首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The riparian forest reduces the amount of light entering streams, which limits autochthonous primary production. The aim of this study was to evaluate temporal variation of autochthonous primary production in pristine and altered streams, with the goal of identifying indicators of change in environmental integrity in the southern Brazilian Amazon. We evaluated free algal biomass in the water column, the presence of periphyton, and the richness and cover of aquatic herbaceous plants in 20 streams (10 pristine and 10 altered, i.e., with riparian deforestation) during the dry period, at the beginning of the rainy period, and at the end of the rainy period. In altered streams, we recorded the presence of macroscopic periphyton and the amount of algal biomass varied between the dry and flood seasons. Variations in hydrological periods did not contribute to changes in algal biomass in pristine streams; we did not observe the presence of macroscopic periphyton these streams. In altered streams, 23 aquatic herbaceous species were identified, versus only four in the pristine streams. Results showed that riparian deforestation contributes to increased autochthonous primary production, which is also influenced by different hydrological periods, with algae and aquatic herbaceous plants responding differently to dry and rainy periods. The responses of these primary producers confirm their role as important bioindicators of change in the environmental integrity of southern Amazonian streams.  相似文献   

2.
1. Anthropogenic activities in prairie streams are increasing nutrient inputs and altering stream communities. Understanding the role of large consumers such as fish in regulating periphyton structure and nutritional content is necessary to predict how changing diversity will interact with nutrient enrichment to regulate stream nutrient processing and retention. 2. We characterised the importance of grazing fish on stream nutrient storage and cycling following a simulated flood under different nutrient regimes by crossing six nutrient concentrations with six densities of a grazing minnow (southern redbelly dace, Phoxinus erythrogaster) in large outdoor mesocosms. We measured the biomass and stoichiometry of overstory and understory periphyton layers, the stoichiometry of fish tissue and excretion, and compared fish diet composition with available algal assemblages in pools and riffles to evaluate whether fish were selectively foraging within or among habitats. 3. Model selection indicated nutrient loading and fish density were important to algal composition and periphyton carbon (C): nitrogen (N). Nutrient loading increased algal biomass, favoured diatom growth over green algae and decreased periphyton C : N. Increasing grazer density did not affect biomass and reduced the C : N of overstory, but not understory periphyton. Algal composition of dace diet was correlated with available algae, but there were proportionately more diatoms present in dace guts. We found no correlation between fish egestion/excretion nutrient ratios and nutrient loading or fish density despite varying N content of periphyton. 4. Large grazers and nutrient availability can have a spatially distinct influence at a microhabitat scale on the nutrient status of primary producers in streams.  相似文献   

3.
1. Tallgrass prairies and their streams are highly endangered ecosystems, and many remaining streams are threatened by the encroachment of woody riparian vegetation. An increase in riparian vegetation converts the naturally open‐canopy prairie streams to closed‐canopy systems. The effects of a change in canopy cover on stream metabolism are unknown. 2. Our goal was to determine the effects of canopy cover on prairie stream metabolism during a 4‐year period in Kings Creek, KS, U.S.A. Metabolic rates from forested reaches were compared to rates in naturally open‐canopy reaches and restoration reaches, the latter having closed canopies in 2006 and 2007 and open canopies in 2008 and 2009. Whole‐stream metabolism was estimated using the two‐station diurnal method. Chlorophyll a concentrations and mass of filamentous algae were measured after riparian removal to assess potential differences in algal biomass between reaches with open or closed canopies. 3. Metabolic rates were spatially and temporally variable even though the sites were on very similar streams or adjacent to each other within streams. Before riparian vegetation removal, whole‐stream community respiration (CR) and net ecosystem production were greater with greater canopy cover. In the vegetation removal reaches, gross primary production was slightly greater after removal. 4. Chlorophyll a concentrations were marginally significantly greater in open (naturally open and removal reaches) than in closed canopy and differed significantly between seasons. Filamentous algal biomass was greater in open than in closed‐canopy reaches. 5. Overall, the restoration allowed recovery of some features of open‐canopy prairie streams. Woody expansion apparently increases CR and moves prairie stream metabolism towards a more net heterotrophic state. An increase in canopy cover decreases benthic chlorophyll, decreases dominance of filamentous algae and potentially alters resources available to the stream food web. The results of this study provide insights for land managers and conservationists interested in preserving prairie streams in their native open‐canopy state.  相似文献   

4.
Ostrofsky  M. L.  Weigel  D. E.  Hasselback  C. K.  Karle  P. A. 《Hydrobiologia》1998,382(1-3):87-96
Both winter photosynthesis and the release of extracellular DOC are commonly ignored in stream production studies. We examined these contributions in a second-order stream under a completely closed deciduous canopy. We estimate that in Sandy Run approximately 26% of the annual autochthonous particulate carbon is produced between December and March. Measured winter rates of photosynthesis were not significantly different than summertime rates. Contrary to implicit assumptions often made about stream primary productivity, winter production was as important as summer production. Highest rates of carbon assimilation, however, were measured in the spring and fall, and were significantly correlated with standing crops of stream algae as measured by chlorophyll concentration. The recovery of released DOC from stream algae indicated that this contribution was equivalent to 5% of the particulate contribution. Rates of DOC production were significantly correlated with rates of particulate production. We estimate that had winter photosynthesis and extracellular DOC production been ignored in Sandy Run, annual productivity would have been underestimated by about a third. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Relative contributions of allochthonous inputs and autochthonous production vary depending on terrestrial land use and biome. Terrestrially derived organic matter and in-stream primary production were measured in 12 headwater streams along an agricultural land-use gradient. Streams were examined to see how carbon (C) supply shifts from forested streams receiving primarily terrestrially derived C to agricultural streams, which may rely primarily on C derived from algal productivity. We measured allochthonous input, chlorophyll a concentration, and periphyton biomass in each stream, and whole-stream metabolism in six streams. Our results suggest a threshold between moderate- and heavy-agriculture land uses in which terrestrially derived C is replaced by in-stream algal productivity as the primary C source for aquatic consumers. A shift from allochthonous to autochthonous production was not evident in all heavy-agriculture streams, and only occurred in heavy-agriculture streams not impacted by livestock grazing. We then compared our findings to rates of allochthonous input and GPP in streams with minimal human influences in multiple biomes to assess how land-use practices influence C sources to stream ecosystems. The proportion of C derived from allochthonous versus autochthonous sources to heavy-agriculture streams was most similar to grassland and desert streams, while C sources to forested, light-, and moderate-agriculture streams were more similar to deciduous and montane coniferous forest streams. We show that C source to streams is dependent on land use, terrestrial biome, and degradation of in-stream conditions. Further, we suggest that within a biome there seems to be a compensation such that total C input is nearly equal whether it is from allochthonous or autochthonous sources.  相似文献   

6.
The effect of periphyton biomass on hydraulic characteristics and nutrient cycling was studied in laboratory streams with and without snail herbivores. Hydraulic characteristics, such as average water velocity, dispersion coefficients, and relative volume of transient storage zones (zones of stationary water), were quantified by performing short-term injections of a conservative tracer and fitting an advection-dispersion model to the conservative tracer concentration profile downstream from the injection site. Nutrient cycling was quantified by measuring two indices: (1) uptake rate of phosphorus from stream water normalized to gross primary production (GPP), a surrogate measure of total P demand, and (2) turnover rate of phosphorus in the periphyton matrix. These measures indicate the importance of internal cycling (within the periphyton matrix) in meeting the P demands of periphyton. Dense growths of filamentous diatoms and blue-green algae accumulated in the streams with no snails (high-biomass streams), whereas the periphyton communities in streams with snails consisted almost entirely of a thin layer of basal cells of Stigeoclonium sp. (low-biomass streams). Dispersion coefficients were significantly greater and transient storage zones were significantly larger in the high-biomass streams compared to the low-biomass streams. Rates of GPP-normalized P uptake from water and rates of P turnover in periphyton were significantly lower in high biomass than in low biomass periphyton communities, suggesting that a greater fraction of the P demand was met by recycling in the high biomass communities. Increases in streamwater P concentration significantly increased GPP-normalized P uptake in high biomass communities, suggesting diffusion limitation of nutrient transfer from stream water to algal cells in these communities. Our results demonstrate that accumulations of periphyton biomass can alter the hydraulic characteristics of streams, particularly by increasing transient storage zones, and can increase internal nutrient cycling. They suggest a close coupling of hydraulic characteristics and nutrient cycling processes in stream ecosystems.  相似文献   

7.
Climate change in the US Great Plains is expected to result in less frequent but more severe floods. This will affect hydrologic cycles, stream organisms, and ultimately ecosystem structure and function. We examined factors influencing invertebrate assemblages following flooding in 3 reaches (20 pools) of Kings Creek, an intermittent prairie stream on the Konza Prairie Biological Station, using replicated macroconsumer enclosures (fishless, dace, shiners, ambient). Invertebrate densities and biomass increased rapidly following scouring, including rapid colonizing taxa and relatively long-lived taxa, but macroconsumers had no significant effects. Rather, distance, which was negatively correlated with the concentration of dissolved inorganic nitrogen, from the downstream confluence with a larger stream significantly influenced assemblage structure, with higher richness and greater nutrient concentrations closer to the confluence. Results support previous findings that recovery patterns following flooding in this grassland stream are strongly influenced by proximity to refuges. Furthermore, physical rather than biological factors appear more influential in structuring invertebrate assemblages in these frequently disturbed systems. Predicted increases in the intensity and duration of hydrologic disturbances will increase direct impacts on stream communities, relative to indirect effects through potential changes in macroconsumer communities. Human activities that alter refuges may further impede recovery following hydrologic disturbances.  相似文献   

8.
The aim of this study was to investigate the effect of floods on the metabolic autotrophic rates of a Pampean stream. We hypothesized that there would be high productivity because of the macrophyte-rich community and the high nutrient levels but that this productivity would be reduced by flooding. Net community production (NCP) and community respiration (CR) were measured using clear and opaque acrylic chambers in the same reach of the stream. Community metabolism was analyzed in relation to biomass and the colonized streambed surface. Prior to the flood, epiphyton was the most productive compartment of the stream, whereas after the flood, the bottom algae compartment was the most productive one. Therefore, the relative contribution of each compartment to the entire ecosystem was influenced by the varying flow conditions. The primary gross production values of the Las Flores stream communities before the flood were higher than most of those reported in other streams worldwide and sustain the complex trophic web associated to the stream. Consequently, production decrease due to the lower relative contribution of macrophytes and epiphyton would lead to a more simplified trophic network.  相似文献   

9.
The physico-chemical habitat template of glacial streams in the Alps is characterized by distinct and predictable changes between harsh and relatively benign periods. Spring and autumn were thought to be windows of favorable environmental conditions conducive for periphyton development. Periphyton biomass (measured as chlorophyll a and ash-free dry mass) was quantified in five glacial and three non-glacial streams over an annual cycle. One glacial stream was an outlet stream of a proglacial lake. In all glacial streams, seasonal patterns in periphyton were characterized by low biomass during summer high flow when high turbidity and transport of coarse sediment prevailed. With the end of icemelt in autumn, environmental conditions became more favorable and periphyton biomass increased. Biomass peaked between late September and January. In spring, low flow, low turbidity, and a lack of coarse sediment transport were not paralleled by an increase in periphyton biomass. In the non-glacial streams, seasonal periphyton patterns were similar to those of glacial streams, but biomass was significantly higher. Glacier recession from climate change may shift water sources in glacier streams and attenuate the glacial flow pulse. These changes could alter predicted periods of optimal periphyton development. The window of opportunity for periphyton accrual will shift earlier and extend into autumn in channels that retain surface flows.  相似文献   

10.
Figueredo  Cleber C.  Giani  Alessandra 《Hydrobiologia》2001,456(1-3):165-174
The water chemistry, structure of sediment grain size, algal biomass, and patterns of nine bacteria physiological groups were studied monthly from May to October 1991 in an adjacent stream, ecotone, and reservoir zones (southern Poland). The distribution of five particulate organic carbon fractions was significantly different among the zones. Biomass of benthic algae demonstrated a maximum in the ecotone (22.74 g C m–2). Most of the bacterial groups were more numerous in the stream sediments where aerobic heterotrophs prevailed (1.2–6.5 × 1011 cells m–2). The significant differences in density were found for anaerobic heterotrophs, anaerobic nitrogen fixing, amylolytic, and cellulolytic bacteria among the zones. The small density of bacteria in the ecotone was probably an effect of the rapid water fluctuations, accompanied by movement of fine sediments or/and an inhibitory effect of compounds secreted by the periphyton. The principal component analysis showed that the ecotone zone was more similar to the reservoir open water than to the stream.  相似文献   

11.
We identified factors influencing biomass and nutrient content in E. densa in an enriched pampean stream of Argentina. Physical (current velocity, temperature), chemical (pH, conductivity, dissolved oxygen, nutrient content in water and sediments), and biological variables (biomass and nutrient content of E. densa, biomass of periphyton and other macrophytes) were estimated at each sampling occasion, and mean monthly values estimated. Biomass and nutrient content in E. densa were correlated with these physical-chemical and biological variables. Biomass was positively correlated with ammonium in stream water (P<0.05) and sediment total nitrogen (P<0.01). Nitrogen showed a positive relationship with ammonium (P<0.01), and a negative one with nitrate and periphyton biomass (P<0.05). Phosphorus was positively correlated with soluble reactive phosphorus (P<0.01). The growth of other macrophyte species in the stream seemed to influence E. densa biomass, probably through competition for light. Current velocity was low and not significantly related with E. densa biomass, however, a flood at the beginning of the study washed the macrophyte stand downstream.  相似文献   

12.
1. To examine how the vertical distribution of periphytic biomass and primary production in the upper 0–1 m of the water column changes along an inter‐lake eutrophication gradient, artificial substrata (plastic strips) were introduced into the littoral zones of 13 lakes covering a total phosphorus (TP) summer mean range from 11 to 536 μg L?1. Periphyton was measured in July (after 8 weeks) and September (after 15 weeks) at three water depths (0.1, 0.5 and 0.9 m). 2. Periphyton chlorophyll a concentration and dry weight generally increased with time and the communities became more heterotrophic. Mean periphytic biomass was unimodally related to TP, reaching a peak between 60 and 200 μg L?1. 3. The proportion of diatoms in the periphyton decreased from July to September. A taxonomic shift occurred from dominance (by biovolume) of diatoms and cyanobacteria at low TP to dominance of chlorophytes at intermediate TP and of diatoms (Epithemia sp.) in the two most TP‐rich lakes. 4. The grazer community in most lakes was dominated by chironomid larvae and the total biomass of grazers increased with periphyton biomass. 5. Community respiration (R), maximum light‐saturated photosynthetic rate (Pmax), primary production and the biomass of macrograzers associated with periphyton were more closely related to periphyton biomass than to TP. Biomass‐specific rates of R, Pmax and production declined with increasing biomass. 6. Mean net periphyton production (24 h) was positive in most lakes in July and negative in all lakes in September. Net production was not related to the TP gradient in July, but decreased in September with increasing TP. 7. The results indicate that nutrient concentrations alone are poor predictors of the standing biomass and production of periphyton in shallow lakes. However, because periphyton biomass reaches a peak in the range of phosphorus concentration in which alternative states occur in shallow lakes, recolonisation by submerged macrophytes after nutrient reduction may potentially be suppressed by periphyton growth.  相似文献   

13.
SUMMARY. 1. Periphyton chlorophyll a and ash free dry weight (AFDW) were monitored in nine rivers to examine the relative importance of flows and nutrients for regulating periphyton biomass in gravel bed rivers. 2. Mean annual flows in the rivers ranged from 0.94 to 169 m3 s?1, mean dissolved reactive phophorus (DRP) from 1.3 to 68 μ g 1?1, periphytic chlorophyll a from 4.6 to 73 mg m ?2. and AFDW from 2.8 to 16 g m?2. 3. For eight of the nine rivers NH4-N. DRP, total Kjeldahl nitrogen, total phosphorus and total suspended solids were correlated (P<0.01) with flow, and for seven rivers conductivity was inversely correlated (P<0.05) with flow. 4. There was a hyperbolic relationship between flows and biomass, with chlorophyll a >100 mg m ?2 and AFDW >20 g m?2 occurring most frequently in flows of <20 m3 s?1. 5. Floods prevented the development of medium term (i.e. up to 2 months) maxima in biomass in five of the rivers, but maxima occurred over summer-autumn and winter-spring in the three rivers where floods were absent. 6. Chlorophyll a biomass was more resistant to flooding than AFDW. Only 5993 of the forty-six recorded floods caused chlorophyll a scouring, whereas 74% of the floods caused AFDW scouring. The efficiency of scour was more influenced by the pre-flood biomass than the magnitude of the event. 7. Biomass maxima were significantly correlated (P<0.01) with mean DRP concentration during the accrual period. Overall, up to 53% of the mean annual biomass difference between rivers was explained by the mean annual DRP concentrations. However, the high correlations between nutrient concentrations and flow indicated that the nutrient data were also carrying hydrological information and that simple causal relationships between nutrients and biomass are difficult to establish in rivers. 8. It is concluded that hydrological factors contribute at least equally with nutrients to the differences in periphyton biomass between the gravel-bed study rivers. They combined to explain up to 63.3% of the variance in biomass, compared with 57.6% for nutrients. It is recommended that periphyton data from gravel-bed rivers should always be viewed within the context of the flow history of the site, and not just as a function of nutrient concentrations.  相似文献   

14.
Periphyton plays an important role in stream ecology, and can be sensitive to macroinvertebrate grazers, near-bed current velocity, and bedload abrasion. We manipulated conditions to examine influences on periphytic accrual in the St. Anthony Falls Laboratory Outdoor StreamLab in Minneapolis, MN, USA. Macroinvertebrate grazers were excluded from 27 of 65 clay tiles using electric pulses. We examined periphytic biomass accrual as a function of grazer presence, sampling run, and near-bed current velocity using ANCOVA. We found significant temporal differences between sampling runs but no significant effect of grazer presence. Along with a strong association between bedload transport rates and mean periphytic biomass, our results suggest that grazers are relatively unimportant in stream systems with high levels of physical disturbance from floods and associated sand bedload. However, the interaction between grazer presence and velocity was marginally significant. Regression analyses showed no relation between velocity and periphyton in the absence of grazers but a negative relation when grazers were present, suggesting that mechanical dislodgement of periphyton by grazers may increase with velocity. We conclude that grazers can have subtle effects on periphyton, particularly in streams with high bedload transport rates.  相似文献   

15.
Periphyton communities of a boreal stream were exposed to different light and nutrient levels to estimate energy transfer efficiency from primary to secondary producers using labeling with inorganic 13C. In a one-day field experiment, periphyton grown in fast-flow conditions and dominated by opportunistic green algae were exposed to light levels corresponding to sub-saturating (forest shade) and saturating (open stream section) irradiances, and to N and P nutrient additions. In a two-week laboratory experiment, periphyton grown in low-flow conditions and dominated by slowly growing diatoms were incubated under two sub-saturating light and nutrient enrichment levels as well as grazed and non-grazed conditions. Light had significant positive effect on 13C uptake by periphyton. In the field experiment, P addition had a positive effect on 13C uptake but only at sub-saturating light levels, whereas in the laboratory experiment nutrient additions had no effect on the periphyton biomass, 13C uptake, biovolume and community composition. In the laboratory experiment, the grazer (caddisfly) effect on periphyton biomass specific 13C uptake and nutrient content was much stronger than the effects of light and nutrients. In particular, grazers significantly reduced periphyton biomass and increased biomass specific 13C uptake and C:nutrient ratios. The energy transfer efficiency, estimated as a ratio between 13C uptake by caddisfly and periphyton, was positively affected by light conditions, whereas the nutrient effect was not significant. We suggest that the observed effects on energy transfer were related to the increased diet contribution of highly palatable green algae, stimulated by higher light levels. Also, high heterotrophic microbial activity under low light levels would facilitate energy loss through respiration and decrease overall trophic transfer efficiency. These findings suggest that even a small increase in light intensity could result in community-wide effects on periphyton in boreal streams, with a subsequent increase in energy transfer and system productivity.  相似文献   

16.
Energy flux to a large, deep, salt lake from phytoplankton, periphyton and macrophyte primary production as well as fluvial transport and wind-transported terrestrial vegetation and dust were quantified. Average areal phytoplankton net photosynthesis was 511 mg C m−2 d−1. Highest rates were during water-blooms of the bluegreen alga, Nodularia spumigena. Although areal daily net photosynthesis by periphyton in Pyramid Lake was comparable to other salt lakes, annual carbon influx by periphyton was small due to the lake's graben morphology and moderate euphotic depth (mean, 11.9 m). Macrophytes were uncommon and, therefore a minor source of energy. Truckee River is the only major fluvial discharge to Pyramid Lake and dissolved organic carbon was the principal organic carbon fraction in river water. Large upstream water diversions coupled with several drought years resulted in an average fluvial organic carbon load of only 7.3 g Cm−2y−1 or 4% of median phytoplankton net photosynthesis. Tumbleweeds were the most common terrestrial plant material observed in Pyramid Lake comprising a maximum projected importance of 6% of total annual carbon input. Windborne dust represented < .1% of annual carbon input. Phytoplankton primary production is the predominant energy source to Pyramid Lake, accounting for over 80% of annual carbon influx. The relative magnitude of autochthonous and allochthonous vectors to the annual carbon budget of this desert salt lake are comparable to those of the few other large lakes for which detailed energy input budgets have been calculated.  相似文献   

17.
SUMMARY 1. In situ experiments were conducted in a Washington stream to quantify the effects of grazing by a caddisfly larva, Dicosmoecus gilvipes (Trichoptera: Limnephilidae), and a mayfly nymph, Nixe rosea (Ephemeroptera: Heptageniidae) on periphyton biomass, structure, and function.
2. Dicosmoecus gilvipes reduced periphyton biomass from 92 mg m−2(as mean chlorophyll a ) to 33 mg m−2. The grazed assemblage was less diverse and composed of smaller, closely attached diatoms, whereas there was a higher proportion of overstorey and filamenttius algae in the diverse, ungrazed periphyton.
3. By maintaining the periphyton community as a thin layer of diatoms, grazing by D. gilvipes appeared to promote a healthier, more vigorous community relative to the ungrazed mat, which became senescent in the latter part of the experiment.
4. Nixe rosea had little measurable effect on any characteristics of the periphyton measured. These nymphs apparently preferred small diatoms, which resulted in only micro-scale alterations in periphyton characteristics that were difficult to detect.
5. Biomass accrual of ungrazed and grazed periphyton was described by the logistic growth equation. Loss of biomass due to grazing by D. gilvipes or to senescence and sloughing were incorporated in the model to account for changes in grazed and ungrazed periphyton. respectively. Proposed mechanisms which described biomass accumulation were largely sup ported by model predictions.  相似文献   

18.
凉水和帽儿山地区低级溪流生境和水质状况   总被引:2,自引:0,他引:2  
为研究不同植被景观土地利用下低级溪流的生境状况和水质差异,对凉水国家级自然保护区红松原始林内和帽儿山国家森林公园境内天然次生林植被和农田背景下各3条溪流生境和水质状况进行调查。对溪流生物特性(悬浮藻、附着藻)和理化性质(温度、混浊度、溶解氧(DO)、pH、NH4^+-N、NO3^-N、PO4^3-P、总氮(TN)和总磷(11P))以及细小颗粒有机物质(FPOM)和粗大有机物质(CPOM))进行测定。研究结果表明,凉水地区原始林溪流的生境状况好于帽儿山地区的次生林,帽儿山地区农田溪流生境最差。原始林溪流具有稳定的溪底生物生活基质,稳水区和急流区均匀分布,稳水区尺度变化大,受淀积物沉降干扰小,河道较弯曲,河岸稳定,河岸植被覆盖度高;次生林溪流以急流区为主,稳定基质相对较差,并受到一定程度的淀积物沉降干扰,河岸尚稳定,有一定程度的人为干扰;农田溪流基质不稳定,受到强烈淀积物沉降影响,渠道化严重,河岸带植被严重破坏。3种景观背景下溪流总磷(11P)、溶解氧(DO)、混浊度、温度、氮磷比值(N/P)(P〈0.05)存在显著差异。原始林溪流NH4^+、DO、TP、TN、悬浮藻浓度和pH较高、附着藻数量较多,温度较低、FPOM和CPOM的数量较少;次生林溪流的NO3^--N、N/P和TDIN较高。 浊度较低;农田溪流浊度、温度、PO4^3--P较高,DO和pH较低,附着藻数量较少。景观尺度上的土地利用对溪流生境具有深刻的影响,同时决定溪流的水质状况。  相似文献   

19.
In a benthic community on a continuous flat granite substrate in a third-order coastal forest stream, the dominant chironomid (Cricotopus) increased in number when shrimps (Macrobrachium olfersi and Potimirim glabra) and baetid ephemeropterans were excluded by electricity. The response appeared to be mediated by an increase in periphyton and sediments, rather than a reduction of direct predation or interference. Chironomids, periphyton and sediments decreased significantly compared to the control when shrimps only were excluded. Baetid ephemeropteran appeared to be the most important determinants of periphyton and sediment mass; the density of chironomids appeared to follow the quantity of periphyton and sediments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号