首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
A repeated DNA element (STIR) interspersed in Xp22.3 and on the Y chromosome has been used as a tag to isolate seven single-copy probes from the human sex chromosomes. The seven probes detect X-specific loci located in Xp22.3. Using a panel of X-chromosomal deletions from X-Y interchange sex reversals (XX males and XY females), these X-specific loci and some additional ones were mapped to four contiguous intervals of Xp22.3, proximal to the pseudoautosomal region and distal to STS. The construction of this deletion map of the terminal part of the human X chromosome can serve as a starting point for a long-range physical map of Xp22.3 and for a more accurate mapping of genetic diseases located in Xp22.3.  相似文献   

3.
The mammalian X and Y chromosomes are thought to have evolved from a common, nearly homologous chromosome pair. Although there is little sequence similarity between the mouse or the human X and Y, there are several regions in which moderate to extensive sequence homologies have been found, including, but not limited to, the so-called pseudoautosomal segment, in which X-Y pairing and recombination take place. The steroid sulfatase gene is in the pseudoautosomal region of the mouse, but not in man. We have cloned and characterized the human STS X-encoded locus and a pseudogene that is present on the long arm of the Y chromosome. Our data in humans and other primates suggest that there has been a pericentric inversion of the Y chromosome during primate evolution that has disrupted the former pseudoautosomal arrangement of these genes. These results provide additional insight into the evolution of the sex chromosomes and into the nature of this interesting portion of the human genome.  相似文献   

4.
Three genes, SRY, ANT3, and CSF2RA, were mapped to the bovine Y chromosome (BTAY) by fluorescence in situ hybridization (FISH) and/or radiation hybrid (RH) mapping. FISH analysis indicated that the bovine SRY gene maps to the distal region of BTAYq, while ANT3 and CSF2RA are located in the pseudoautosomal region (PAR) of BTAYp and BTAXq. RH mapping with a 7000-rad cattle hamster whole-genome radiation hybrid panel further defined the ANT3 and CSF2RA position in relationship to previously mapped 12 PAR markers, and resulted in a relatively high resolution RH map for the PAR of BTAY.  相似文献   

5.
Comparative studies of genes in the pseudoautosomal region (PAR) of human and mouse sex chromosomes have thus far been very limited. The only comparisons that can presently be made indicate that the PARs of humans and mice are not identical in terms of gene content. Here we describe additional comparative studies of human pseudoautosomal genes and their mouse homologs. Using a somatic cell hybrid mapping panel, we have assigned the mouse homolog of the human pseudoautosomal interleukin 3 receptor alpha subunit (IL3RA) gene to mouse Chromosome (Chr) 14. Attempts to clone the mouse homolog of the human pseudoautosomal adenine nucleotide translocase-3 (ANT3) gene resulted in the isolation of the murine homologs of the human ANT1 and ANT2 genes. The mouse Ant1 and Ant2 genes are very similar in sequence to their human homologs, and we have mapped them to mouse Chromosomes (Chrs) (8 and X respectively) that exhibit conserved synteny with the chromosomes on which the human genes are located. In contrast, the homolog of ANT3 appears to be either very divergent or absent from the mouse genome. Southern blot analysis of DNA from a variety of mammalian species shows restricted conservation of human pseudoautosomal genes, a trend that also applies to the two cloned mouse homologs of these genes and to neighboring human genes in distal Xp22.3. Our observations combined with those of other workers lead us to propose a model for the evolution of the PAR that includes both rapid sequence evolution and the incremental reduction in size of the region during mammalian evolution. Received: 4 May 1995 / Accepted: 21 August 1995  相似文献   

6.
In a representative sample of primate species, including simians (Catarrhini and Platyrrhini) and prosimians (Lemuriformes and Lorisiformes), high-resolution, early replication banding revealed a homoeologous early replicating segment at the ends of both sex chromosomes. The DXYZ2 element, a repeated sequence specific for the human pseudoautosomal region, is conserved in the genomes of all primate species studies and is specifically localized in the distal early replicating segments of the X and Y chromosomes. Thus, cytogenetic and molecular evidence is presented of a highly conserved sex-chromosomal segment in primates. The pseudoautosomal behavior of this segment is discussed.  相似文献   

7.
Summary Within our project of comparative mapping of candidate genes for sex-determination/testis differentiation, we used a cloned probe from the human ZFY locus for comparative hybridization studies in hominoids. As in the human, the ZFY probe detects X- and Y-specific restriction fragments in the chimpanzee, the gorilla, the orangutan, and the gibbon. Furthermore, the X-specific hybridization site in the great apes resides in Xp21.3, the same locus defining ZFX in the human. The Y-specific locus of ZFY maps closely to the early replicating pseudoautosomal segment in the telomeric or subtelomeric position of the Y chromosomes of the great apes, again as found in the human. Thus, despite cytogenetically visible structural alterations within the euchromatic parts of the Y chromosomes of the human species and the great apes, a segment of the Y chromosome defined by the pseudoautosomal region and ZFY seems to be more strongly conserved than the rest of the Y chromosome.  相似文献   

8.
The pseudoautosomal region (PAR) of bovine chromosome X (BTA X) has a particularly low representation of genes and markers, making comparative gene mapping in this region difficult. We describe the localization of three genes, colony-stimulating factor 2 receptor alpha (CSF2RA), ADP/ATP translocase 3 (ANT3) and steroid sulphatase (STS) on PAR of BTA X using a 5000 rad whole-genome radiation hybrid panel. The relationship of these genes to a number of previously mapped simple sequence repeat (microsatellite) markers is determined by physical and radiation hybrid mapping methods. The resulting radiation hybrid map resolves a discrepancy between the two major bovine linkage maps in the PAR of BTA X.  相似文献   

9.
The ability to identify the sex of individuals from noninvasive samples can be a powerful tool for field studies. Amelogenin, a nuclear gene proximate to the pseudoautosomal region of mammalian sex chromosomes, has a 6 base-pair (bp) size difference between human X and Y chromosomes that can be PCR-amplified and sized to distinguish male from female DNA. We examined whether this test can be used to identify sex from different DNA sources across a number of nonhuman primate taxa. Using human amelogenin primers, we were able to amplify diagnostic products from the four great ape species tested, but products from five other primate species were not sexually dimorphic.  相似文献   

10.
Steroid sulfatase gene in XX males.   总被引:2,自引:0,他引:2       下载免费PDF全文
The human X and Y chromosomes pair and recombine at their distal short arms during male meiosis. Recent studies indicate that the majority of XX males arise as a result of an aberrant exchange between X and Y chromosomes such that the testis-determining factor gene (TDF) is transferred from a Y chromatid to an X chromatid. It has been shown that X-specific loci such as that coding for the red cell surface antigen, Xg, are sometimes lost from the X chromosome in this aberrant exchange. The steroid sulfatase functional gene (STS) maps to the distal short arm of the X chromosome proximal to XG. We have asked whether STS is affected in the aberrant X-Y interchange leading to XX males. DNA extracted from fibroblasts of seven XX males known to contain Y-specific sequences in their genomic DNA was tested for dosage of the STS gene by using a specific genomic probe. Densitometry of the autoradiograms showed that these XX males have two copies of the STS gene, suggesting that the breakpoint on the X chromosome in the aberrant X-Y interchange is distal to STS. To obtain more definitive evidence, cell hybrids were derived from the fusion of mouse cells, deficient in hypoxanthine phosphoribosyltransferase, and fibroblasts of the seven XX males. The X chromosomes in these patients could be distinguished from each other when one of three X-linked restriction-fragment-length polymorphisms was used. Hybrid clones retaining a human X chromosome containing Y-specific sequences in the absence of the normal X chromosome could be identified in six of the seven cases of XX males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Zhai L  Mu J  Zong H  DePaoli-Roach AA  Roach PJ 《Gene》2000,242(1-2):229-235
Glycogenin-2 is one of two self-glucosylating proteins involved in the initiation phase of the synthesis of the storage polysaccharide glycogen. Cloning of the human glycogenin-2 gene, GYG2, has revealed the presence of 11 exons and a gene of more than 46 kb in size. The structure of the gene explains much of the observed diversity in glycogenin-2 cDNA sequences as being due to alternate exon usage. In some cases, there is variation in the splice junctions used. Over regions of protein sequence similarity, the GYG2 gene structure is similar to that of the other glycogenin gene, GYG. A genomic GYG2 clone was used to localize the gene to Xp22.3 by fluorescence in-situ hybridization. Localization close to the telomere of the short arm of the X chromosome is consistent with mapping information obtained from glycogenin-2 STS sequences. Glycogenin-2 maps between the microsatellite anchor markers AFM319te9 (DXS7100) and AFM205tf2 (DXS1060), and its 3' end is 34.5 kb from the 3' end of the arylsulphatase gene ARSD. GYG2 is outside the pseudoautosomal region PAR1 but still in a region of X-Y shared genes. As is true for several other genes in this location, an inactive remnant of GYG2, consisting of exons 1-3, may be present on the Y chromosome.  相似文献   

12.
13.
The pseudoautosomal region (PAR) is a genomic segment on mammalian sex chromosomes where sequence homology mimics that seen between autosomal homologues. The region is essential for pairing and proper segregation of sex chromosomes during male meiosis. As yet, only human/chimp and mouse PARs have been characterized. The two groups of species differ dramatically in gene content and size of the PAR and therefore do not provide clues about the likely evolution and constitution of PAR among mammals. Here we characterize the equine PAR by i) isolating and arranging 71 BACs containing 129 markers (110 STS and 19 genes) into two contigs spanning the region, ii) precisely localizing the pseudoautosomal boundary (PAB), and iii) describing part of the contiguous X- and Y-specific regions. We also report the discovery of an approximately 200 kb region in the middle of the PAR that is present in the male-specific region of the Y (MSY) as well. Such duplication is a novel observation in mammals. Further, comparison of the equine PAR with the human counterpart shows that despite containing orthologs from an additional 1 Mb region beyond the human PAR1, the equine PAR is around 0.9 Mb smaller than the size of the human PAR. We theorize that the PAR varies in size and gene content across evolutionarily closely as well as distantly related mammals. Although striking differences like those observed between human and mouse may be rare, variations similar to those seen between horse and human may be prevalent among mammals.  相似文献   

14.
The distal portion of the short arm of the human X chromosome (Xp) exhibits many unique and interesting features. Distal Xp contains the pseudoautosomal region, a number of disease loci, and several cell-surface markers. Several genes in this area have also been observed to escape X-chromosomal inactivation. The characterization of new polymorphic loci in this region has permitted the construction of a refined multipoint linkage map extending 15 cM from the Xp telomere. This interval is known to contain the loci for the diseases X-linked ichthyosis, chondrodysplasia punctata, and Kallmann syndrome, as well as the cell-surface markers Xg and 12E7. This region also contains the junction between the pseudoautosomal region and strictly X-linked sequences. The locus MIC2 has been demonstrated by linkage analysis to be indistinguishable from the pseudoautosomal junction. The steroid sulfatase locus has been mapped to an interval adjacent to the DXS278 locus and 6 cM from the pseudoautosomal junction. The polymorphic locus (STS) DXS278 was shown to be informative in all families studied, and linkage analysis reveals that the locus represents a low-copy repeat with at least one copy distal to the STS gene. The generation of a multipoint linkage map of distal Xp will be useful in the genetic dissection of many of the unique features of this region.  相似文献   

15.
The evolution, inheritance and recombination rate of genes located in the pseudoautosomal region 1 (PAR1) is exceptional within the human genome. Pseudoautosomal genes are identical on X and Y chromosomes and are not inherited in a sex linked manner. Due to an obligatory recombination event in male meiosis, pseudoautosomal genes are exchanged frequently between X and Y chromosomes. During the isolation, characterization and sequencing of a novel gene PPP2R3L, which was classified by sequence homology as a novel member of the protein phosphatase regulatory subunit families, it became apparent that cosmids of different origin harboring this gene are highly polymorphic between individuals, both at the nucleotide level and in the number.  相似文献   

16.
17.
Genes evolve at different rates depending on the strength of selective pressure to maintain their function. Chromosomal position can also have an influence [1] [2]. The pseudoautosomal region (PAR) of mammalian sex chromosomes is a small region of sequence identity that is the site of an obligatory pairing and recombination event between the X and Y chromosomes during male meiosis [3] [4] [5] [6]. During female meiosis, X chromosomes can pair and recombine along their entire length. Recombination in the PAR is therefore approximately 10 times greater in male meiosis compared with female meiosis [4] [5] [6]. The gene Fxy (also known as MID1 [7]) spans the pseudoautosomal boundary (PAB) in the laboratory mouse (Mus musculus domesticus, C57BL/6) such that the 5' three exons of the gene are located on the X chromosome but the seven exons encoding the carboxy-terminal two-thirds of the protein are located within the PAR and are therefore present on both the X and Y chromosomes [8]. In humans [7] [9], the rat, and the wild mouse species Mus spretus, the gene is entirely X-unique. Here, we report that the rate of sequence divergence of the 3' end of the Fxy gene is much higher (estimated at 170-fold higher for synonymous sites) when pseudoautosomal (present on both the X and Y chromosomes) than when X-unique. Thus, chromosomal position can directly affect the rate of evolution of a gene. This finding also provides support for the suggestion that regions of the genome with a high recombination frequency, such as the PAR, may have an intrinsically elevated rate of sequence divergence.  相似文献   

18.
A radiation hybrid map for the bovine Y Chromosome   总被引:7,自引:0,他引:7  
Screening a bovine Y Chromosome-specific DNA library resulted in 34 new microsatellites, six of which mapped to the pseudoautosomal region (PAR), and 28 localized to the Y-specific region. These microsatellites, together with 23 markers previously mapped to the bovine Y Chr, were scored on a 7000-rad cattle–hamster radiation hybrid (RH) panel. Retention frequency of individual markers ranged from 18.5% to 76.5% with an average of 48.4%. Markers with high retention frequency (>55%) were found to exist in multiple copies on the Y Chr. Thirteen markers were placed on the PAR RH map with the AmelY gene proximal to the pseudoautosomal boundary and 46 markers, including Sry and Tspy gene, on the Y-specific region of the RH map. The microsatellites developed and mapped in this work will be useful for comparative mapping of cattle, sheep, and goat, studying the origin, evolution, and migration of bovidae species and provide an initial platform to develop a high-resolution map of the Y Chr and positional cloning of Y-specific genes.  相似文献   

19.
20.
Recombination between the X and Y chromosomes is limited to the pseudoautosomal region and is necessary for proper segregation of the sex chromosomes during spermatogenesis. Failure of the sex chromosomes to disjoin properly during meiosis can result in individuals with a 47,XXY constitution, and approximately one-half of these result from paternal nondisjunction at meiosis I. Analysis of individuals with paternally derived 47,XXY has shown that the majority are the result of meiosis in which the X and Y chromosomes have failed to recombine. Our studies of sperm have demonstrated that aneuploid 24,XY sperm have a decreased recombination frequency, compared with that of normal sperm. Some studies have indicated a relationship of increased paternal age with 47,XXY offspring and with the production of XY disomic sperm, whereas others have failed to find such relationships. To determine whether there is a relationship between paternal age and recombination in the pseudoautosomal region, single-sperm genotyping was performed to measure the frequency of recombination between a sex-specific locus, STS/STS pseudogene, and a pseudoautosomal locus, DXYS15, in younger men (age < or =30 years) compared with older men (age > or =50 years). A total of 2,329 sperm cells were typed by single-sperm PCR in 20 men who were heterozygous for the DXYS15 locus (1,014 sperm from 10 younger men and 1,315 sperm from 10 older men). The mean recombination frequency was 39.2% in the younger men and 37.8% in the older men. There was no heterogeneity in the frequency of recombination rates. There was no significant difference between the recombination frequencies among the younger men and those among the older men, when analyzed by the clustered binomial Z test (Z=.69, P=.49). This result suggests that paternal age has no effect on the recombination frequency in the pseudoautosomal region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号