution. In addition, the structure of PSAT in complex with alpha-methyl-l-glutamate (AMG) has been refined to an R-factor of 18.5% (Rfree=25.1%) at 2.8 A resolution. Each subunit (361 residues) of the PSAT homodimer is composed of a large pyridoxal-5'-phosphate binding domain (residues 16-268), consisting of a seven-stranded mainly parallel beta-sheet, two additional beta-strands and seven alpha-helices, and a small C-terminal domain, which incorporates a five-stranded beta-sheet and two alpha-helices. A three-dimensional structural comparison to four other vitamin B6-dependent enzymes reveals that three alpha-helices of the large domain, as well as an N-terminal domain (subgroup II) or subdomain (subgroup I) are absent in PSAT. Its only 15 N-terminal residues form a single beta-strand, which participates in the beta-sheet of the C-terminal domain. The cofactor is bound through an aldimine linkage to Lys198 in the active site. In the PSAT-AMG complex Ser9 and Arg335 bind the AMG alpha-carboxylate group while His41, Arg42 and His328 are involved in binding the AMG side-chain. Arg77 binds the AMG side-chain indirectly through a solvent molecule and is expected to position itself during catalysis between the PLP phosphate group and the substrate side-chain. Comparison of the active sites of PSAT and aspartate aminotransferase suggests a similar catalytic mechanism, except for the transaldimination step, since in PSAT the Schiff base is protonated. Correlation of the PSAT crystal structure to a published profile sequence analysis of all subgroup IV members allows active site modelling of nifs and the proposal of a likely molecular reaction mechanism.  相似文献   

18.
Macrophage migration inhibitory factor (MIF) exhibits dual activities. It acts as an immunoregulatory protein as well as a phenylpyruvate tautomerase. To understand better the relationship between these two activities and to elucidate the structural basis for the enzymatic activity, a crystal structure of a complex between murine MIF and (E)-2-fluoro-p-hydroxycinnamate, a competitive inhibitor of the tautomerase activity, has been determined to 1.8 A resolution. The structure is nearly superimposable on that of the free protein indicating that the presence of the inhibitor does not result in any major structural changes. The inhibitor also confirms the location of the active site in a hydrophobic cavity containing the amino-terminal proline. Within this cavity, the inhibitor interacts with residues from adjacent subunits. At the back of the cavity, the side-chain carbonyl oxygen of Asn-97' interacts with the phenolic hydroxyl group of the inhibitor while at the mouth of the cavity the ammonium group of Lys-32 interacts with a carboxylate oxygen. The other carboxylate oxygen of the inhibitor interacts with Pro-1. The hydroxyl group of Tyr-95' interacts weakly with the fluoro group on the inhibitor. The hydrophobic side chains of five active-site residues (Met-2, Ile-64, Met-101, Val-106, and Phe-113) and the phenyl moiety of Tyr-95' are responsible for the binding of the phenyl group. Further insight into the enzymatic activity of MIF was obtained by carrying out kinetic studies using the enol isomers of phenylpyruvate and (p-hydroxyphenyl)pyruvate. The results demonstrate that MIF processes the enol isomers more efficiently than the keto isomers primarily because of a decrease in Km. On the basis of these results, a mechanism is proposed for the MIF-catalyzed tautomerization reaction.  相似文献   

19.
Thermoanaerobacter tengcongensis is a thermophilic eubacterium that has a phosphoenolpyruvate (PEP) sugar phosphotransferase system (PTS) of 22 proteins. The general PTS proteins, enzyme I and HPr, and the transporters for N-acetylglucosamine (EIICB(GlcNAc)) and fructose (EIIBC(Fru)) have thermal unfolding transitions at ~90 °C and a temperature optimum for in vitro sugar phosphotransferase activity of 65 °C. The phosphocysteine of a EIICB(GlcNAc) mutant is unusually stable at room temperature with a t(1/2) of 60 h. The PEP binding C-terminal domain of enzyme I (EIC) forms a metastable covalent adduct with PEP at 65 °C. Crystallization of this adduct afforded the 1.68 ? resolution structure of EIC with a molecule of pyruvate in the active site. We also report the 1.83 ? crystal structure of the EIC-PEP complex. The comparison of the two structures with the apo form and with full-length EI shows differences between the active site side chain conformations of the PEP and pyruvate states but not between the pyruvate and apo states. In the presence of PEP, Arg465 forms a salt bridge with the phosphate moiety while Glu504 forms salt bridges with Arg186 and Arg195 of the N-terminal domain of enzyme I (EIN), which stabilizes a conformation appropriate for the in-line transfer of the phosphoryl moiety from PEP to His191. After transfer, Arg465 swings 4.8 ? away to form an alternative salt bridge with the carboxylate of Glu504. Glu504 loses the grip of Arg186 and Arg195, and the EIN domain can swing away to hand on the phosphoryl group to the phosphoryl carrier protein HPr.  相似文献   

20.
Lipid A is an integral component of the lipopolysaccharide (LPS) that forms the selective and protective outer monolayer of Gram-negative bacteria, and is essential for bacterial growth and viability. UDP-N-acetylglucosamine acyltransferase (LpxA) initiates lipid A biosynthesis by catalyzing the transfer of R-3-hydroxymyristic acid from acyl carrier protein to the 3'-hydroxyl group of UDP-GlcNAc. The enzyme is a homotrimer, and previous studies suggested that the active site lies within a positively charged cleft formed at the subunit-subunit interface. The crystal structure of Escherichia coli LpxA in complex with UDP-GlcNAc reveals details of the substrate-binding site, with prominent hydrophilic interactions between highly conserved clusters of residues (Asn198, Glu200, Arg204 and Arg205) with UDP, and (Asp74, His125, His144 and Gln161) with the GlcNAc moiety. These interactions serve to bind and orient the substrate for catalysis. The crystallographic model supports previous results, which suggest that acylation occurs via nucleophilic attack of deprotonated UDP-GlcNAc on the acyl donor in a general base-catalyzed mechanism involving a catalytic dyad of His125 and Asp126. His125, the general base, interacts with the 3'-hydroxyl group of UDP-GlcNAc to generate the nucleophile. The Asp126 side-chain accepts a hydrogen bond from His125 and helps orient the general base to participate in catalysis. Comparisons with an LpxA:peptide inhibitor complex indicate that the peptide competes with both nucleotide and acyl carrier protein substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号