首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional and comparative genomic studies have previously shown that the essential protein lysyl-tRNA synthetase (LysRS) exists in two unrelated forms. Most prokaryotes and all eukaryotes contain a class II LysRS, whereas most archaea and a few bacteria contain a less common class I LysRS. In bacteria the class I LysRS is only found in the alpha-proteobacteria and a scattering of other groups, including the spirochetes, while the class I protein is by far the most common form of LysRS in archaea. To investigate this unusual distribution we functionally annotated a representative phylogenetic sampling of LysRS proteins. Class I LysRS proteins from a variety of bacteria and archaea were characterized in vitro by their ability to recognize Escherichia coli tRNA(Lys) anticodon mutants. Class I LysRS proteins were found to fall into two distinct groups, those that preferentially recognize the third anticodon nucleotide of tRNA(Lys) (U36) and those that recognize both the second and third positions (U35 and U36). Strong recognition of U35 and U36 was confined to the pyrococcus-spirochete grouping within the archaeal branch of the class I LysRS phylogenetic tree, while U36 recognition was seen in other archaea and an example from the alpha-proteobacteria. Together with the corresponding phylogenetic relationships, these results suggest that despite its comparative rarity the distribution of class I LysRS conforms to the canonical archaeal-bacterial division. The only exception, suggested from both functional and phylogenetic data, appears to be the horizontal transfer of class I LysRS from a pyrococcal progenitor to a limited number of bacteria.  相似文献   

2.
3.
4.
5.
Human lysyl-tRNA synthetase (LysRS) is a tRNA-binding protein that is selectively packaged into HIV-1 along with its cognate tRNALys isoacceptors. Evidence exists that Gag alone is sufficient for the incorporation of LysRS into virions. Herein, using both in vitro and in vivo methods, we begin to map regions in Gag and LysRS that are required for this interaction. In vitro reactions between wild-type and truncated HIV-1 Gag and human LysRS were monitored using GST-tagged molecules and glutathione-agarose chromatography. Gag/LysRS interaction in vivo was detected in 293FT cells cotransfected with plasmids coding for wild-type or mutant HIV-1 Gag and LysRS, either by monitoring Gag.LysRS complexes immunoprecipitated from cell lysate with anti-LysRS or by measuring the ability of LysRS to be packaged into budded Gag viral-like particles. Based on these studies, we conclude that the Gag/LysRS interaction depends upon Gag sequences within the C-terminal domain of capsid (the last 54 amino acids) and amino acids 208-259 of LysRS. The latter domain includes the class II aminoacyl-tRNA synthetase consensus sequence known as motif 1. Both regions have been implicated in homodimerization of capsid and LysRS, respectively. Sequences falling outside these amino acid stretches can be deleted from either molecule without affecting the Gag/LysRS interaction, further supporting the observation that LysRS is incorporated into Gag viral-like particles independent of its ability to bind tRNALys.  相似文献   

6.
7.
8.
9.
10.
Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis.  相似文献   

11.
Two families of keratins, type I and type II, can be distinguished within the intermediate filament family of proteins, and at least 20 genes in the human genome code for the 20 known keratin proteins. In epithelial intermediate filaments, keratins from both families appear to be coordinately expressed. We have screened a library of human genomic DNA and have identified several cases of linkage among homologous and heterologous pairs of keratin genes. Genes coding for type I keratins were found linked to those coding for type II keratins. Linkage was discovered also among homologous genes coding for type I keratins and among genes encoding type II keratins. In addition, we found genes coding for glycine-rich keratins linked to genes coding for those that do not contain glycine-rich regions. Our results raise the possibility that all keratin genes are linked in a single region of the human genome.  相似文献   

12.

Background

Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes.

Results

Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove.

Conclusions

We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and is found in extant marsupials and monotremes, but has been lost from the eutherian lineage. The function of this family is as yet unknown, however, their predicted structure may be consistent with presentation of antigens to T-cells.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1745-4) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.

Background

Detailed comparative genome analyses within the economically important Rosaceae family have not been conducted. This is largely due to the lack of conserved gene-based molecular markers that are transferable among the important crop genera within the family [e.g. Malus (apple), Fragaria (strawberry), and Prunus (peach, cherry, apricot and almond)]. The lack of molecular markers and comparative whole genome sequence analysis for this family severely hampers crop improvement efforts as well as QTL confirmation and validation studies.

Results

We identified a set of 3,818 rosaceaous unigenes comprised of two or more ESTs that correspond to single copy Arabidopsis genes. From this Rosaceae Conserved Orthologous Set (RosCOS), 1039 were selected from which 857 were used for the development of intron-flanking primers and allele amplification. This led to successful amplification and subsequent mapping of 613 RosCOS onto the Prunus TxE reference map resulting in a genome-wide coverage of 0.67 to 1.06 gene-based markers per cM per linkage group. Furthermore, the RosCOS primers showed amplification success rates from 23 to 100% across the family indicating that a substantial part of the RosCOS primers can be directly employed in other less studied rosaceaous crops. Comparisons of the genetic map positions of the RosCOS with the physical locations of the orthologs in the Populus trichocarpa genome identified regions of colinearity between the genomes of Prunus-Rosaceae and Populus-Salicaceae.

Conclusion

Conserved orthologous genes are extremely useful for the analysis of genome evolution among closely and distantly related species. The results presented in this study demonstrate the considerable potential of the mapped Prunus RosCOS for genome-wide marker employment and comparative whole genome studies within the Rosaceae family. Moreover, these markers will also function as useful anchor points for the genome sequencing efforts currently ongoing in this family as well as for comparative QTL analyses.
  相似文献   

15.
16.

Background  

Lysyl-tRNA synthetase (LysRS) is unique within the aminoacyl-tRNA synthetase family in that both class I (LysRS1) and class II (LysRS2) enzymes exist. LysRS1 enzymes are found in Archaebacteria and some eubacteria while all other organisms have LysRS2 enzymes. All sequenced strains of Bacillus cereus (except AH820) and Bacillus thuringiensis however encode both a class I and a class II LysRS. The lysK gene (encoding LysRS1) of B. cereus strain 14579 has an associated T box element, the first reported instance of potential T box control of LysRS expression.  相似文献   

17.
Lysine insertion during coded protein synthesis requires lysyl-tRNA(Lys), which is synthesized by lysyl-tRNA synthetase (LysRS). Two unrelated forms of LysRS are known: LysRS2, which is found in eukaryotes, most bacteria, and a few archaea, and LysRS1, which is found in most archaea and a few bacteria. To compare amino acid recognition between the two forms of LysRS, the effects of l-lysine analogues on aminoacylation were investigated. Both enzymes showed stereospecificity toward the l-enantiomer of lysine and discriminated against noncognate amino acids with different R-groups (arginine, ornithine). Lysine analogues containing substitutions at other positions were generally most effective as inhibitors of LysRS2. For example, the K(i) values for aminoacylation of S-(2-aminoethyl)-l-cysteine and l-lysinamide were over 180-fold lower with LysRS2 than with LysRS1. Of the other analogues tested, only gamma-aminobutyric acid showed a significantly higher K(i) for LysRS2 than LysRS1. These data indicate that the lysine-binding site is more open in LysRS2 than in LysRS1, in agreement with previous structural studies. The physiological significance of divergent amino acid recognition was reflected by the in vivo resistance to growth inhibition imparted by LysRS1 against S-(2-aminoethyl)-l-cysteine and LysRS2 against gamma-aminobutyric acid. These differences in resistance to naturally occurring noncognate amino acids suggest the distribution of LysRS1 and LysRS2 contributes to quality control during protein synthesis. In addition, the specific inhibition of LysRS1 indicates it is a potential drug target.  相似文献   

18.
Temperate bacteriophage D3, a member of the virus family Siphoviridae, is responsible for serotype conversion in its host, Pseudomonas aeruginosa. The complete sequence of the double-stranded DNA genome has been determined. The 56,426 bp contains 90 putative open reading frames (ORFs) and four genes specifying tRNAs. The latter are specific for methionine (AUG), glycine (GGA), asparagine (AAC), and threonine (ACA). The tRNAs may function in the translation of certain highly expressed proteins from this relatively AT-rich genome. D3 proteins which exhibited a high degree of sequence similarity to previously characterized phage proteins included the portal, major head, tail, and tail tape measure proteins, endolysin, integrase, helicase, and NinG. The layout of genes was reminiscent of lambdoid phages, with the exception of the placement of the endolysin gene, which parenthetically also lacked a cognate holin. The greatest sequence similarity was found in the morphogenesis genes to coliphages HK022 and HK97. Among the ORFs was discovered the gene encoding the fucosamine O-acetylase, which is in part responsible for the serotype conversion events.  相似文献   

19.
Many ichneumonid and braconid endoparasitoids inject a polydnavirus (PDV) into their caterpillar hosts during oviposition. The viral entities carried by wasps of these families are referred to as "ichnoviruses" (IVs) and "bracoviruses" (BVs), respectively. All IV genomes characterized to date are found in wasps of the subfamily Campopleginae; consequently, little is known about PDVs found in wasps of the subfamily Banchinae, the only other ichneumonid taxon thus far shown to carry these viruses. Here we report on the genome sequence and virion morphology of a PDV carried by the banchine parasitoid Glypta fumiferanae. With an aggregate genome size of approximately 290 kb and 105 genome segments, this virus displays a degree of genome segmentation far greater than that reported for BVs or IVs. The size range of its genome segments is also lower than those in the latter two groups. As reported for other PDVs, the predicted open reading frames of this virus cluster into gene families, including the protein tyrosine phosphatase (PTP) and viral ankyrin (ank) families, but phylogenetic analysis indicates that ank genes of the G. fumiferanae virus are not embedded within the IV lineage, while its PTPs and those of BVs form distinct clusters. The banchine PDV genome also encodes a novel family of NTPase-like proteins displaying a pox-D5 domain. The unique genomic features of the first banchine virus examined, along with the morphological singularities of its virions (IV-like nucleocapsids, but enveloped in groups like some of the BVs), suggest that they could have an origin distinct from those of IVs and BVs.  相似文献   

20.
S-acylation is one of a group of lipid modifications that occurs on eukaryotic proteins, mediated by DHHC-CRD-containing proteins, which plays an important role in regulating the membrane association, trafficking and function of target proteins. Although genome-wide identification of PAT family has been carried out in yeast, mice, humans and Arabidopsis, little is known about apple PAT genes. In this study, a total of 33 putative apple PAT proteins, containing DHHC-CRD by domain analysis, have been identified, and were classified into three groups according to the phylogenetic analysis of PAT proteins in apple and Arabidopsis. More complex TMDs in the most MdPATs revealed the PM location of the gene family. Gene structure, gene chromosomal location and paralogs analysis of MdPAT genes within the apple genome demonstrated that tandem and segmental duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of the PAT gene family in apple. According to the microarray and expressed sequence tag (ESTs) analysis, the different expression patterns indicate that they may play different roles during fruit development and rootstock-scion interactions process. Moreover, PATs were performed expression profile analyses in different tissues, indicating that the PATs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this is the first report of a genome-wide analysis of the apple PAT gene family, and this genomic analysis of apple DHHC-CRD PAT genes provides the first step towards a functional study of this gene family in apple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号