首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The ubiquinol: cytochrome-c oxidoreductase (cytochrome bc1 complex) is a central component of the mitochondrial respiratory chain as well as the respiratory and/or photosynthetic systems of numerous prokaryotic organisms. In Rhodobacter sphaeroides, the bc1 complex has a dual function. When the cells are grown photosynthetically, the bc1 complex is present in the intracytoplasmic membrane and is a critical component of the cyclic electron transport system. When the cells are grown in the dark in the presence of oxygen, the same bc1 complex is a necessary component of the cytochrome-c2-dependent respiratory chain. The fact that the bc1 complex from R. sphaeroides has been extensively studied, plus the ability to manipulate this organism genetically, makes this an ideal system for using site-directed mutagenesis to address questions relating to the structure and function of the bc1 complex. In the current work, the cloning and complete sequence of the fbc operon from R. sphaeroides is reported. As in other bacteria, this operon contains three genes, encoding the Rieske 2Fe-2S subunit, the cytochrome b subunit, and the cytochrome c1 subunit. Recombination techniques were used to delete the entire fbc operon from the chromosome. The resulting strain cannot grow photosynthetically, but can grow aerobically utilizing a quinol oxidase. Photosynthetic growth is restored by providing fbc operon on a plasmid, and the reappearance of the protein subunits and the spectroscopic features due to the bc1 complex are also demonstrated. Finally, a mutation is introduced within the gene encoding the cytochrome b subunit which is predicted to confer resistance to the inhibitor myxothiazol. It is shown that the resulting strain contains a functional bc1 complex which, as expected, is resistant to the inhibitor. Hence, this system is suitable for the detailed characterization of the bc1 complex, combining site-directed mutagenesis with the biochemical and biophysical techniques which have been previously developed for the study of photosynthetic bacteria.  相似文献   

2.
A highly active, large-scale preparation of cytochrome bc1 complex has been obtained from the photosynthetic purple bacterium Rhodovulum (Rhv.) sulfidophilum. It has been characterized using mass spectrometry, quinone and lipid analysis as well as inhibitor binding. About 35 mg of pure complex can be obtained from 1 g of membrane protein. EPR spectroscopy and optical titrations have been used to obtain the redox midpoint potentials of the cofactors. The Em-value of 310 mV for the Rieske protein is the most positive midpoint potential for this protein in a bc1 complex so far. The bc1 complex from Rhv. sulfidophilum is very stable and consists of three subunits and a 6-kDa polypeptide. The complex appears as a dimer in solution and contains six quinone molecules per monomer which are tightly bound. EPR spectroscopy shows that the Q(o) site is highly occupied. High detergent concentrations convert the complex into an inactive, monomeric form that has lost the Rieske protein as well as the quinones and the 6-kDa component.  相似文献   

3.
4.
5.
The nucleotide sequence of the puf operon, which contains the genes encoding the B870 light-harvesting protein and the reaction center complex of the purple photosynthetic bacterium, Rhodovulum sulfidophilum, was determined. The operon, which consisted of six genes, pufQ, pufB, pufA, pufL, pufM, and pufC, is a new variety in photosynthetic bacteria in the sense that pufQ and pufC coexist. The amino acid sequence of the cytochrome subunit of the reaction center deduced from the pufC sequence revealed that this cytochrome contains only three possible heme-binding motifs; the heme-1-binding motif of the corresponding tetraheme cytochrome subunits was not present. This is the first exception of the "tetraheme" cytochrome family in purple bacteria and green filamentous bacteria. The pufC sequence also revealed that the sixth axial ligands to heme-1 and heme-2 irons were not present in the cytochrome either. This cytochrome was actually detected in membrane preparation as a 43-kDa protein and shown to associate functionally with the photosynthetic reaction center as the immediate electron donor to the photo-oxidized special pair of bacteriochlorophyll. This new cytochrome should be useful for studies on the role of each heme in the cytochrome subunit of the bacterial reaction center and the evolution of proteins in photosynthetic electron transfer systems.  相似文献   

6.
A nuclear gene (QCR9) encoding the 7.3-kDa subunit 9 of the mitochondrial cytochrome bc1 complex from Saccharomyces cerevisiae has been isolated from a yeast genomic library by hybridization with a degenerate oligonucleotide corresponding to nine amino acids proximal to the N terminus of purified subunit 9. QCR9 includes a 195-base pair open reading frame capable of encoding a protein of 66 amino acids and having a predicted molecular weight of 7471. The N-terminal methionine of subunit 9 is removed posttranslationally because the N-terminal sequence of the purified protein begins with serine 2. The ATG triplet corresponding to the N-terminal methionine is separated from the open reading frame by an intron. The intron is 213 base pairs long and contains previously reported 5' donor, 3' acceptor, and TACTAAC sequences necessary for splicing. The splice junctions, as well as the 5' end of the message, were confirmed by isolation and sequencing of a cDNA copy of QCR9. In addition, the intron contains a nucleotide sequence in which 15 out of 18 nucleotides are identical with a sequence in the intron of COX4, the nuclear gene encoding cytochrome c oxidase subunit 4. The deduced amino acid sequence of the yeast subunit 9 is 39% identical with that of a protein of similar molecular weight from beef heart cytochrome bc1 complex. If conservative substitutions are allowed for, the two proteins are 56% similar. The predicted secondary structure of the 7.3-kDa protein revealed a single possible transmembrane helix, in which the amino acids conserved between beef heart and yeast are asymmetrically arranged along one face of the helix, implying that this domain of the protein is involved in a conserved interaction with another hydrophobic protein of the cytochrome bc1 complex. Two yeast strains, JDP1 and JDP2, were constructed in which QCR9 was deleted. Both strains grew very poorly, or not at all, on nonfermentable carbon sources and exhibited, at most, only 5% of wild-type ubiquinol-cytochrome c oxidoreductase activity. Optical spectra of mitochondrial membranes from the deletion strains revealed slightly reduced levels of cytochrome b. When JDP1 and JDP2 were complemented with a plasmid carrying QCR9, the resulting yeast grew normally on ethanol/glycerol and exhibited normal cytochrome c reductase activities and optical spectra. These results indicate that QCR9 encodes a 7.3-kDa subunit of the bc1 complex that is required for formation of a fully functional complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Further genetic evidence is provided here that Bradyrhizobium japonicum possesses a mitochondria-like electron-transport pathway: 2[H]----UQ----bc1----c----aa3----O2. Two Tn5-induced mutants, COX122 and COX132, having cytochrome c oxidase-negative phenotypes, were obtained and characterized. Mutant COX122 was defective in a novel gene, named cycM, which was responsible for the synthesis of a c-type cytochrome with an Mr of 20,000 (20K). This 20K cytochrome c appeared to catalyse electron transport from the cytochrome bc1 complex to the aa3-type terminal oxidase and, unlike mitochondrial cytochrome c, was membrane-bound in B. japonicum. The Tn5 insertion of mutant COX132 was localized in coxA, the structural gene for subunit I of cytochrome aa3. This finding also led to the cloning and sequencing of the corresponding wild-type coxA gene that encoded a 541-amino-acid protein with a predicted Mr of 59,247. The CoxA protein shared about 60% sequence identity with the cytochrome aa3 subunit I of mitochondria. The B. japonicum cycM and coxA mutants were able to fix nitrogen in symbiosis with soybean (Fix+). In contrast, mutants described previously which lacked the bc1 complex did not develop into endosymbiotic bacteroids and were thus Fix-. The data suggest that a symbiosis-specific respiratory chain exists in B. japonicum in which the electrons branch off at the bc1 complex.  相似文献   

8.
9.
Inactivation of the gene encoding the 11-kDa subunit VIII of yeast ubiquinol:cytochrome c oxidoreductase leads to an inactive complex, which lacks detectable cytochrome b [Maarse, A. C., De Haan, M., Schoppink, P. J., Berden, J. A. and Grivell, L. A. (1988) Eur. J. Biochem. 172, 179-184] and in which the steady-state levels of the Fe-S protein and the 14-kDa subunit VII are severely reduced. When the 11-kDao mutant is transformed with a gene encoding a protein consisting of the 11-kDa protein minus its last 11 amino acids and fused to a 7-amino-acid sequence encoded by a stop oligonucleotide, the complex is assembled normally. Enzyme activity is similar to that of the wild type, as is also the sensitivity of the complex to antimycin and myxothiazol. Transformation of the mutant with a gene encoding a protein consisting of the 11-kDa protein lacking the last 43 amino acids (i.e. almost half the protein) and fused to the same 7-amino-acid sequence as above, gives partial restoration of the complex. The Fe-S protein and the 14-kDa subunit VII still exhibit low steady-state levels, but cytochrome b is present again, albeit at a strongly reduced level. Electron transport activity is also partially restored and correlates with the level of cytochrome b indicating that the turnover number of the complex is similar to that of wild-type complex III. These findings demonstrate the important role played by the 11-kDa protein in the stabilization of cytochrome b. They also imply that at least the C-terminal half of the 11-kDa protein is not part of an ubiquinol-binding site. Moreover, since the deletion has no effect on the sensitivity of the complex to myxothiazol and antimycin, at least this part of the protein is probably not involved in binding of these inhibitors.  相似文献   

10.
Many photosynthetic bacteria use inorganic sulfur compounds as electron donors for carbon dioxide fixation. A thiosulfate-induced cytochrome c has been purified from the photosynthetic alpha-proteobacterium Rhodovulum sulfidophilum. This cytochrome c(551) is a heterodimer of a diheme 30-kDa SoxA subunit and a monoheme 15-kDa SoxX subunit. The cytochrome c(551) structural genes are part of an 11-gene sox locus. Sequence analysis suggests that the ligands to the heme iron in SoxX are a methionine and a histidine, while both SoxA hemes are predicted to have unusual cysteine-plus-histidine coordination. A soxA mutant strain is unable to grow photoautotrophically on or oxidize either thiosulfate or sulfide. Cytochrome c(551) is thus essential for the metabolism of both these sulfur species. Periplasmic extracts of wild-type R. sulfidophilum exhibit thiosulfate:cytochrome c oxidoreductase activity. However, such activity can only be measured for a soxA mutant strain if the periplasmic extract is supplemented with purified cytochrome c(551). Gene clusters similar to the R. sulfidophilum sox locus can be found in the genome of a green sulfur bacterium and in phylogenetically diverse nonphotosynthetic autotrophs.  相似文献   

11.
The single nuclear gene encoding the 17-kDa subunit VI of yeast ubiquinol: cytochrome c oxidoreductase has been inactivated by one-step gene disruption. Disruption was verified by Southern blot analysis of nuclear DNA and immunoblotting. Cells lacking the 17-kDa protein are still capable of growth on glycerol and they contain all other subunits of complex III at wild-type levels, implying that the 17-kDa subunit is not essential for either assembly of complex III, or its function. In vitro, electron transport activity of complex III of mutant cells is about 40% of the wild-type complex, but for the total respiratory chain no significant differences in activity was measured between mutant and wild type. The energy-transducing capacity of the complex is not reduced in the absence of the 17-kDa protein. In a relatively high proportion of the transformants, disruption of the 17-kDa gene was accompanied by the appearance of a second mutation causing a petite phenotype. In these cells which lack cytochrome b, the presence of the 17-kDa protein (after complementation) results in stabilization of cytochrome c1.  相似文献   

12.
Paracoccus denitrificans cytochrome c1 gene replacement mutants.   总被引:4,自引:1,他引:3       下载免费PDF全文
We describe the construction and characterization of gene replacement mutants for the respiratory chain component cytochrome c1 in the bacterium Paracoccus denitrificans. Its structural gene (fbcC) was inactivated by insertion of the kanamycin resistance gene, introduced into a suicide vector, and conjugated into Paracoccus; chromosomal mutants obtained by homologous recombination were selected by antibiotic resistance screening and further characterized biochemically. They showed the complete spectral, enzymatic, and immunological loss of the fbcC gene product together with a serious defect in the assembly of the two other gene products of the fbc operon, cytochrome b and the FeS protein. A possible role of the cytochrome c1 in the assembly process for the enzyme complex is discussed. A functional restoration to wild-type phenotype was achieved by complementing in trans with a newly constructed broad-host-range vector carrying the fbcC gene cassette. When the complete fbc operon was present on this vector, overexpression of complex III subunits was observed. Apart from their physiological significance, such mutants are a prerequisite for probing structure-function relationships by site-directed mutagenesis in order to understand molecular details of electron transport and energy transduction processes of this respiratory enzyme in bacteria and in mitochondria.  相似文献   

13.
The purple photosynthetic bacterium Rhodovulum sulfidophilum has an unusual reaction center- (RC-) bound cytochrome subunit with only three hemes, although the subunits of other purple bacteria have four hemes. To understand the electron-transfer pathway through this subunit, three mutants of R. sulfidophilum were constructed and characterized: one lacking the RC-bound cytochrome subunit, another one lacking cytochrome c(2), and another one lacking both of these. The mutant lacking the RC-bound cytochrome subunit was grown photosynthetically with about half the growth rate of the wild type, indicating that the presence of the cytochrome subunit, while not indispensable, is still advantageous for the photosynthetic electron transfer to support its growth. The mutant lacking both the cytochrome subunit and cytochrome c(2) showed a slower rate of growth by photosynthesis (about a fourth of that of the wild type), indicating that cytochrome c(2) is the dominant electron donor to the RC mutationally devoid of the cytochrome subunit. On the other hand, the mutant lacking only the cytochrome c(2) gene grew photosynthetically as fast as the wild type, indicating that cytochrome c(2) is not the predominant donor to the RC-bound triheme cytochrome subunit. We further show that newly isolated soluble cytochrome c-549 with a redox midpoint potential of +238 mV reduced the photooxidized cytochrome subunit in vitro, suggesting that c-549 mediates the cytochrome c(2)-independent electron transfer from the bc(1) complex to the RC-bound cytochrome subunit. These results indicate that the soluble components donating electrons to the RC-bound triheme cytochrome subunit are somewhat different from those of other purple bacteria.  相似文献   

14.
In this work, the genes for cytochrome aa3 oxidase and the cytochrome bc1 complex in the gram-positive soil bacterium Corynebacterium glutamicum were identified. The monocistronic ctaD gene encoded a 65-kDa protein with all features typical for subunit I of cytochrome aa3 oxidases. A ctaD deletion mutant lacked the characteristic 600 nm peak in redox difference spectra, and growth in glucose minimal medium was strongly impaired. The genes encoding subunit III of cytochrome aa3 (ctaE) and the three characteristic subunits of the cytochrome bc1 complex (qcrABC) were clustered in the order ctaE-qcrCAB. Analysis of the deduced primary structures revealed a number of unusual features: (1) cytochrome c1 (QcrC, 30 kDa) contained two Cys-X-X-Cys-His motifs for covalent heme attachment, indicating that it is a diheme c-type cytochrome; (2) the 'Rieske' iron-sulphur protein (QcrA, 45 kDa) contained three putative transmembrane helices in the N-terminal region rather than only one; and (3) cytochrome b (QcrB, 60 kDa) contained, in addition to the conserved part with eight transmembrane helices, a C-terminal extension of about 120 amino acids, which presumably is located in the cytoplasm. Staining of C. glutamicum proteins for covalently bound heme indicated the presence of a single, membrane-bound c-type cytochrome with an apparent molecular mass of about 31 kDa. Since this protein was missing in a qcrCAB deletion mutant, it most likely corresponds to cytochrome c1. Similar to the deltactaD mutant, the deltaqcrCAB mutant showed strongly impaired growth in glucose minimal medium, which indicates that the bc1-aa3 pathway is the main route of respiration under these conditions.  相似文献   

15.
Disruption of the gene for subunit 6 of the yeast cytochrome bc1 complex (QCR6) causes a temperature-sensitive petite phenotype in contrast to deletion of the coding region of QCR6, which shows no growth defect. Mitochondria from the petite strain carrying the disruption allele were devoid of ubiquinol-cytochrome c oxidoreductase activity but retained cytochrome c oxidase and oligomycin-sensitive ATPase activities. Optical spectra of cytochromes in mitochondrial membranes from the petite strain lacked a cytochrome b absorption band and had a reduced amount of cytochrome c1. Analysis of mitochondrial translation products showed normal synthesis of cytochrome b. Western analysis of mitochondrial membranes from this disruption strain indicates core protein 1 of the cytochrome bc1 complex is present in normal amounts, while cytochrome c1, the Rieske iron-sulfur protein, subunit 6, and subunit 7 were absent or present in very low amounts. Taken together, these findings indicate a loss of assembly of the cytochrome bc1 complex. High copy suppressors of the disruption strain were selected. Two separate families of suppressors were found. The first contained QCR6. The second family consisted of overlapping clones of a second gene distinct from QCR6. These plasmids contained QCR9, the gene which codes for subunit 9 of the yeast cytochrome bc1 complex. Suppression of the QCR6 disruption strain by overexpression of QCR9 indicates a critical interaction between these two proteins in the assembly of the cytochrome bc1 complex.  相似文献   

16.
A highly active, large-scale preparation of ubiquinol:cytochrome c2 oxidoreductase (EC 1.10.2.2; cytochrome bc1 complex) has been obtained from Rhodobacter sphaeroides. The enzyme was solubilized from chromatophores by using dodecyl maltoside in the presence of glycerol and was purified by anion-exchange and gel filtration chromatography. The procedure yields 35 mg of pure bc1 complex from 4.5 g of membrane protein, and its consistently results in an enzyme preparation that catalyzes the reduction of horse heart cytochrome c with a turnover of 250-350 (mumol of cyt c reduced).(mumol of cyt c1)-1.s-1. The turnover number is at least double that of the best preparation reported in the literature [Ljungdahl, P. O., Pennoyer, J. D., Robertson, D. C., & Trumpower, B. L. (1987) Biochim. Biophys. Acta 891, 227-241]. The scale is increased 25-fold, and the yield is markedly improved by using this protocol. Four polypeptide subunits were observed by SDS-PAGE, with Mr values of 40K, 34K, 24K, and 14K. N-Terminal amino acid sequences were obtained for cytochrome c1, the iron-sulfur protein subunit, and for cytochrome b and were identical with the expected protein sequences deduced from the DNA sequence of the fbc operon, with the exceptions that a 22-residue fragment is processed off of the N-terminus of cytochrome c1 and the N-terminal methionine residue is cleaved off both the b cytochrome and iron-sulfur protein subunits. Western blotting experiments indicate that subunit IV is not a contaminating light-harvesting complex polypeptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The smallest molecular weight subunit (subunit IV), which contains no redox prosthetic group, is the only supernumerary subunit in the four-subunit Rhodobacter sphaeroides bc1 complex. This subunit is involved in Q binding and the structural integrity of the complex. When the cytochrome bc1 complex is photoaffinity labeled with [3H]azido-Q derivative, radioactivity is found in subunits IV and I (cytochrome b), indicating that these two subunits are responsible for Q binding in the complex. When the subunit IV gene (fbcQ) is deleted from the R. sphaeroides chromosome, the resulting strain (RSdeltaIV) requires a period of adaptation before the start of photosynthetic growth. The cytochrome bc1 complex in adapted RSdeltaIV chromatophores is labile to detergent treatment (60-75% inactivation), and shows a four-fold increase in the Km for Q2H2. The first two changes indicate a structural role of subunit IV; the third change supports its Q-binding function. Tryptophan-79 is important for structural and Q-binding functions of subunit IV. Subunit IV is overexpressed in Escherichia coli as a GST fusion protein using the constructed expression vector, pGEX/IV. Purified recombinant subunit IV is functionally active as it can restore the bc1 complex activity from the three-subunit core complex to the same level as that of wild-type or complement complex. Three regions in the subunit IV sequence, residues 86-109, 77-85, and 41-55, are essential for interaction with the core complex because deleting one of these regions yields a subunit completely or partially unable to restore cytochrome bc1 from the core complex.  相似文献   

18.
E Davidson  T Ohnishi  M Tokito  F Daldal 《Biochemistry》1992,31(13):3351-3358
The ubiquinol-cytochrome c oxidoreductase (or bc1 complex) of Rhodobacter capsulatus consists of three subunits: cytochrome b, cytochrome c1, and the Rieske iron-sulfur protein, encoded by the fbcF, fbcB, and fbcC genes, respectively. In the preceding paper [Davidson, E., Ohnishi, T., Atta-Asafo-Adjei, E., & Daldal, F. (1992) Biochemistry (preceding paper in this issue)], we have observed that the apoproteins for cytochromes b and c1 are fully present in the intracytoplasmic membrane of R. capsulatus mutants containing low amounts of, or no, Rieske apoprotein. Here we present evidence that the redox midpoint potentials of cytochromes b and c1, as well as their ability to bind antimycin and stabilize a semiquinone at the Qi site, are unaffected by the absence of the Rieske subunit. This is the first report describing a mutant containing a stable bc1 subcomplex with an intact Qi site in the chromatophore membranes, and provides further evidence that a functional quinone reduction site can be formed in the absence of a quinol oxidation (Qo) site. Additional mutants carrying fbc deletions expressing the remaining subunits of the cytochrome bc1 complex were constructed to investigate the relationship among these subunits for their stability in vivo. Western blot analysis of these mutants indicated that cytochromes b and c1 protect each other against degradation, suggesting that they form a two-protein subcomplex in the absence of the Rieske protein subunit.  相似文献   

19.
Zara V  Conte L  Trumpower BL 《The FEBS journal》2007,274(17):4526-4539
We have examined the status of the cytochrome bc(1) complex in mitochondrial membranes from yeast mutants in which genes for one or more of the cytochrome bc(1) complex subunits were deleted. When membranes from wild-type yeast were resolved by native gel electrophoresis and analyzed by immunodecoration, the cytochrome bc(1) complex was detected as a mixed population of enzymes, consisting of cytochrome bc(1) dimers, and ternary complexes of cytochrome bc(1) dimers associated with one and two copies of the cytochrome c oxidase complex. When membranes from the deletion mutants were resolved and analyzed, the cytochrome bc(1) dimer was not associated with the cytochrome c oxidase complex in many of the mutant membranes, and membranes from some of the mutants contained a common set of cytochrome bc(1) subcomplexes. When these subcomplexes were fractionated by SDS/PAGE and analyzed with subunit-specific antibodies, it was possible to recognize a subcomplex consisting of cytochrome b, subunit 7 and subunit 8 that is apparently associated with cytochrome c oxidase early in the assembly process, prior to acquisition of the remaining cytochrome bc(1) subunits. It was also possible to identify a subcomplex consisting of subunit 9 and the Rieske protein, and two subcomplexes containing cytochrome c(1) associated with core protein 1 and core protein 2, respectively. The analysis of all the cytochrome bc(1) subcomplexes with monospecific antibodies directed against Bcs1p revealed that this chaperone protein is involved in a late stage of cytochrome bc(1) complex assembly.  相似文献   

20.
A ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex has been purified from the plasma membrane of aerobically grown Paracoccus denitrificans by extraction with dodecyl maltoside and ion exchange chromatography of the extract. The purified complex contains two spectrally and thermodynamically distinct b cytochromes, cytochrome c1, and a Rieske-type iron-sulfur protein. Optical spectra indicate absorption peaks at 553 nm for cytochrome c1 and at 560 and 566 nm for the high and low potential hemes of cytochrome b. The spectrum of cytochrome b560 is shifted to longer wavelength by antimycin. The Paracoccus bc1 complex consists of only three polypeptide subunits. On the basis of their relative electrophoretic mobilities, these have apparent molecular masses of 62, 39, and 20 kDa. The 62- and 39-kDa subunits have been identified as cytochromes c1 and b, respectively. The 20-kDa subunit is assumed to be the Rieske-type iron-sulfur protein on the basis of its molecular weight and the presence of an EPR-detectable signal typical of this iron-sulfur protein in the three-subunit complex. The Paracoccus bc1 complex catalyzes reduction of cytochrome c by ubiquinol with a turnover of 470 s-1. This activity is inhibited by antimycin, myxothiazol, stigmatellin, and hydroxyquinone analogues of ubiquinone, all of which inhibit electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain. The electron transfer functions of the Paracoccus complex thus appear to be similar, and possibly identical, to those of the bc1 complex of eukaryotic mitochondria. The Paracoccus bc1 complex has the simplest subunit composition and one of the highest turnover numbers of any bc1 complex isolated from any species to date. These properties suggest that the structural requirements for electron transfer from ubiquinol to cytochrome c are met by a small number of peptides and that the "extra" peptides occurring in the mitochondrial bc1 complexes serve some other function(s), possibly in biogenesis or insertion of the complex into that organelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号