首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
North American omomyids represent a tremendous Eocene radiation of primates exhibiting a wide range of body sizes and dietary patterns. Despite this adaptive diversity, relatively little is known of the postcranial specializations of the group. Here we describe hindlimb and foot bones of Ourayia uintensis and Chipetaia lamporea that were recovered from the Uinta B member (early Uintan Land Mammal Age), Uinta Formation, Utah. These specimens provide insights into the evolution of postcranial adaptations across different body sizes and dietary guilds within the Eocene primate radiation. Body mass estimates based on talar measurements indicate that Ourayia uintensis and Chipetaia lamporea weighed about 1,500-2,000 g and 500-700 g, respectively. Skeletal elements recovered for Ourayia include the talus, navicular, entocuneiform, first metatarsal, and proximal tibia; bones of Chipetaia include the talus, navicular, entocuneiform, and proximal femur. Both genera had opposable grasping big toes, as indicated by the saddle-shaped joint between the entocuneiform and first metatarsal. Both taxa were arboreal leapers, as indicated by a consistent assemblage of characters in all represented bones, most notably the somewhat elongated naviculars, the high and distinct trochlear crests of the talus, the posteriorly oriented tibial plateau (Ourayia), and the cylindrical head of the femur (Chipetaia). The closest resemblances to Ourayia and Chipetaia are found among the Bridger omomyines, Omomys and Hemiacodon. The results of our comparisons suggest that the later, larger, more herbivorous omomyines from Utah retained a skeletal structure characteristic of earlier, smaller North American omomyids.  相似文献   

2.
We report the discovery of two new primates from the late Eocene Krabi Basin, southern Thailand. One isolated upper molar displays morphological features (protocone united with hypocone by the prehypocrista, postprotocrista extended distobuccally) suggesting possible phylogenetic relationships with Amphipithecidae, while an isolated lower molar is tentatively referred to as a new tarsiiform, mainly on the basis of its paraconid and entoconid morphology. Although very scarce, these remains expand the record of Paleogene primates in Southeast Asia, and testify to their successful radiation in that area.  相似文献   

3.
More than 25 new specimens of Teilhardina brandti, one of the oldest known euprimates, are reported from earliest Eocene strata of the southern Bighorn Basin, Wyoming. The new fossils include the first upper dentitions, a dentary showing the lower dental formula for the first time, and the first postcrania ascribed to T. brandti (tarsals and terminal phalanges). The elongated navicular and long talar neck suggest that T. brandti was an active arboreal quadruped, and the terminal phalanges constitute the oldest evidence for nails in Euprimates. Phylogenetic analysis incorporating the new data indicates that T. brandti is more derived than T. belgica but less so than T. americana. The hypothesis that Teilhardina originated in Asia (T. asiatica) and dispersed westward to Europe (T. belgica) and then to North America (T. brandti and T. magnoliana) during the earliest Eocene Paleocene-Eocene Thermal Maximum is most consistent with available evidence, including the relative age of fossil samples and their stage of evolution.  相似文献   

4.
5.
Climate and evolutionary factors (e.g. diversification, time‐for‐speciation, niche conservatism) are both thought to be major drivers of species richness in regional assemblages. However, few studies have simultaneously investigated the relative effects of climate and evolutionary factors on species richness across a broad geographical extent. Here, we assess their relative effects on species richness of angiosperm trees across North America. Species richness of angiosperm trees in 1175 regional assemblages were related to climate and phylogenetic structure using a structural equation modeling (SEM) approach. Climate was quantified based on the mean temperature of the coldest month and mean annual precipitation. Evolutionary factors (time‐for‐speciation vs diversification) were inferred from phylogeny‐based measures of mean root distance, phylogenetic species variability, and net relatedness index. We found that at the continental scale, species richness is correlated with temperature and precipitation with approximately similar strength. In the SEM with net relatedness index and phylogenetic species variability and with all the 1175 quadrats, the total direct effect size of phylogenetic structure on species richness is greater than the total direct effect size of climate on species richness by a factor of 3.7. The specific patterns of phylogenetic structure (i.e. greater phylogenetic distances in more species rich regions) are consistent with the idea that time and niche conservatism drive richness patterns in North American angiosperm trees. We conclude that angiosperm tree species richness in regional assemblages in North America is more strongly related to patterns of phylogenetic relatedness than to climatic variation. The results of the present study support the idea that climatic and evolutionary explanations for richness patterns are not in conflict, and that evolutionary processes explain both the relationship between climate and richness and substantial variation in richness that is independent of climate.  相似文献   

6.
A new genus and species of notharctine primate, Hesperolemur actius, is described from Uintan (middle Eocene) aged rocks of San Diego County, California. Hesperolemur differs from all previously described adapiforms in having the anterior third of the ectotympanic anulus fused to the internal lateral wall of the auditory bulla. In this feature Hesperolemur superficially resembles extant cheirogaleids. Hesperolemur also differs from previously known adapiforms in lacking bony canals that transmit the internal carotid artery through the tympanic cavity. Hesperolemur, like the later occurring North American cercamoniine Mahgarita stevensi, appears to have lacked a stapedial artery. Evidence from newly discovered skulls of Notharctus and Smilodectes, along with Hesperolemur, Mahgarita, and Adapis, indicates that the tympanic arterial circulatory pattern of these adapiforms is characterized by stapedial arteries that are smaller than promontory arteries, a feature shared with extant tarsiers and anthropoids and one of the characteristics often used to support the existence of a haplorhine-strepsirhine dichotomy among extant primates. The existence of such a dichotomy among Eocene primates is not supported by any compelling evidence. Hesperolemur is the latest occurring notharctine primate known from North America and is the only notharctine represented among a relatively diverse primate fauna from southern California. The coastal lowlands of southern California presumably served as a refuge area for primates during the middle and later Eocene as climates deteriorated in the continental interior. Hesperolemur probably was an immigrant taxon that entered California from either the northern (Wyoming/Utah) or southern (New Mexico) western interior during the middle Eocene © 1995 Wiley-Liss, Inc.  相似文献   

7.
In this paper, we describe a new species of Hemiacodon known only from University of Colorado Museum Loc. 92189 (Donna's Locality) in the Turtle Bluff Member of the Bridger Formation, Green River Basin, southwestern Wyoming. Donna's locality has yielded a diverse mostly small-bodied mammalian assemblage of Bridgerian and first appearance Uintan mammalian taxa, as well as range-through taxa. Together with H. engardae sp. nov., the faunal assemblage from Donna's Locality and more recently discovered localities in the same stratigraphic interval provides the first conclusive paleontological evidence of an earliest Uintan age (Ui1A biochron) for the Turtle Bluff Member of the Bridger Formation.The new species is represented by a sample of 11 specimens consisting of well-preserved upper and lower premolars and lower molars. H. engardae is distinct from H. gracilis on the basis of overall larger size as well as a combination of features of the premolars and molars related to a greater development of shearing crests. This suggests that H. engardae may have incorporated more foliage into its diet than the Bridgerian species, H. gracilis.  相似文献   

8.
The geographical distribution of species richness and species range size of African anthropoid primates (catarrhines) is investigated and related to patterns of habitat and dietary niche breadth. Catarrhine species richness is concentrated in the equatorial regions of central and west Africa; areas that are also characterised by low average species range sizes and increased ecological specificity. Species richness declines with increasing latitude north and south of the equator, while average species range size, habitat and dietary breadth increase. Relationships between species richness, species range size and niche breadth remain once latitudinal and longitudinal effects have been removed. Among areas of lowest species richness, however, there is increased variation in terms of average species range size and niche breadth, and two trends are identified. While most such areas are occupied by a few wide-ranging generalists, others are occupied by range-restricted specialist species. That conservation efforts increasingly focus on regions of high species richness may be appropriate if these regions are also characterised by species that are more restricted in both their range size and their ecological versatility, although special consideration may be required for some areas of low species richness.  相似文献   

9.
Recent paleontological collecting in the Washakie Basin, southcentral Wyoming, has resulted in the recovery of over 100 specimens of omomyid primates from the lower Eocene Wasatch Formation. Much of what is known about anaptomorphine omomyids is based upon work in the Bighorn and Wind River Basins of Wyoming. This new sample documents greater taxonomic diversity of omomyids during the early Eocene and contributes to our understanding of the phylogeny and adaptations of some of these earliest North American primates. A new middle Wasatchian (Lysitean) anaptomorphine, Anemorhysis savagei, n. sp., is structurally intermediate between Teilhardina americana and other species of Anemorhysis and may be a sister group of other Anemorhysis and Trogolemur. Body size estimates for Anemorhysis, Tetonoides, Trogolemur, and Teilhardina americana indicate that these animals were extremely small, probably less than 50 grams. Analysis of relative shearing potential of lower molars of these taxa indicates that some were primarily insectivorous, some primarily frugivorous, and some may have been more mixed feeders. Anaptomorphines did not develop the extremes of molar specialization for frugivory or insectivory seen in extant prosimians. Incisor enlargement does not appear to be associated with specialization in either fruits or insects but may have been an adaptation for specialized grooming or food manipulation. © 1994 Wiley-Liss, Inc.  相似文献   

10.
1. Local assemblage structure, from a deterministic perspective, is presumably dictated by the regional species pool as well as regulated by local factors. We examined the relationships of the regional species pool and local hydrological characteristics to local species richness of North American freshwater fishes using data sets collected during the National Water Quality Assessment program conducted by the United States Geological Survey. 2. We predicted that local species richness is ultimately constrained by the composition of the regional species pool and further associated with local hydrological factors. Moreover, we predicted that variation in local species richness within major families can be explained by different combinations of hydrological characteristics that represent lineage‐specific responses to the environment. 3. Daily discharge and regional and local species richness data were assembled from 41 stream localities across the United States. Multiple stepwise regressions were conducted to predict local species richness, based on regional species richness, mean discharge and hydrological characteristics quantified by nine variables characterising flow variability. Species richness at each site was calculated for the entire assemblage as well as within the four most species‐rich families in the data set (Catostomidae, Centrarchidae, Cyprinidae and Percidae). 4. Local species richness was best predicted by a combination of regional species richness and discharge magnitude when all species were considered. Regional species richness was a significant explanatory variable of local species richness for three of four families (Catostomidae, Centrarchidae, Cyprinidae), but not for Percidae. Local richness in Centrarchidae and Cyprinidae was positively correlated with temporal flow variability as well as high and low flow duration, respectively, while richness in Catostomidae and Percidae tended to be associated with discharge volume. In addition, local species richness for three of the four major families was positively correlated with species richness of the other families in the assemblage, potentially suggesting the influence of local habitat quality and heterogeneity. 5. Results suggest the importance of the combined influences of the regional species pool and local hydrological characteristics on local richness in freshwater fishes, with variation in richness within each family predicted by different characteristics of flow regimes.  相似文献   

11.
Aim We explore the potential role of the ‘tropical conservatism hypothesis’ in explaining the butterfly species richness gradient in North America. Its applicability can be derived from the tropical origin of butterflies and the presumed difficulties in evolving the cold tolerance required to permit the colonization and permanent occupation of the temperate zone. Location North America. Methods Digitized range maps for butterfly species north of Mexico were used to map richness for all species, species with distributions north of the Tropic of Capricorn (Extratropicals), and species that also occupy the tropics (Tropicals). A phylogeny resolved to subfamily was used to map the geographical pattern of mean root distance, a metric of the evolutionary development of assemblages. Regression models and general linear models examined environmental correlates of overall richness and for Extratropicals vs. Tropicals, patterns in summer vs. winter, and patterns in northern vs. southern North America. Results Species in more basal subfamilies dominate the south, whereas more derived clades occupy the north. There is also a ‘latitudinal’ richness gradient in Canada/Alaska, whereas in the conterminous USA richness primarily varies longitudinally. Overall richness is associated with broad‐ and mesoscale temperature gradients. The richness of Tropicals is strongly associated with temperature and distance from winter population sources. The richness of Extratropicals in the north is most strongly correlated with the pattern of glacial retreat since the more recent Ice Age, whereas in the south, richness is positively associated with the range of temperatures in mountains and the presence of forests but is negatively correlated with the broad‐scale temperature gradient. Main conclusions The tropical conservatism hypothesis provides a possible explanation for the complex structure of the species richness gradient. The Canada/Alaska fauna comprises temperate, boreal and tundra species that are nevertheless constrained by cold climates and limited vegetation, coupled with possible post‐Pleistocene recolonization lags. In the USA tropical species are constrained by temperature in winter as well as recolonization distances in summer, whereas temperate‐zone groups are richer in cooler climates in mountains and forests, where winter conditions are more suitable for diapause. The evolution of cold tolerance is key to both the evolutionary and ecological patterns.  相似文献   

12.
13.
A new genus and species of omomyid primate is described from the middle Eocene (Lutetian) Lülük Member of the Uzunçarşidere Formation, Orhaniye Basin, north-central Anatolia, Turkey. This is the first Eocene primate to be reported from the vast area between Switzerland and Pakistan. The new taxon is currently represented by a single dentary fragment, limiting the scope of morphological comparisons that can be made with related taxa. Nevertheless, its dentition differs fundamentally from that of contemporary European microchoerids. The new taxon most closely resembles North American middle Eocene omomyines such as Mytonius hopsoni, and it is therefore interpreted as a member of the Asian/North American omomyine radiation. Its occurrence on the Pontide microcontinent must have resulted from sweepstakes dispersal across the intervening Tethyan barrier that separated the Pontides from adjacent parts of Eurasia during the Lutetian. Sweepstakes dispersal by various terrestrial mammal clades, especially rodents and primates, was facilitated by Eocene greenhouse climatic conditions, which promoted extreme precipitation events and frequent flooding of major river drainages.  相似文献   

14.
Understanding regional variability in species richness is necessary for conservation efforts to succeed in the face of large-scale environmental deterioration. Several analyses of North American vertebrates have shown that climatic energy provides the best explanation of contemporary species richness patterns. The paucity of analyses of insect diversity patterns, however, remains a serious obstacle to a general hypothesis of spatial variation in diversity. We collected species distribution data on a North American beetle genus, Epicauta (Coleoptera: Meloidae) and tested several major diversity hypotheses. These beetles are generally grasshopper egg predators as larvae, and angiosperm herbivores as adults. Epicauta richness is highest in the hot, dry American southwest, and decreases north and east, consistent with the species richness-energy hypothesis. Potential evapotranspiration, which is also the best predictor of richness patterns among North American vertebrates, explains 80.2% of the variability in Epicauta species richness. Net primary productivity and variables measuring climatic heat energy only (such as PET) are not generally comparable, though they are sometimes treated as if they were equivalent. We conclude that the species richness-energy hypothesis currently provides a better overall explanation for Epicauta species richness patterns in North America than other major diversity hypotheses. The observed relationship between climatic energy and regional species richness may provide significant insight into the response of ecological communities to climate change.  相似文献   

15.
Aim To determine how species richness, abundance, biomass, energy use and mean number of individuals per species scale with environmental energy availability in wintering and breeding avian assemblages, and to contrast assemblages of (i) common and rare species and (ii) breeding residents and migrants. To assess whether such patterns are compatible with the ‘more individuals hypothesis’ (MIH) that high‐energy areas are species‐rich because they support larger populations that are buffered against extinction. Location The North American continent (latitudinal range 23.4 °?48.1 °N; longitudinal range 124.2°?68.7° W). Methods Avian species richness, abundance, biomass and energy use were calculated for 295 Resident Bird Count plots. Environmental energy availability was measured using ambient temperature and the Normalized Difference Vegetation Index (NDVI), a close correlate of plant productivity. Analyses took plot area into account, and were conducted (with and without taking habitat type into account) using general linear models and spatial mixed models. Results Positive species–energy relationships were exhibited by both wintering and breeding assemblages, but were stronger in the former. The structure of winter assemblages responded more strongly to temperature than NDVI, while breeding assemblages tended to respond more strongly to NDVI. Breeding residents responded to annual measures of energy availability while breeding migrants and the winter assemblage responded more strongly to seasonal measures. In the winter assemblage, rare and common species exhibited species–energy relationships of a similar strength, but common breeding species exhibited a much stronger relationship than rare breeding species. In both breeding and wintering assemblages, abundance, biomass and energy use increased with energy availability and species richness. Energy availability was a poor predictor of the mean number of individuals per species. Main conclusions The nature of the species–energy relationship varies seasonally and with the manner in which energy availability is measured. Our data suggest that residents are less able to respond to seasonal fluxes in resource availability than long‐distance migrants. Increasing species richness and energy availability is associated with increasing numbers of individuals, biomass and energy use. While these observations are compatible with the MIH our data provide only equivocal support for this hypothesis, as the rarest species do not exhibit the strongest species–energy relationships.  相似文献   

16.
Twenty-six species of aquatic oligochaetes are reported from Texas, including 18 Naididae, seven Tubificidae, and one Glossoscolecidae. Illustrations are provided for ten species recorded for the first time from the state: Chaetogaster cristallinus, Nais elinguis, Nais pardalis, Pristina acuminata, Pristina sima, Stylaria lacustris, Aulodrilus limnobius, Ilyodrilus templetoni, Limnodrilus claparedianus, and Sparganophilus tamesis. Species accounts include presently known distributions in Texas and ecological and morphological characteristics.  相似文献   

17.
We report a nearly complete skeleton of a new species of stem roller (Aves, Coracii) from the early Eocene Green River Formation of North America. The new species is most closely related to two species‐depauperate lineages, Coraciidae (rollers) and Brachypteraciidae (ground rollers), that form a monophyletic crown clade (Coracioidea) with an exclusively Old World extant distribution. Phylogenetic analysis utilizing a matrix of 133 morphological characters and sequence data from three genes (RAG‐1, c‐myc, and ND2) identifies the new species as a stem member of the Coracii more closely related to the crown clade than the only previously identified New World taxon, Primobucco mcgrewi. The phylogenetic placement of the new species and Primobucco mcgrewiindicates a widespread northern hemisphere distribution in the Eocene with subsequent restriction to Africa, Madagascar, Australia, and temperate to tropical parts of Europe and Asia. It provides evidence of further ecological diversity in early stem Coracii and convergence on crown morphologies. The new species contributes to mounting evidence that extant distributions for major avian subclades may be of comparatively recent origin. Further late Palaeogene sampling is needed to elucidate potential drivers for shifting avian distributions and disappearance of Coracii from North America. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 157 , 586–611.  相似文献   

18.
19.
The Whistler Squat Quarry (TMM 41372) of the lower Devil’s Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47–50 Ma and below a tuff previously dated to ∼44 Ma. New 40Ar/39Ar analyses of both of the original tuff samples provide statistically indistinguishable ages of 44.88±0.04 Ma for the lower tuff and 45.04±0.10 Ma for the upper tuff. These dates are compatible with magnetically reversed sediments at the site attributable to C20r (43.505–45.942 Ma) and a stratigraphic position above a basalt dated to 46.80 Ma. Our reanalysis of mammalian specimens from the Whistler Squat Quarry and a stratigraphically equivalent locality significantly revises their faunal lists, confirms the early Uintan designation for the sites, and highlights several biogeographic and biochronological differences when compared to stratotypes in the Bridger and Uinta Formations. Previous suggestions of regional endemism in the early Uintan are supported by the recognition of six endemic taxa (26% of mammalian taxa) from the Whistler Squat Quarry alone, including three new taxa. The revised faunal list for the Whistler Squat Quarry also extends the biostratigraphic ranges of nine non-endemic mammalian taxa to Ui1b.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号