首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modular kinetic analysis reveals that the environmental pollutant 2,2',5,5'-tetrachlorobiphenyl (2,2',5,5'-TCB) affects a large number of steps in oxidative phosphorylation in rat liver mitochondria. 2,2',5,5'-TCB increases membrane permeability to ions, and inhibits NADH dehydrogenase, cytochrome bc1, cytochrome oxidase (all in the respiratory chain) and ATP-synthase (in the phosphorylation subsystem). Surprisingly, flux control distribution does not change. A kinetic model for oxidative phosphorylation was used to simulate these findings, and it was found that combined large changes in the processes indicated indeed left the flux control largely unchanged. In addition, computational analysis with the model indicated that the adenine nucleotide translocator might be inhibited by 2,2',5,5'-TCB.  相似文献   

2.
Ketoconazole is an imidazole oral antifungal agent with a broad spectrum of activity. Ketoconazole has been reported to cause liver damage, but the mechanism is unknown. However, ketoconazole and a related drug, miconazole, have been shown to have inhibitory effects on oxidative phosphorylation in fungi. Fluconazole, another orally administered antifungal azole, has also been reported to cause liver damage despite its supposedly low toxicity profile. The primary objective of this study was to evaluate the metabolic integrity of adult rat liver mitochondria after exposure to ketoconazole, miconazole, fluconazole, and the deacetylated metabolite of ketoconazole by measuring ADP-dependent oxygen uptake polarographically and succinate dehydrogenase activity spectrophotometrically. Ketoconazole, N-deacetyl ketoconazole, and miconazole inhibited glutamate-malate oxidation in a dose-dependent manner such that the 50% inhibitory concentration (I50 was 32, 300, and 110 μM, respectively. In addition, the effect of ketoconazole, miconazole, and fluconazole on phosphorylation coupled to the oxidation of pyruvate/malate, ornithine/malate, arginine/malate, and succinate was evaluated. The results demonstrated that ketoconazole and miconazole produced a dose-dependent inhibition of NADH oxidase in which ketoconazole was the most potent inhibitor. Fluconazole had minimal inhibitory effects on NADH oxidase and succinate dehydrogenase, whereas higher concentrations of ketoconazole were required to inhibit the activity of succinate dehydrogenase. N-deacetylated ketoconazole inhibited succinate dehydrogenase with an I50 of 350 μM. In addition, the reduction of ferricyanide by succinate catalyzed by succinate dehydrogenase demonstrated that ketoconazole caused a dose-dependent inhibition of succinate activity (I50 of 74 μM). In summary, ketoconazole appears to be the more potent mitochondrial inhibitor of the azoles studied; complex I of the respiratory chain is the apparent target of the drug's action. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
Mitochondria fulfill important functions in photosynthetic cells not only in darkness but also in light. Mitochondrial oxidative phosphorylation is probably the main mechanism to supply ATP for extrachloroplastic functions in both conditions. Furthermore, during photosynthesis mitochondrial electron transport is important for regulation of the redox balance in the cell. This makes mitochondrial function an integral part of a flexible metabolic system in the photosynthetic cell. This flexibility is probably very important in order to allow the metabolism to override disturbances caused by the changing environment which plants are adapted to.  相似文献   

4.
An emetic toxin cereulide, produced by Bacillus cereus, causes emetic food poisonings, but a method for quantitative measurement of cereulide has not been well established. A current detection method is a bioassay method using the HEp-2 cell vacuolation test, but it was unable to measure an accurate concentration. We established a quantitative assay for cereulide based on its mitochondrial respiratory uncoupling activity. The oxygen consumption in a reaction medium containing rat liver mitochondria was rapid in the presence of cereulide. Thus uncoupling effect of cereulide on mitochondrial respiration was similar to those of uncouplers 2,4-dinitrophenol (DNP), carbonylcyanide m-chlorophenylhydrazone (CCCP), and valinomycin. This method gave constant results over a wide range of cereulide concentrations, ranging from 0.05 to 100 microg/ml. The minimum cereulide concentration to detect uncoupled oxygen consumption was 50 ng/ml and increased dose-dependently to the maximum level. Semi-log relationship between the oxygen consumption rate and the cereulide concentration enables this method to quantify cereulide. The results of this method were highly reproducible as compared with the HEp-2 cell vacuolation test and were in good agreement with those of the HEp-2 cell vacuolation test. The enterotoxin of B. cereus or Staphylococcus aureus did not show any effect on the oxygen consumption, indicating this method is specific for the identification of cereulide as a causative agent of emetic food poisonings.  相似文献   

5.
Tamoxifen (and 4-hydroxytamoxifen), a nonsteroidal triphenylethylene antiestrogenic drug widely used in the treatment of breast cancer, interacts strongly with the respiratory chain of isolated rat liver mitochondria. The drug acts as both an uncoupling agent and a powerful inhibitor of electron transport. Tamoxifen brings about a collapse of the membrane potential. Enzymatic assays and spectroscopic studies indicate that tamoxifen inhibits electron transfer in the respiratory chain at the levels of complex III (ubiquinol–cytochrome-c reductase) and, to a lesser extent, of complex IV (cytochrome-c oxidase). The activities can be restored by the addition of diphosphatidylglycerol, a phospholipid implicated in the functioning of the respiratory chain complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
1-Hydroxyanthraquinone and dihydroxyanthraquinones (alizarin, quinizarin, anthrarufin and chrysazin) were examined for genotoxicity in the hepatocyte/DNA repair test and for effects on oxidative phosphorylation in isolated rat liver mitochondria. Of the anthraquinone compounds tested, 1-hydroxyanthraquinone and 1,8-dihydroxyanthraquinone (chrysazin) induced DNA repair synthesis in rat hepatocytes, indicating their genotoxic activity. Only 1,2-dihydroxyanthraquinone (alizarin) exerted an uncoupling and inhibitory effect on mitochondrial respiration. The possible relationships of the genotoxic potencies and the uncoupling activities of these anthraquinones to their chemical structures are discussed.Abbreviations ADP adenosine-5-diphosphate - ETP electron transport particles - RC respiratory control - TdR thymidine deoxyribonucleotide - UDS unscheduled DNA synthesis  相似文献   

7.
Summary The degradation of intramitochondrial adenine nucleotides to nucleosides and bases was investigated by incubating isolated rat liver mitochondria at 37°C under non-phosphorylating conditions in the presence of oligomycin and carboxyatractyloside. Within 30 min the adenine nucleotides were degraded by about 25 per cent. The main products formed were adenosine and inosine the contents of which increased five- to sevenfold.Compartmentation studies revealed that about 50 to 60 per cent of the adenosine formed remained inside the organelles whereas inosine was almost completely released into the surrounding medium. Outside the mitochondria only very small amounts of adenine nucleotides were detected. Similar incubations in the presence of [14C]-adenosine yielded no [14C]-inosine ruling out extramitochondrial adenosine deamination.It is concluded that endogenous adenine nucleotides can be degraded in mitochondria via AMP dephosphorylation and subsequent adenosine deamination. A purine nucleoside transport system mediating at least the efflux of inosine from the mitochondria is suggested.  相似文献   

8.
We modified the isolation procedure of muscle and heart mitochondria. In human muscle, this resulted in a 3.4 fold higher yield of better coupled mitochondria in half the isolation time. In a preparation from rat muscle we studied factors that affected the stability of oxidative phosphorylation (oxphos) and found that it decreased by shaking the preparation on a Vortex machine, by exposure to light and by an increase in storage temperature. The decay was found to be different for each substrate tested. The oxidation of ascorbate was most stable and less sensitive to the treatments.When mitochondria were stored in the dark and the cold, the decrease in oxidative phosphorylation followed first order kinetics. In individual preparations of muscle and heart mitochondria, protection of oxidative phosphorylation was found by adding candidate stabilizers, such as desferrioxamine, lazaroids, taurine, carnitine, phosphocreatine, N-acetylcysteine, Trolox-C and ruthenium red, implying a role for reactive oxygen species and calcium-ions in the in vitro damage at low temperature to oxidative phosphorylation.In heart mitochondria oxphos with pyruvate and palmitoylcarnitine was most labile followed by glutamate, succinate and ascorbate.We studied the effect of taurine, hypotaurine, carnitine, and desferrioxamine on the decay of oxphos with these substrates. 1 mM taurine (n = 6) caused a significant protection of oxphos with pyruvate, glutamate and palmitoylcarnitine, but not with the other substrates. 5 mM L-carnitine (n = 6), 1 mM hypotaurine (n = 3) and 0.1 mM desferrioxamine (n = 3) did not protect oxphos with any of the substrates at a significant level.These experiments were undertaken in the hope that the in vitro stabilizers can be used in future treatment of patients with defects in oxidative phosphorylation. (Mol Cell Biochem 174: 61–66, 1997)  相似文献   

9.
非酒精性脂肪肝病(nonalcoholic fatty liver disease,NAFLD)作为一种流行性代谢疾病,一直是研究热点之一.NAFLD的形成涉及线粒体功能障碍、胰岛素抵抗、氧化应激、炎症反应等机制,而线粒体与补体在其中占据重要位置.然而,线粒体与补体在NAFLD形成过程中的内在关联及协同作用目前尚不十分...  相似文献   

10.
Rabbit, pigeon and rat liver mitochondria convert exogenous phosphoenolpyruvate and acetylcarnitine to citrate at rates of 14, 74 and 8 nmol/15 min/mg protein. Citrate formation is dependent on exogenous HCO3, is increased consistently by exogenous nucleotides (GDP, IDP, GTP, ADP, ATP) and inhibited strongly by 3-mercaptopicolinate and 1,2,3-benzenetricar☐ylate. Citrate is not made from pyruvate alone or combined with acetylcarnitine. Pigeon and rat liver mitochondria make large amounts of citrate from exogenous succinate, suggesting the presence of an endogenous source of acetyl units or a means of converting oxalacetate to acetyl units. Citrate synthesis from succinate by pigeon and rabbit mitochondria is increased significantly by exogenous acetylcarnitine. Pigeon and rat liver contain 80 and 15 times, respectively, more ATP:citrate lyase activity than does rabbit liver. Data suggest that mitochondrial phosphoenolpyruvate car☐ykinasein vivo could convert glycolysis-derived phosphoenolpyruvate to oxalacetate that, with acetyl CoA, could form citrate for export to support cytosolic lipogenesis as an activator of acetyl CoA car☐ylase, a carbon source via ATP:citrate lyase and NADPH via NADP: malate dehydrogenase or NADP: isocitrate dehydrogenase.  相似文献   

11.
The activating anions are found to induce an unexpectedly high (up to 8-fold for sulphite) increase of ATPase activity in intact rat liver mitochondria. This effect is not determined by the observed changes in Km and Ki (ADP) values. The stimulation seems to be caused by dissociation of the inactive complex of ATPase with Mg·ADP. The quantity of this complex formed in the course of ATP hydrolysis is approx. 90% of the total ATPase content in intact mitochondria. The data on toluene-permeabilized mitochondria suggest that the high content of the complex is a result of the stabilizing effect of some matrix macromolecules.  相似文献   

12.
It has been found that oligomycin inhibits up to at least 50% state-4 mitochondrial respiration. A time dependence of oligomycin inhibition has been shown. A titration curve for state-4 respiration of sigmoidal profile has been presented. The possibility of misreading this oligomycin effect, so far never reported, has been excluded by evaluating the quality of mitochondrial preparations used in respect to their morphological, functional and electrochemical properties. The conclusion has therefore been put forward that the most part of respiration in steady-state-4 is driven by ATP synthesis.  相似文献   

13.
The hydrophobic, potentially SH cross-linking reagent, phenylarsine oxide (PhAsO), was found to induce K+ and Ca2+ effluxes from mitochondria and to accelerate the respiration rate in state 4. The hydrophobic monofunctional electrophilic agent,N-ethylmaleimide, does not exhibit this effect but prevents the action of PhAsO. The polar potentially SH cross-linking reagents (arsenite, diamide) induce ion fluxes only in the presence of Pi. Ion fluxes induced by the SH reagents are inhibited by butylhydroxytoluene (an inhibitor of free radical reactions), andN,N-dicyclohexylcarbodiimide, not by oligomycin. It is inferred that the induction of ion fluxes in mitochondria caused by cross-linking of two juxtaposed SH groups is related to the development of free radical reactions.Abbreviations PhAsO phenylarsine oxide - NEM N-ethylmaleimide - HEPES N-2-hydroxyethylpiperazine-N-ethanesulfonic acid - RR ruthenium red - CCCP carbonyl cyanide-m-chlorophenylhydrazone - BHT butylhydroxytoluene - DCCD N,N-dicyclohexylcarbodiimide - DTNB 5,5-dithio-bis-2-nitrobenzoic acid - diamide diazenedicarboxylic acid-bis-dimethyl-amide - mersalyl O-[3-hydroxymercuri)-2-methoxypropyl) carbamoylphenoxyacetic acid - DTE dithioerythritol  相似文献   

14.
We compared NAD-dependent state 4 and state 3 respiration, NADH oxidation and Complex I specific activity in liver mitochondria from 4- and 30-month-old rats. All the activities examined were significantly decreased with aging. In both groups of animals, the flux control coefficients measured by rotenone titration indicated that Complex I is largely rate controlling upon NADH aerobic oxidation while, in state 3 respiration, it shares the control with other steps in the pathway. Moreover, we observed a trend wherein flux control coefficients of Complex I became higher with age. This indication was strengthened by examining the rotenone inhibition thresholds showing that Complex I becomes more rate controlling, over all the examined activities, during aging. Our results point out that age-related alterations of the mitochondrial functions are also present in tissues considered less prone to accumulate mitochondrial DNA mutations.  相似文献   

15.
A study is presented on the EPR characteristics of the paramagnetic groups in the respiratory chain present in membrane particles of Paracoccus denitrificans, the respiratory system of which is very similar to that in submitochondrial particles from beef heart. All paramagnetic prosthetic groups of the mitochondrial system are also found in the bacterial plasma membrane. Their properties suggest that the respiratory groups are embedded in very similar protein environments in the two systems.  相似文献   

16.
Summary The effect of (aminooxy)acetate, an inhibitor of aminotransferases, on the sulfate formation froml-cysteine andl-cysteinesulfinate in rat liver mitochondria was studied. Incubation of 10 mMl-cysteine with rat liver mitochondria at 37°C in the presence of 10 mM 2-oxoglutarate and 10 mM glutathione resulted in the formation of 4.60 and 1.52µmol of sulfate and thiosulfate, respectively, per 60 min per mitochondria obtained from 1 g of liver. Under the same conditions sulfate formation froml-cysteinesulfinate was 24.96µmol, but thiosulfate was not formed. The addition of (aminooxy)acetate at 2 mM or more completely inhibited the sulfate and thiosulfate formation froml-cysteine and the sulfate formation froml-cysteinesulfinate. These findings support our previous conclusion that cysteine transamination and 3-mercaptopyruvate pathway (MP pathway) are involved in the sulfate formation froml-cysteine in rat liver mitochondria (Ubuka et al., 1992).  相似文献   

17.
31P-NMR studies of intact functional rat liver mitochondria at 37°C demonstrate that the large majority (?95%) of endogenous phospholipids exhibit motional properties consistent with bilayer structure. This property is unaffected by oxidative phosphorylation processes or the presence of Ca2+.  相似文献   

18.
Mitochondria are cellular organelles where the generation of reactive oxygen species may be high. They are, however, effectively protected by their high capacities of antioxidative systems, as enzymes and either water or lipid soluble low molecular weight antioxidants.These antioxidative defence systems can be effectively regenerated after or during an oxidative stress as long as the mitochondria are in an energized state. Energization of mitochondria mainly depends on the availability of suitable respiratory substrates which can provide hydrogen for the reduction of either the glutathione- or -tocopherol-system, since GSH is regenerated by glutathione reductase with the substrate NADPH and the -tocopheroxyl-radical likely by reduced coenzyme Q. It was shown that mitochondria do not undergo damages as long as they can keep a high energy state. The delicate balance between prooxidative/antioxidative activities can be shifted towards oxidation, if experimentally prooxidants were added. After exhaustion of the antioxidative defence systems damages of rnitochondrial functions become expressed followed by membrane injuries along with the oxidation and degradation of mitochondrial lipids and proteins leading finally to the total degradation of the mitoc hondria.Extramitochondrial antioxidants may assist the mitochondrial antioxidative defence systems in a complex way, whereby particularly ascorbic acid can act both as prooxidant and as antioxidant. (Mol Cell Biochem 174: 199–205, 1997)  相似文献   

19.
Abstract: The direct influence of l -3,3',5-triiodothyronine (T3) on the development of 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37, CNPase) is demonstrated by using an in vitro culture system of dissociated embryonic mouse brain cells. Serum from a thyroidectomized calf, which contained low levels of T3 (31 ng/100 ml), and thyroxine, T4 (<1 μg/ml), was used in the culture medium in place of normal calf serum (T3, 103 ng/100 ml; T4, 5.7 μg/ml) to render the culture responsive to exogenously added T3. The lower levels of enzyme activity observed in the presence of such a deficient medium could be restored to normal values by T3 supplementation. Half-maximal effect was obtained with 2.5 ± 10−9 m -T3. Three days of hormone treatment resulted in the maximal stimulation of CNPase. T4 was less effective in inducing CNPase activity and the inactive analog of the hormone, reverse T3 (3,3',5'-T3) was ineffective. The morphological appearance of the cells was characterized by deformed (smaller size and less in number) reaggregates in the cultures, lacking hormone.  相似文献   

20.
1. Studies on the cytochrome spectra of liver mitochondria from control and glucagon-treated rats in State 4, State 3 and in the presence of uncoupler are reported. 2. The stimulation of electron flow between cytochromes c1 and c observed previously [Halestrap (1978) Biochem. J. 172, 399-405] was shown to be an artefact of Ca2+-induced swelling of mitochondria. 3. When precautions were taken to prevent such swelling, glucagon treatment was shown to enhance the reduction of cytochromes c, c1 and b558 in both State 3 and uncoupled conditions with either succinate or glutamate + malate as substrate. An increase in the reduction of cytochromes b562 and b566 was also seen in some, but not all, experiments. 4. In State 4 with succinate but not glutamate + malate as substrate, cytochromes c, c1, b558, b562 and b566 showed increased reduction. 5. Glucagon stimulated oxidation of duroquinol and palmitoylcarnitine by intact mitochondria and of NADH by disrupted mitochondria. 6. No effect of glucagon on succinate dehydrogenase activity or the temperature-dependence of succinate oxidation could be detected. 7. Glucagon enhanced the inhibition of the respiratory chain by colletotrichin, but not antimycin or 8-heptyl-4-hydroxyquinoline N-oxide. 8. These results are interpreted in terms of a primary stimulation by glucagon of the 'Q cycle' [Mitchell (1976) J. Theor. Biol. 62, 827-367] within Complex III (ubiquinol:cytochrome c oxidoreductase) and a secondary site of action involving stimulation of electron flow into Complex III from the ubiquinone pool. 9. Ageing of mitochondria, hyperosmotic treatment or addition of 20 mM-benzyl alcohol opposed the effects of glucagon treatment on cytochrome spectra and colletotrichin inhibition of respiration. 10. These results support the hypothesis that glucagon exerts its effects on the mitochondria by perturbing the membrane structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号