首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrochloric acid treatment of methyl 3-(4-isobutylphenyl)-3-methylglycidate and methyl 2-hydroxy-3-(4-isobutylphenyl)-3-butenoate, a rearrangement product of the former, in acetic acid gave 3-(4-isobutylphenyl)-3-methylpyruvic acid and 2-(4-isobutylphenyl)-pro-panal. The same treatment of 2-hydroxy-3-(4-isobutylphenyl)-3-butenoic acid gave 2-(4-isobutylphenyl)-propanal. Both 3-(4-isobutylphenyl)-3-methylpyruvic acid and 2-(4-iso-butylphenyl)-propanal were oxidized to 2-(4-isobutylphenyl)-propionic acid.  相似文献   

2.
Phytosulfokine-alpha (PSK-alpha), a sulfated growth factor (H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH) universally found in both monocotyledons and dicotyledons, strongly promotes proliferation of plant cells in culture. In our studies on structure/activity relationship in PSK-alpha the synthesis of a series of analogues was performed: [H-D-Tyr(SO3H)1]- (9), [H-Phe(4-SO3H)1]- (10), [H-D-Phe(4-SO3H)1]- (11), [H-Phg(4-SO3H)1]- (12), [H-D-Phg(4-SO3H)1]- (13), H-Phe(4-NHSO2CH3)1]- (14), [H-D-Phe(4-NHSO2CH3)1]- (15), [H-Phe(4-NO2)1]- (16), [H-D-Phe(4-NO2)1]- (17), [H-Phg(4-NO2)1]- (18), [H-D-Phg(4-NO2)1]- (19), [H-Hph(4-NO2)1]- (20), [H-Phg(4-OSO3H)1]- (21), [Phe(4-NO2)3]- (22), [Phg(4-NO2)3]- (23), [Hph(4-NO2)3]- (24), [H-Phe(4-SO3H)1, Phe(4-SO3H)3]- (25) [H-Phe(4-NO2)1, Phe(4-NO2)3]- (26), [H-Phg(4-NO2)1, Phg(4-NO2)3]- (27), [H-Hph(4-NO2)1, Hph(4-NO2)3]- (28) and [Val3]- PSK-alpha (29). For modification of the PSK-alpha peptide chain the novel amino acids and their derivatives were synthesized, such as: H-L-Phg(4-SO3H)-OH (1), H-D-Phg(4-SO3H)-OH (2), Fmoc-Phg(4-SO3H)-OH (3), Fmoc-D-Phg(4-SO3H)-OH (4), Boc-Phg(4-NHSO2CH3)-OH (5), Boc-D-Phg(4-NHSO2CH3)-OH (6) Boc-Phe(4-NHSO2CH3)-OH (7), and Boc-D-Phe(4-NHSO2CH3)-OH (8). Peptides were synthesized by a solid phase method according to the Fmoc procedure on a Wang-resin. Free peptides were released from the resin by 95% TFA in the presence of EDT. All peptides were tested by competitive binding assay to the carrot membrane using 3H-labelled PSK according to the Matsubayashi et al. test.  相似文献   

3.
A series of N1-nicotinoyl-3- (4-hydroxy-3-methyl phenyl)-5-(substituted phenyl)-2-pyrazolines were synthesized by the reaction between isoniazid (INH) and chalcones and were tested for their in vitro anti-viral activity. Among the compounds, the electron withdrawing group substituted analogues 5-(4-chlorophenyl)-3-(4-hydroxy-3-methylphenyl)-4, 5-dihydro-1H-1- pyrazolyl-4-pyridylmethanone (4b), 5-(2-chlorophenyl)-3-(4-hydroxy-3-methylphenyl)-4,5-dihydro-1H-1-pyrazolyl-4-pyri- dylmethanone (4i), 5-(4-fluorophenyl)-3-(4-hydroxy-3-methylphenyl)-4,5-dihydro- 1H-1-pyrazolyl-4-pyridylmethanone (4h) and 5-(2,6-dichlorophenyl)-3-(4-hydroxy-3-methylphenyl)-4,5-dihydro- 1H-1-pyrazolyl-4-pyridyl methanone (4j) were the most promising and the halogeno function appeared to be essential for antiviral activity.  相似文献   

4.
Wei C  Jia G  Yuan J  Feng Z  Li C 《Biochemistry》2006,45(21):6681-6691
Free-base porphyrin (5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine) (H(2)TMPyP4) has been shown to be an effective telomerase inhibitor by an in vitro assay. Here, we examined the interactions of the H(2)TMPyP4 with three distinct G-quadruplex DNAs, the parallel-stranded (TG(4)T)4, dimer-hairpin-folded (G(4)T(4)G(4))2, and monomer-folded AG(3)(T(2)AG(3))(3), by ultraviolet resonance Raman spectroscopy (UVRR), UV-vis absorption spectroscopy, fluorescence spectroscopy, and surface-enhanced Raman spectroscopy (SERS). The data obtained by the continuous variation titration method show that the binding stoichiometry of H(2)TMPyP4/G-quadruplex is 2:1 for (TG(4)T)4 and 4:1 for (G(4)T(4)G(4))2 or AG(3)(T(2)AG(3))(3). The results of SERS spectra, UV-vis absorption titration, and fluorescence emission spectra together with the binding stoichiometries reveal that two H(2)TMPyP4 molecules are externally stacked at two ends of the parallel (TG(4)T)4 G-quadruplex, whereas H(2)TMPyP4 molecules can intercalate within their diagonal or lateral loop regions and intervals between two G-tetrads for (G(4)T(4)G(4))2 and AG(3)(T(2)AG(3))(3) G-quadruplexes. The binding of H(2)TMPyP4 to (TG(4)T)4 G-quadruplex results in the hypochromicity of the UV Raman signal of (TG(4)T)4, indicating that the stacking effects between H(2)TMPyP4 and DNA bases are significant. The Raman hyperchromicities and shifts are observed after the binding of H(2)TMPyP4 to both (G(4)T(4)G(4))2 and AG(3)(T(2)AG(3))(3) G-quadruplexes. This indicates that the intercalative H(2)TMPyP4 can lengthen the vertical distance between adjacent G-tetrads of (G(4)T(4)G(4))2 and AG(3)(T(2)AG(3))(3) and change their conformations. The present study provides new insights into the effect of H(2)TMPyP4 binding on the structures of G-quadruplexes and also demonstrates that Raman spectroscopy is an ideal method for examining the interaction between drugs and G-quadruplexes.  相似文献   

5.
Structural characterizations of marsupial milk oligosaccharides have been performed in only three species: the tammar wallaby, the red kangaroo and the koala. To clarify the homology and heterogeneity of milk oligosaccharides among marsupials, 21 oligosaccharides of the milk carbohydrate fraction of the common brushtail possum were characterized in this study. Neutral and acidic oligosaccharides were separated from the carbohydrate fraction of mid-lactation milk and characterized by 1H-nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The structures of the 7 neutral oligosaccharides were Gal(β1-3)Gal(β1-4)Glc (3’-galactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (3”, 3’-digalactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I), Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl lacto-N-novopentaose I), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)Gal(β1-4)Glc (galactosyl lacto-N-novopentaose II). The structures of the 14 acidic oligosaccharides detected were Neu5Ac(α2-3)Gal(β1-3)Gal(β1-4)Glc (sialyl 3’-galactosyllactose), Gal(β1-3)(O-3-sulfate)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I sulfate a) Gal(β1-3)[Gal(β1-4)(O-3-sulfate)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I sulfate b), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)(?3-O-sulfate)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)[Gal(β1-4)(?3-O-sulfate)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose b), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)(?3-O-sulphate)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)(?3-O-sulphate)Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)Gal(β1-3)[Gal(β1-4)(?3-O-sulphate)GlcNAc(β1-6)]Gal(β1-4)Glc and Gal(β1-3)Gal(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl sialyl lacto-N-novopentaose b). No fucosyl oligosaccharides were detected. Galactosyl lacto-N-novopentaose II, lacto-N-novopentaose I sulfate a, lacto-N-novopentaose I sulfate b and galactosyl sialyl lacto-N-novopentaose b are novel oligosaccharides. The results are compared with those of previous studies on marsupial milk oligosaccharides.  相似文献   

6.
《Phytochemistry》1999,52(5):947-955
Thirteen homoisoflavonoids, nine of which are new: 3-(4-methoxybenzyl)-5,7-dimethoxychroman-4-one, 3-(4-hydroxy-3-methoxybenzyl)-5-hydroxy-7-methoxychroman-4-one, 3-(4-methoxybenzylidene)-5,7-dihydroxy-6-methoxychroman-4-one, 3-(4-hydroxybenzylidene)-5-hydroxy-7-methoxychroman-4-one, 3-(4-hydroxy-3-methoxybenzyl)-5-hydroxy-6,7-dimethoxychroman-4-one, 3-(3,4-dimethoxybenzyl)-5,7-dihydroxychroman-4-one, 3-(4-methoxybenzyl)-6-hydroxy-5,7-dimethoxychroman-4-one, 3-(4-hydroxybenzyl)-5,6,7-trimethoxychroman-4-one and 3-(4-methoxybenzyl)-8-hydroxy-5,7-dimethoxychroman-4-one, were isolated from the bulbs of Scilla nervosa together with four known ones and three known stilbene derivatives. The structures of these secondary metabolites were characterized by spectroscopic means and by comparison with published information for known compounds.  相似文献   

7.
Five 3-hydroxy-type homoisoflavonoids, 3,5-dihydroxy-7,8-dimethoxy-3-(3',4'-dimethoxybenzyl)-4-chromanone, 3,5-dihydroxy-7-methoxy-3-(3',4'-dimethoxybenzyl)-4-chromanone, 3,5-dihydroxy-7,8-dimethoxy-3-(3'-hydroxy-4'-methoxybenzyl)-4-chromanone, 3,5,6-trihydroxy-7-methoxy-3-(3'-hydroxy-4'-methoxybenzyl)-4-chromanone and 3,5,7-trihydroxy-3-(3'-hydroxy-4'methoxybenzyl)-4-chromanone in addition to the nortriterpenoid, 15-deoxoeucosterol, have been isolated from the dichloromethane extract of the bulbs of Pseudoprospero firmifolium, the sole representative of the tribe Pseudoprospereae of the subfamily Hyacinthoideae of the Hyacinthaceae.  相似文献   

8.
The effects of nine methylsulfonyl (MeSO(2)) metabolites of tetra-, penta- and hexachlorinated biphenyls (tetra-, penta- and hexaCBs; 20 micromol/kg once daily for 4 days) on the hepatic microsomal UDP-glucuronosyltransferase (UDP-GT) were investigated in male Sprague-Dawley rats. Each of the seven 3-MeSO(2)-PCBs, 3-MeSO(2)-2, 2',4',5-tetraCB (3-MeSO(2)-CB49), 3-MeSO(2)-2,3',4',5-tetraCB (3-MeSO(2)-CB70), 3-MeSO(2)-2,2',3',4',5-pentaCB (3-MeSO(2)-CB87), 3-MeSO(2)-2,2',4',5,5'-pentaCB (3-MeSO(2)-CB101), 3-MeSO(2)-2,2',3', 4',5,6-hexaCB (3-MeSO(2)-CB132), 3-MeSO(2)-2,2',3',4',5,5'-hexaCB (3-MeSO(2)-CB141), 3-MeSO(2)-2,2',4',5,5',6-hexaCB (3-MeSO(2)-CB149) and 4-MeSO(2)-2,2',4',5,5'-pentaCB (4-MeSO(2)-CB101) increased the activities of UDP-GT toward chloramphenicol, 4-nitrophenol and 4-methylumbelliferone. 4-MeSO(2)-2,2',4',5,5',6-hexaCB (4-MeSO(2)-CB149) increased the activity of UDP-GT toward chloramphenicol (UGT2B1) but not toward 4-nitrophenol (UGT1A6) and 4-methylumbelliferone (UGT1A6). The activity of UDP-GT toward thyroxine (T(4)) significantly increased after the administration of each of the seven 3-MeSO(2)-PCBs and 4-MeSO(2)-CB101. Significant correlation was found between the activity of UDP-GT toward T(4) and serum total T(4) concentration after the administration of each of the MeSO(2) derivatives except 4-MeSO(2)-CB149. In conclusion, seven 3-MeSO(2)-PCBs and 4-MeSO(2)-CB101 induce both UGT2B1 and UGT1A6, and 4-MeSO(2)-CB149 induces UGT 2B1. The results from the present study indicate that increase in the hepatic T(4) glucuronidation after the administration of the seven 3-MeSO(2)-PCBs and 4-MeSO(2)-CB101 possibly because of the induction of both UGT1A1 and UGT1A6 caused the reduction of serum T(4) levels.  相似文献   

9.
Ma J  Jin X  Yang L  Liu ZL 《Phytochemistry》2004,65(8):1137-1143
Seven new diarylheptanoids, i.e., (3S,5S)-3,5-diacetoxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptane, (3R,5S)-3-acetoxy-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptane, (3R,5S)-3,5-dihydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptane, (5S)-5-acetoxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptan-3-one, 5-hydroxy-1-(3,4-dihydroxy-5-methoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptan-3-one, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxy-5-methoxy-phenyl)heptan-3-one and 1,5-epoxy-3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptane were isolated from the rhizomes of Chinese ginger (Zingiber officinale Roscoe), along with 25 known compounds, i.e., 8 diarylheptanoids, 14 gingerol analogs, a diterpene and 2 steroids. Their structures were elucidated by spectroscopic and chemical methods.  相似文献   

10.
Chondroitin sulfates were fragmented using the enzymes chondroitin sulfate ABC endolyase and chondroitin ACII lyase; both disaccharide and tetrasaccharide fragments were isolated after reduction to the corresponding 2-deoxy-2-N-acetylamino-D-galactitol (GalNAc-ol) form. These have the structures: Delta UA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S-ol, Delta UA2S(beta 1--3)GalNAc6S-ol, Delta UA(beta 1--3)GalNAc4S(beta 1--4)L-IdoA(alpha 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc4S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc6S-ol, Delta UA2S(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol and Delta UA2S(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc6S-ol, where Delta UA represents a 4,5-unsaturated hexuronic acid (4-deoxy-alpha-Lthreo-hex-4-enepyranosyluronic acid) and 6S/4S/2S represent O-ester sulfate groups at C6/C4/C2 sites. Complete (1)H-NMR and (13)C-NMR data are derived for these species, which may help to alleviate some of the significant difficulties resulting from signal complexity that are currently hindering the characterization and assignment of major and minor structural components within chondroitin sulfate and dermatan sulfate polymers.  相似文献   

11.
Although 2-O-sulfated L-iduronic acid (IdoA) residues have been known to occur in heparin, 2-O-sulfated D-glucuronic acid (GlcA) residues have been reported only recently (Bienkowski, M. J., and Conrad, H. E. (1985) J. Biol. Chem. 250, 356-365). Disaccharides prepared by cleavage of heparin and N-deacetylated chondroitin 6-sulfate with nitrous acid were used to demonstrate a new sulfatase that catalyzed the removal of the 2-O-sulfate substituents from GlcA but not IdoA residues. The deamination products were labeled by NaB3H4 reduction to give disaccharides from heparin and chondroitin sulfate which had reducing terminal 2,5-anhydro-D-mannitol ([3H]AManR) and 2,5-anhydro-D-talitol ([3H]ATalR) residues, respectively. IdoA(2-SO4)-[3H]AManR(6-SO4) from heparin and GlcA(2-SO4)-[3H]ATalR(6-SO4) from chondroitin sulfate were purified for use as substrates. GlcA(2-SO4)-[3H]AManR(6-SO4) was prepared by epimerization of IdoA(2-SO4)-[3H]AManR(6-SO4) with hydrazine at 100 degrees C. Lysosomal enzyme preparations from chick embryo chondrocytes and from two normal human fibroblast cell lines catalyzed the removal of the 2-O-SO4 substituent from the uronic acid residues of IdoA(2-SO4)-[3H]AManR(6-SO4), GlcA(2-SO4)-[3H] AManR(6-SO4), and GlcA(2-SO4)-[3H]ATalR(6-SO4). In contrast, a lysosomal enzyme preparation from a human fibroblast cell line deficient in idurono-2-sulfatase (Hunter's-syndrome), which had no activity on the IdoA(2-SO4)-[3H]AManR(6-SO4), converted GlcA(2-SO4)-[3H]AManR(6-SO4) to a mixture of GlcA-[3H] AManR(6-SO4) and [3H]AManR(6-SO4). This enzyme also converted GlcA(2-SO4)-[3H]ATalR(6-SO4) to a mixture of GlcA-[3H]ATalR(6-SO4) and [3H]ATalR(6-SO4). Digestion of both GlcA(2-SO4)-[3H]AManR(6-SO4) and GlcA(2-SO4)-[3H]ATalR(6-SO4) was inhibited by 35SO2-4 and was arrested at the monosulfated disaccharide stage by 1,4-saccharolactone. The glucurono-2-sulfatase exhibited a pH optimum of 4. The results indicate that there exists a separate sulfatase for the removal of sulfate substituents from C-2 of GlcA residues in glycosaminoglycans.  相似文献   

12.
In our studies on the development of new promoters for the root formation of tree cuttings, 4-trifluoromethylindole-3-acetic acid (4-CF(3)-IAA), a new fluorinated auxin, was synthesized via 4-trifluoromethylindole and 4-trifluoromethylindole-3-acetonitrile by using 2-methyl-3-nitrobenzotrifluoride as the starting material. As a control compound for comparing biological activities, 4-methylindole-3-acetic acid (4-CH(3)-IAA) was also synthesized by using 2,3-dimethylnitrobenzene as the starting material. The biological activities of these compounds were compared by three bioassays with those of indole-3-acetic acid and 4-chloroindole-3-acetic acid (4-Cl-IAA), which, like 4-CF(3)-IAA and 4-CH(3)-IAA, has a substituent at the 4-position of the indole nucleus. 4-CF(3)-IAA showed strong root formation-promoting activity with black gram cuttings which was 1.5 times higher than that of 4-(3-indole)butyric acid at 1x10(-4) M. 4-CH(3)-IAA, however, only weakly promoted root formation in spite of its strong inhibition of hypocotyl growth in Chinese cabbage and promotion of hypocotyl swelling and lateral root formation in black gram. On the other hand, 4-CF(3)-IAA demonstrated weaker activities than 4-CH(3)-IAA and 4-Cl-IAA in these two bioassays.  相似文献   

13.
The oligosaccharides present in the milk of an African elephant (Loxodonta africana africana), collected 4 days post partum, were separated by size exclusion-, anion exchange- and high-performance liquid chromatography (HPLC) before characterisation by (1)H NMR spectroscopy. Neutral and acidic oligosaccharides were identified. Neutral oligosaccharides characterised were isoglobotriose, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and a novel oligosaccharide that has not been reported in the milk or colostrum of any other mammal: Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc. Acidic oligosaccharides that are also found in the milk of Asian elephant were Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(alpha1-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc, while Neu5Gc(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc, Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3)[Gal(beta1-4)GlcNAc(beta1-6)]Gal(beta1-4)Glc and Neu5Ac(alpha2-6)Gal(beta1-4)GlcNAc(beta1-3){Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)}Gal(beta1-4)Glc have not been found in Asian elephant milk. The oligosaccharides characterised contained both alpha(2-3)- and alpha(2-6)-linked Neu5Ac residues. They also contain only the type II chain, as found in most non-human, eutherian mammals.  相似文献   

14.
The biotransformation of raspberry ketone and zingerone were individually investigated using cultured cells of Phytolacca americana. In addition to (2S)-4-(4-hydroxyphenyl)-2-butanol (2%), (2S)-4-(3,4-dihydroxyphenyl)-2-butanol (5%), 4-[4-(beta-d-glucopyranosyloxy)phenyl]-2-butanone (19%), 4-[(3S)-3-hydroxybutyl]phenyl-beta-d-glucopyranoside (23%), and (2S)-4-(4-hydroxyphenyl)but-2-yl-beta-d-glucopyranoside (20%), two biotransformation products, i.e., 2-hydroxy-4-[(3S)-3-hydroxybutyl]phenyl-beta-d-glucopyranoside (12%) and 2-hydroxy-5-[(3S)-3-hydroxybutyl]phenyl-beta-d-glucopyranoside (11%), were isolated from suspension cells after incubation with raspberry ketone for three days. On the other hand, two compounds, i.e., (2S)-4-(4-hydroxy-3-methoxyphenyl)but-2-yl-beta-d-glucopyranoside (17%) and (2S)-2-(beta-d-glucopyranosyloxy)-4-[4-(beta-d-glucopyranosyloxy)-3-methoxyphenyl]butane (16%), together with (2S)-4-(4-hydroxy-3-methoxyphenyl)-2-butanol (15%), 4-[4-(beta-d-glucopyranosyloxy)-3-methoxyphenyl]-2-butanone (21%), and 4-[(3S)-3-hydroxybutyl]-2-methoxyphenyl-beta-d-glucopyranoside (24%) were obtained upon addition of zingerone. Cultured cells of P. americana can reduce, and regioselectively hydroxylate and glucosylate, these food ingredients to their beta-glycosides.  相似文献   

15.
Higher water use efficiency (WUE) in C(4) plants may allow for greater xylem safety because transpiration rates are reduced. To evaluate this hypothesis, stem hydraulics and anatomy were compared in 16 C(3), C(3)-C(4) intermediate, C(4)-like and C(4) species in the genus Flaveria. The C(3) species had the highest leaf-specific conductivity (K(L)) compared with intermediate and C(4) species, with the perennial C(4) and C(4)-like species having the lowest K(L) values. Xylem-specific conductivity (K(S)) was generally highest in the C(3) species and lower in intermediate and C(4) species. Xylem vessels were shorter, narrower and more frequent in C(3)-C(4) intermediate, C(4)-like and C(4) species compared with C(3) species. WUE values were approximately double in the C(4)-like and C(4) species relative to the C(3)-C(4) and C(3) species. C(4)-like photosynthesis arose independently at least twice in Flaveria, and the trends in WUE and K(L) were consistent in both lineages. These correlated changes in WUE and K(L) indicate WUE increase promoted K(L) decline during C(4) evolution; however, any involvement of WUE comes late in the evolutionary sequence. C(3)-C(4) species exhibited reduced K(L) but little change in WUE compared to C(3) species, indicating that some reduction in hydraulic efficiency preceded increases in WUE.  相似文献   

16.
3-Aryl-4-formylsydnone 4'-phenylthiosemicarbazones (3a-d) and 3-aryl-4-formylsydnone thiosemicarbazones (3e-h), which are precursors of 3-aryl-4-heterocyclic sydnones, are prepared by the condensation of 3-aryl-4-formylsydnones (1a-d) with 4'-phenylthiosemicarbazide (2a) and thiosemicarbazide (2b), respectively. The thiosemicarbazones 3 reacted with cyclic reagents such as ethyl chloroacetate (4a), ethyl 2-chloroacetoacetate (4b) and 2-bromoacetophenone (4c) to produce heterocyclic substituted sydnone derivatives 5-7 that possess 4-oxo-thiazolidine and thiazoline groups. The antioxidant activity of synthesized compounds 5a-7h was evaluated. Among these compounds, 4-methyl-2-[(3-arylsydnon-4-yl-methylene)hydrazono]-2,3-dihydro-thiazole-5-carboxylic acid ethyl ester (6e-h) and 4-phenyl-2-[(3-arylsydnon-4-yl-methylene)hydrazono]-2,3-dihydro-thiazoles (7e-h) exhibit the potent DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, comparable to that of vitamin E.  相似文献   

17.
Homoisoflavonoids from Ophiopogon japonicus Ker-Gawler   总被引:5,自引:0,他引:5  
From the ethyl acetate extract of the tuberous roots of Ophiopogon japonicus (Liliaceae) eight known and five new homoisoflavonoidal compounds were isolated. The new compounds are 5,7-dihydroxy-8-methoxy-6-methyl-3-(2'-hydroxy-4'-methoxybenzyl)chroman-4-one (1), 7-hydroxy-5,8-dimethoxy-6-methyl-3-(2'-hydroxy-4'-methoxybenzyl)chroman-4-one (2), 5,7-dihydroxy-6,8-dimethyl-3-(4'-hydroxy-3'-methoxybenzyl)chroman-4-one (3), 2,5,7-trihydroxy-6,8-dimethyl-3-(3',4'-methylenedioxybenzyl)chroman-4-one (4) and 2,5,7-trihydroxy-6,8-dimethyl-3-(4'-methoxybenzyl)chroman-4-one (5). Their structures have been elucidated by mass and NMR spectroscopy. Compounds 4 and 5 are the first isolated homoisoflavonoids with a hemiacetal function at position 2.  相似文献   

18.
A series of N1-nicotinoyl-3- (4-hydroxy-3-methyl phenyl)-5-(substituted phenyl)-2-pyrazolines were synthesized by the reaction between isoniazid (INH) and chalcones and were tested for their in vitro anti-viral activity. Among the compounds, the electron withdrawing group substituted analogues 5-(4-chlorophenyl)-3-(4-hydroxy-3-methylphenyl)-4, 5-dihydro-1H-1-pyrazolyl-4-pyridylmethanone (4b), 5-(2-chlorophenyl)-3-(4-hydroxy-3-methylphenyl)-4,5-dihydro-1H-1-pyrazolyl-4-pyridylmethanone (4i), 5-(4-fluorophenyl)-3-(4-hydroxy-3-methylphenyl)-4,5-dihydro-1H-1-pyrazolyl-4-pyridylmethanone (4h) and 5-(2,6-dichlorophenyl)-3-(4-hydroxy-3-methylphenyl)-4,5-dihydro-1H-1-pyrazolyl-4-pyridyl methanone (4j) were the most promising and the halogeno function appeared to be essential for antiviral activity.  相似文献   

19.
Saksena R  Chernyak A  Kovác P 《Carbohydrate research》2008,343(10-11):1693-1706
The title rhamnooligosaccharides [alpha-D-Rhap4NAc-(1-->3)-alpha-D-Rhap4NAc-1-O-(CH(2))(5)COOMe, alpha-D-Rhap4NAc-(1-->3)-alpha-D-Rhap4NAc-(1-->3)-alpha-D-Rhap4NAc-1-O-(CH(2))(5)COOMe, alpha-D-Rhap4NAc-(1-->2)-alpha-D-Rhap4NAc-(1-->3)-alpha-D-Rhap4NAc-(1-->3)-alpha-D-Rhap4NAc-1-O-(CH(2))(5)COOMe, and alpha-D-Rhap4NAc-(1-->3)-alpha-D-Rhap4NAc-(1-->2)-alpha-D-Rhap4NAc-(1-->3)-alpha-D-Rhap4NAc-(1-->3)-alpha-D-Rhap4NAc-1-O-(CH(2))(5)COOMe] were synthesized in a stepwise fashion from 5-methoxycarbonylpentyl 4-azido-4,6-dideoxy-2-O-benzyl-alpha-D-mannopyranoside and orthogonally protected 1-thioglycoside glycosyl donors. The amorphous, final products were fully characterized as corresponding per-O-acetyl derivatives.  相似文献   

20.
Two trisaccharides, three tetrasaccharides, two pentasaccharides, one hexasaccharide, one heptasaccharide, one octasaccharide and one decasaccharide were isolated from polar bear milk samples by chloroform/methanol extraction, gel filtration, ion exchange chromatography and preparative thin-layer chromatography. The oligosaccharides were characterized by 1H-NMR as follows: the saccharides from one animal: Gal(α1-3)Gal(β1-4)Glc (α3′-galactosyllactose), Fuc(α1-2)Gal(β1-4)Glc (2′-fucosyllactose), Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (B-tetrasaccharide), GalNAc(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (A-tetrasaccharide), Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)[Gal(α1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc; the saccharides from another animal: α3′-galactosyllactose, Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]Glc, A-tetrasaccharide, GalNAc(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3)]Glc (A-pentasaccharide), Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc, Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)[Fuc(α1-3)]Glc (difucosylheptasaccharide) and Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3){Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (difucosyldecasaccharide). Lactose was present only in small amounts. Some of the milk oligosaccharides of the polar bear had α-Gal epitopes similar to some oligosaccharides in milk from the Ezo brown bear and the Japanese black bear. Some milk oligosaccharides had human blood group A antigens as well as B antigens; these were different from the oligosaccharides in Ezo brown and Japanese black bears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号