首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of erythropoietic stimuli influenced the number of endogenous spleen colonies in irradiated mice and the number of transplantable colony forming cells in the spleen and marrow of unirradiated mice. Bleeding was the most effective stimulus. Bleeding before irradiation resulted in a 30-fold increase in endogenous spleen colonies and in increases in spleen weight, spleen iron and iododeoxyuridine uptake and volume of packed red cells ten days after irradiation. Bleeding unirradiated mice produced a 10-fold increase in the number of transplantable colony forming cells in the spleen and a slight decrease in the total number in the humerus. Bleeding before irradiation resulted in a significant reduction in 30-day post irradiation deaths, an effect abolished by splenectomy. Plasma from bled mice induced an increase in endogenous colonies when injected before irradiation into normal mice. Injection of erythropoietin, testosterone or testosterone plus cobalt induced effects which were, in general, qualitatively similar to those of bleeding, although they were less effective quantitatively. Except for a slight effect induced by ten injections of erythropoietin, post-irradiation stimulation in normal mice proved ineffective. Erythropoietin increased colony numbers and spleen iron uptake when given after irradiation to hypertransfused mice. The results of these studies do not support the concept that the colony forming cell and the erythropoietin sensitive cell are separate entities.  相似文献   

2.
The cellular response to an intraperitoneal injection of antigen (tetanus toxoid) was studied in reconstituted animals in order to determine the mechanism of control of eosinophil granulocytopoiesis. Antigen treatment of the marrow cell donors did not consistently increase the number of spleen and bone marrow colonies in recipient animals or change the percentage of eosinophil or other hemopoietic colony types. Antigen pre-treatment of the irradiated recipients increased the percentage of eosinophil-containing colonies in the spleen and femoral bone marrow without significantly changing the total number of either spleen or marrow colonies. Antigen treatment of both the bone marrow cell donor and recipient produced a further increase in the percentage of eosinophil-containing colonies in the marrow cavity, but not in the spleen. Antigen treatment of the irradiated recipient increased the number of eosinophilic cells (but not the total number of cells) in both the peritoneal cavity and the bone marrow. Antigen treatment of both the marrow donor and recipient produced a further increase in the number of eosinophilic cells in the peritoneal cavity, but not in a single femur. Since antigen treatment of the marrow recipient, or recipient and donor, but not of the marrow donor alone, results in increased eosinophilic cell and colony numbers, the effect of antigen appears to be mediated through some host factor(s), perhaps the eosinophilic hemopoietic inducing microenvironment (HIM), rather than directly on the hemopoietic stem cells.  相似文献   

3.
The bone marrow colony-forming unit (CFU) technique of Till and McCulloch was employed to test the radioprotective effect of AET, anoxia, urethan on marrow cells irradiated in vivo. For AET and anoxia, a dose-reduction factor of 1.9 to 2.1 was found. Since the marrow cells were assayed for CFU content immediately after irradiation of the donor, the observed effect can be interpreted as a "true" radiation dose reduction. By contrast, urethan injection did not increase the survival of marrow CFU assayed immediately after whole-body x-irradiation. However, both urethan and AET afforded radioprotection of endogenous CFU content of spleen and bone marrow, but not of endogenous spleen colony count. It is concluded that the mechanism of radioprotection by urethan is fundamentally different from that of AET or anoxia.  相似文献   

4.
Kinetics of mouse spleen colony forming units were studied after intra-peritoneal injection of 1 mug/blody weight bacterial endotoxin S. typhosa. When these mice were used as unirradiated and sublethally irradiated donors, it was possible to study the effect of the endotoxin injection upon the cells.Use of the treated mice as irradiated recipients of normal cells gave information about the host effect. In treated unirradiated mice, the total nucleated cell and the CFU counts were disturbed, and 2 days later a large fraction of the CFU were found in the DNA synthesis (S) phase. This meant that injection of endotoxin generated factors affecting the kinetics of the CFU and triggering the resting CFU into the proliferative cycle. If then the mice were given supralethal irradiation and used as recipients of normal bone marrow cells, more CFU seeded to the spleen as compared to normal recipients; but the dip and the growth rate of the CFU were not changed. Hence the endotoxin-generated factors had been eliminated in 2 days. A total body sublethal irradiation by 400 rad X-ray 2 days after endotoxin injection reduced the post-irradiation dip in the recovery curve of the CFU, indicating that though the factors affecting the cell kinetics had been eliminated, the cycling CFU behaved like a growing population. During the first week, the growth rate of the CFU remained the same as in control irradiated mice. The growth rate of the spleen CFU of the endotoxin-treated mice slowed down during the second week, and their self-replicating ability was low. Fluctuations in the DNA synthesizing fraction of the spleen CFU suggested a variability in the ratio of the length of the S phase and the cell generation time.  相似文献   

5.
Hemopoietic colony formation in agar occurred spontaneously in mass cultures of marrow cells obtained from a number of species (guinea pig, rat, lamb, rabbit, pig, calf, human and Rhesus monkey). This contrasted with the observation that colony formation by mouse bone marrow exhibited an absolute requirement for an exogenous source of a colony stimulating factor. Analysis of spontaneous colony formation in Rhesus monkey marrow cultures revealed the presence of a cell type in hemopoietic tissue, capable of elaborating colony stimulating factor when used to condition media or as feeder layers. Equilibrium density gradient centrifugation separated colony stimulating cells from in vitro colony forming cells in monkey bone marrow. Separation studies on spleen, blood and marrow characterized the stimulating cells as of intermediate density, depleted or absent in fractions enriched for cells of the granulocytic series and localized in regions containing lymphocytes and monocytes. Adherence column separation of peripheral blood leukocytes showed the stimulating cells to be actively adherent, unlike the majority of lymphocytes, and combined adherence column and density separation indicated that stimulating cells were present in hemopoietic tissue within the population of adherent lymphocytes or monocytes.  相似文献   

6.
Kinetics of mouse spleen colony forming units were studied after intra-peritoneal injection of 1 μ/g body weight bacterial endotoxin S. typhosa. When these mice were used as unirradiated and sublethally irradiated donors, it was possible to study the effect of the endotoxin injection upon the cells. Use of the treated mice as irradiated recipients of normal cells gave information about the host effect. In treated unirradiated mice, the total nucleated cell and the CFU counts were disturbed, and 2 days later a large fraction of the CFU were found in the DNA synthesis (S) phase. This meant that injection of endotoxin generated factors affecting the kinetics of the CFU and triggering the resting CFU into the proliferative cycle. If then the mice were given supralethal irradiation and used as recipients of normal bone marrow cells, more CFU seeded to the spleen as compared to normal recipients; but the dip and the growth rate of the CFU were not changed. Hence the endotoxin-generated factors had been eliminated in 2 days. A total body sublethal irradiation by 400 rad X-ray 2 days after endotoxin injection reduced the post-irradiation dip in the recovery curve of the CFU, indicating that though the factors affecting the cell kinetics had been eliminated, the cycling CFU behaved like a growing population. During the first week, the growth rate of the CFU remained the same as in control irradiated mice. The growth rate of the spleen CFU of the endotoxin-treated mice slowed down during the second week, and their self-replicating ability was low. Fluctuations in the DNA synthesizing fraction of the spleen CFU suggested a variability in the ratio of the length of the S phase and the cell generation time.  相似文献   

7.
The ability of a single injection of killed, intact bacteria to effect an increase in the proliferative rate of hemopoietic stem cells was studied. The total numbers of colony forming units in bone marrow, spleen and peripheral blood as well as the proportion of CFU in cycle was assessed. Splenic CFU were observed to rise exponentially due initially to in situ proliferation and later to proliferation in bone marrow with migration via the blood to the spleen. The results are discussed in the light of current concepts of stem cell regulation.  相似文献   

8.
The growth rate of the CFU populations in spleens and femora has been studied in irradiated mice injected with cell suspensions, containing equivalent number of CFU, from various sources. The doubling times are shown to be dependent upon the source of the cells. Grafts of bone marrow, spleen and foetal liver cells produced doubling times in the spleen of approximately 25, 19 and 16 hr respectively. Grafts of marrow-derived and spleen-derived spleen colony cells both gave rise to CFU doubling times lower than those of the corresponding primary grafts (approx. 33 and 26 hr respectively in the spleen). In the case of both bone marrow and spleen grafts the CFU population growth was shown to be independent of the size of the graft. A hypothesis is advanced which invokes at least a dual population of CFU, having different doubling times, different seeding capacities in the haemopoietic tissues following i.v. injection and present in different proportions in the various haemopoietic tissues.  相似文献   

9.
The Till-McCulloch spleen colony system was used to differentiate the time- and dose-dependent effects of GPF (calf renal granulopoietic factor), ESF (erythrocyte stimulating factor) and Pyrexal (endotoxin from S. abortus equi) on the total and differential exocolonizing potential of treated donor mouse marrow cells. A single optimal dose of either hemopoietin given to the donor was found to activate transplantable colony forming units (CFU) of the hemopoietin-specific cell line. There followed a series of time-dependent oscillatory waves of specific CFU activation, the magnitude of which gradually dampened over a period approximating the stimulated cells’generation time. Flooding doses of GPF and ESF abrogated this phenomenon. Combination treatment with GPF and ESF cancelled out the cell line-specificity of CFU stimulation, presumably due to the two hemopoietins’competition for a common stem cell. Multiple doses of GPF were found to potentiate the granulopoietic effects of a single dose of GPF, the response apparently being limited both by the magnitude of the stimulation and by the size of the available CFU pool(s). A single dose of Pyrexal failed to evoke a GPF-like or ESF-like CFU increase and shifted the marrow's differential exocolonizing potential in the direction of the erythrocytic cell line. The CFU response to GPF is thus qualitatively and quantitatively distinct from those evoked by ESF and endotoxin. The possibility is proposed that GPF may be specific for the granulocytic line at the level of the CFU compartment(s).  相似文献   

10.
The capacity of stem cells (CFU) for self-renewal was tested by transplanting normal bone marrow (primary transplantation) and bone marrow which had been subjected to one or two earlier transplantations (secondary and tertiary transplantation) into lethally irradiated syngeneic recipients. It was found that the capacity for self-renewal is diminished within the first weeks after one or more previous transplantations. This ability of stem cells recovered after a longer interval after the previous transplantation. The time required for this recovery depended upon the number of previous transplantations and amounted to more than 1 or 2 months after one or two transplantations respectively. Shortly after transplantation the CFU/nucleated cell ratio in bone marrow was below normal and its decrease was more pronounced when the bone marrow had been transplanted more often. An increase of the ratio towards normal values was observed in the course of one month after the last transplantation. Measurements of the spleen colony size after transplantation of normal and re-transplanted bone marrow indicated that CFUs from re-transplanted marrow gave slightly smaller spleen colonies than those of normal marrow.
It is concluded that the decreased self-renewal of stem cells shortly after previous transplantations is probably not due to a limitation in the number of normal mitoses they can perform, but to a loss of stem cells by transfer to the compartment of differentiating cells.  相似文献   

11.
The effect of endotoxin on murine stem cells   总被引:2,自引:0,他引:2  
Previous studies showed that after 5 μg of Salmonella typhosa endotoxin there was an increase in colony stimulating factor temporally related to a fall in murine marrow in vitro colony forming cells (CFC). This was followed by differentiation along the marrow granulocytic pathway. The present studies showed that after 5 μg of endotoxin the peripheral blood CFC fell by approximately 50% at one hour, rose to a level ten fold that of control at six hours and then returned to control values by 48 hours. There was a progressive increase in the number of splenic CFC to ten fold that of control from 24 to 72 hours after endotoxin. These data imply a migration of CFC from the marrow to the spleen along with an in-situ increase in splenic CFC. Thus, either migration or differentiation may explain the fall in marrow CFC after endotoxin. Spleen colony forming units (CFU) in the marrow were measured by a transplantation technique and the transplantation fraction (f Fx) determined. A decrease in marrow CFU at 24 hours after endotoxin was secondary to a change in the f Fx. from 11.1% to 7.6%. There was however, an increased percentage of CFU in DNA synthesis in the interval of 6–48 hours after endotoxin, as judged by the hydroxyurea technique. As the marrow CFC fell within 20 minutes of endotoxin administration, the data suggest the CFC may be affected initially and that changes in the generative cycle of the CFU may be of a secondary nature.  相似文献   

12.
The number and concentration of haemopoietic stem cells in the femoral bone marrow and spleen of Wistar rats of different ages were investigated. Stem cells were assayed by the spleen colony technique in irradiated rat recipients. The ability of the recipient spleen to harvest transplanted tissue as a macroscopic colony was found to be dependent on the recipient's age. Changes with senescence were observed also in the concentration and the size of the stem cell compartment both in the marrow and spleen. No differences were demonstrated in the seeding of transplanted colony-forming units into the spleen of recipients of 1 and 4 months of age. A rats-mice strain difference in the effect of senescence on the haemopoietic stem cells is discussed.  相似文献   

13.
The respective role of the spleen or of the bone marrow in the regeneration of the haemopoietic progenitor compartment of heavily-irradiated mice has been investigated. Splenectomy was used to this end in animals injected with exogenous isogenic cells or regenerating from endogenous spleen or marrow cells. Analysis of the data as a function of time shows that the presence of the spleen affects marrow CFU repopulation only at the early post-irradiation stages. The expansion of the marrow progenitor pool proceeds, however, rather independently of the spleen and marrow CFU remain eventually as the main source of haemopoietic cells in the surviving mice. Thus the reaction of the spleen may be envisaged as a fast, important but transient contribution to the overall haemopoietic function of heavily-irradiated animals.  相似文献   

14.
The number of spleen colonies produced by fetal liver cells of different gestational ages were compared after injection of the thymus cells into the irradiated recipients. It has been shown that thymocytes that lack influence on spleen colony formation by normal born marrow can increase the number of spleen colonies formed by 12-16 day fetal liver CFU-S. It can be concluded that the population of accessory T cells which have a role in spleen colony formation have been formed to the end of pregnancy.  相似文献   

15.
Conditions for keeping busulphan lethally treated rats alive by transplantation of bone marrow cells from syngeneic donors are described. After busulphan treatment of the donor rats with a dose which only reduces the colony forming units (CFU's) in the marrow (assayed by the spleen colony technique) to half the normal numbers, at least 100 times as many cells from these treated donors, compared to untreated rats, are required to produce an equivalent increase in survival of busulphan lethally treated recipients. In contrast, aminochlorambucil, despite producing a marked fall in bone marrow cellularity, has no effect on the number of CFU/femur, yet the marrow from these aminochlorambucil treated donors is no more effective in increasing the survival of busulphan lethally treated recipients than untreated marrow. Theories which may explain this apparent discrepancy and evidence which it affords on the mode of action of busulphan are discussed.  相似文献   

16.
These experiments examined the effect of a diet limited only in protein (4% by weight) on haemopoietic stem cells in mice. This diet places severe restrictions on growth and cell proliferation and this was reflected in lower numbers of colony forming units (CFUs) and in vitro colony forming cells (CFCs). Differences were apparent in the response of different organs to this stress; for instance, the incidence of spleen CFUs fell sharply from around 40/mg spleen tissue to 1 -4/mg spleen tissue after 3 weeks on a low protein diet. This selective loss did not occur in bone marrow where total CFUs remained proportional to cellular content. Yet a third pattern was shown by thymus CFUs–although the numbers were low these increased from 16/thymus in normal mice to 132/thymus in deprived mice. This was the only organ examined which showed an increase. The effects of a return to a high protein (18 %) diet showed that the spleen was the most responsive organ. By day 5 after the return to 18% protein the spleen contained as many CFUs per million cells as the bone marrow. During this time the content of CFU in the spleen had increased some 50-fold whereas bone marrow CFUs only doubled. The spleen assumes the major reconstitutive role during the refeeding process.  相似文献   

17.
These experiments examined the effect of a diet limited only in protein (4% by weight) on haemopoietic stem cells in mice. This diet places severe restrictions on growth and cell proliferation and this was reflected in lower numbers of colony forming units (CFUs) and in vitro colony forming cells (CFCs). Differences were apparent in the response of different organs to this stress; for instance, the incidence of spleen CFUs fell sharply from around 40/mg spleen tissue to 1-4/mg spleen tissue after 3 weeks on a low protein diet. This selective loss did not occur in bone marrow where total CFUs remained proportional to cellular content. Yet a third pattern was shown by thymus CFUs--although the numbers were low these increased from 16/thymus in normal mice to 132/thymus in deprived mice. This was the only organ examined which showed an increase. The effects of a return to a high protein (18%) diet showed that the spleen was the most responsive organ. By day 5 after the return to 18% protein the spleen contained as many CFUs per million cells as the bone marrow. During this time the content of CFU in the spleen had increased some 50-fold whereas bone marrow CFUs only doubled. The spleen assumes the major reconstructive role during the refeeding process.  相似文献   

18.
The kinetics of spleen colony development has been studied after the injection of 106, 105 and 3 × 104 bone marrow cells. The results indicate that:
  • 1 The CFU population growth rate is independent of cell dose until the logarithmic growth phase is passed. Slowing of growth was seen by day 12 after the highest dose, by day 15 after the median dose, but was not observed during the period of observation after the low dose.
  • 2 The growth rate of CFU per colony is independent of cell dose, but the curves are not identical. The differences between the curves leads to the conclusion that there is a dose-dependent delay in the commencement of CFU proliferation. The delay is roughly equal to one cell cycle time between the medium and high inoculum groups and also between the medium and low inoculum groups.
  • 3 The number of cells per colony is graft size dependent, the doubling times, where these can be roughly assessed, being inversely related to the graft size. From the average number of cells per colony on day 6 it is calculated that the mean doubling time in the early stages of colony development is less than 7 hr.
  • 4 The proportion CFU:colony cells is dose dependent with the highest inoculum having the highest proportion and the low inoculum group having the lowest proportion.
  相似文献   

19.
The redistribution of hemopoietic tissue resulting from estrone-induced osteosclerosis in the mouse was studied. As the marrow was gradually replaced by bone, extramedullary hematopoiesis in the spleen increased at a rate sufficient to maintain hemopoietic homeostasis. The total numbers of colony forming units (CFU) in the tibia and spleen as well as the proportion of CFU in cycle was assessed. After five injections of estrone, tibial CFUs decreased to 2% of control values whereas splenic CFUs increased approximately nine-fold. The proliferative capacity of the splenic CFU was also increased in the estrone-treated animals. The increased numbers of splenic CFUs as well as the increased proliferative capacity of this compartment are probably related to the ability of extramedullary hematopoiesis in the spleen to compensate for a marrow that has been replaced by bone.  相似文献   

20.
The number and concentration of haemopoietic stem cells in the femoral bone marrow and spleen of Wistar rats of different ages were investigated. Stem cells were assayed by the spleen colony technique in irradiated rat recipients. The ability of the recipient spleen to harvest transplanted tissue as a macroscopic colony was found to be dependent on the recipient's age. Changes with senescence were observed also in the concentration and the size of the stem cell compartment both in the marrow and spleen. No differences were demonstrated in the seeding of transplanted colony-forming units into the spleen of recipients of 1 and 4 months of age. A rats-mice strain difference in the effect of senescence on the haemopoietic stem cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号