首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the horse industry, milk or milk-based extenders are used routinely for dilution and storage of semen cooled to 4-8 degrees C. Although artificial insemination (AI) with chilled and transported semen has been in use for several years, pregnancy rates are still low and variable related to variable semen quality of stallions. Over the years, a variety of extenders have been proposed for cooling, storage and transport of stallion semen. Fractionation of milk by microfiltration, ultrafiltration, diafiltration and freeze-drying techniques has allowed preparation of purified milk fractions in order to test them on stallion sperm survival. Finally, a high protective fraction, native phosphocaseinate (NPPC), was identified. A new extender, INRA96, based on modified Hanks' salts, supplemented with NPPC was then developed for use with cooled/stored semen.Four experiments were conducted to compare INRA96 and milk-based extenders under various conditions of storage. The diluted semen was maintained under aerobic conditions when stored at 15 degrees C, and anaerobic conditions when stored at 4 degrees C. In experiment 1, split ejaculates from 13 stallions were diluted either in INRA96 extender then stored at 15 degrees C or diluted in Kenney or INRA82 extenders and then stored at 4 degrees C for 24h, until insemination. In experiment 2, semen from two stallions was extended in INRA96 then inseminated immediately or stored at 15 degrees C for 3 days until insemination. In experiment 3, semen from three stallions was diluted in INRA96 then stored at 15 or 4 degrees C for 24h until insemination, finally, in experiment 4, split ejaculates from four stallions were diluted in INRA96 or E-Z Mixin extenders then stored at 4 degrees C for 24h until insemination. Experiment 1 demonstrated that at 15 degrees C, INRA96 extender significantly improved pregnancy rate per cycle compared to Kenney or INRA82 extenders at 4 degrees C after 24h of storage (57%, n=178 versus 40%, n=171, respectively; P<0.01). Experiment 2 showed that semen stored at 15 degrees C for 3 days can achieve pregnancy at a fertility rate per cycle of 48% (n=52) compared to 68% (n=50, immediate insemination, P=0.06). Experiment 3 demonstrated that INRA96 extender can be as efficient at 15 degrees C (54%, n=37) as at 4 degrees C (54%, n=35) after 24h of storage. Finally, experiment 4 showed that INRA96 extender used at 4 degrees C (59%, n=39) seems to improve fertility per cycle compared to E-Z Mixin at 4 degrees C (49%, n=39, P=0.25), but this result has to be confirmed.These results demonstrate that semen diluted in INRA96 extender and stored at 15 degrees C can be an alternative to semen diluted in milk-based extenders and stored at 4 degrees C for "poor cooler" stallions. Furthermore, INRA96 extender can be as efficient at 15 degrees C as at 4 degrees C, for preserving sperm motility and fertility.  相似文献   

2.
Three experiments were conducted to evaluate the effects of egg yolk and(or) glycerol added to a nonfat dried skim milk-glucose (NDSMG) extender on motion characteristics and fertility of stallion spermatozoa. In Experiment 1, ejaculates from each of 8 stallions were exposed to each of 4 extender treatments: 1) NDSMG, 2) NDSMG + 4% egg yolk (EY), 3) NDSMG + 4% glycerol (GL), and 4) NDSMG + 4% egg yolk + 4% glycerol (EY + GL). Samples were cooled at -0.7 degrees C/min from 37 to 20 degrees C; subsamples were then cooled at -0.05 or -0.5 degrees C/min from 20 to 5 degrees C. Percentages of motile spermatozoa (MOT) and progressively motile spermatozoa (PMOT) were determined at 6, 24 and 48 h after initiation of cooling. There was no overall effect (P > 0.05) of cooling rate. PMOT was highest (P < 0.05) for spermatozoa extended in NDSMG + GL at 48 h. At 24 and 48 h, MOT and PMOT were lowest (P < 0.05) for spermatozoa extended in NDSMG + EY. In Experiment 2, ejaculates from 8 stallions were exposed to each of 4 treatments: 1) NDSMG, 2) NDSMG + EY, 3) semen centrifuged in NDSMG and resuspended in NDSMG, and 4) semen centrifuged in NDSMG and resuspended in NDSMG + EY. Samples were cooled from 20 to 5 degrees C at each of 2 rates (-0.05, -0.5 degrees C/min). A detrimental interaction between seminal plasma and egg yolk was noted for PMOT at 6 h and for both MOT and PMOT at > or = 24 h postcooling. Experiment 3 determined if egg yolk or glycerol affected fertility. The seminal treatments were 1) NDSMG, 2) NDSMG + EY with previous removal of seminal plasma, and 3) NDSMG + GL. All samples were cooled to 5 degrees C and stored 24 h before insemination. Embryo recovery rates 7 d after ovulation were lower for mares inseminated with spermatozoa cooled in NDSMG + EY (17%, 4/24) or NDSMG + GL (13%, 3/24) extenders, than semen cooled in NDSMG (50%, 12/24). We concluded that egg yolk (with seminal plasma removal) or glycerol added to NDSMG extender did not depress MOT or PMOT of cooled stallion spermatozoa but adversely affected fertility.  相似文献   

3.
Mannose is capable of decreasing bacterial attachment to the uterine mucosa in mares. Bacteria gain entry into the mare's uterus during breeding; therefore, a practical method to deliver mannose to the uterus is to incorporate it into semen extenders. The effect of mannose on spermatozoal motility and subsequent sperm fertilizing capability is unknown. The present study evaluated progressive spermatozoal motility in semen extender formulations incorporating mannose and assessed the fertility of mares inseminated with a mannose-containing semen extender. In Experiment 1, progressive spermatozoal motility in extender mixtures containing 0 mannose (control), 25, 37 or 49 mg/mL mannose was evaluated at 20 degrees C or 5 degrees C holding temperatures for 0, 12, 24 and 48 h post-dilution. Measures were repeated three times using five stallions of proven fertility. High concentrations of mannose in the extender affected progressive motility beyond the time and temperature effects noted in the controls. Extender containing only mannose sugar (49 mg/mL) displayed an immediate depression in progressive motility compared with controls (45.5% versus 62.9%, respectively; P<0.001). The 37 mg/mL mannose extender had a less dramatic decrease in motility (P<0.05) and only after storage at 5 degrees C for > or =12h (48.7% versus 58.0%, respectively). Extender with 25 mg/mL mannose performed no differently than the control formulation under all conditions. In Experiment 2, two groups of mares (n=11 each) were inseminated with 500 x 10(6) progressively motile spermatozoa extended in a traditional skim milk (control) extender or the 37 mg/mL mannose extender preparation. A single-cycle pregnancy rate of 72% was achieved by both groups. Present data suggest that a semen extender containing up to 37 mg/mL mannose could maintain motile spermatozoa for on-farm use and 25 mg/mL mannose concentrations preserved motility during long-term cooling. Likewise, sperm extended with up to 37 mg/mL of mannose had the same fertilizing capability as sperm in traditional extender mixtures.  相似文献   

4.
In this study, we tested the hypothesis that insemination of mares with twice the recommended dose of cooled semen (2 x 10(9) spermatozoa) would result in higher pregnancy rates than insemination with a single dose (1 x 10(9) spermatozoa) or with 1 x 10(9) spermatozoa on each of 2 consecutive days. A total of 83 cycles from 61 mares was used. Mares were randomly assigned to 1 of 3 treatment groups when a 40-mm follicle was detected by palpation and ultrasonography. Mares in Group 1 were inseminated with 1 x 10(9) progressively motile spermatozoa that had been cooled in a passive cooling unit to 5 degrees C and stored for 24 h. A second aliquot of semen from the same collection was stored for an additional 24 h and inseminated at 48 h after collection. Mares in Group 2 were inseminated once with 1 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. Group 3 mares were inseminated once with 2 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. All mares were given 2500 IU i.v. hCG at the first insemination. Pregnancy was determined by ultrasonography 12, 14 and 16 d after ovulation. On Day 16, mares were administered i.m. 10 mg of PGF2 alpha and, upon returning to estrus, were randomly reassigned to a group for repeated treatment. Semen was collected from one of 3 stallions every 3 d; mares with a 40-mm ovarian follicle were inseminated with semen from the stallion collected on the preceding day. Semen was allocated into doses containing 1 x 10(9) progressively motile spermatozoa, diluted with dried skim milk-glucose extender to a concentration of 25 x 10(6) motile spermatozoa/ml (total volume 40 ml), placed in a passive cooling unit and cooled to 5 degrees C for 24 or 48 h. Response was measured by number of mares showing pregnancy. Data were analyzed by Chi square. Mares inseminated twice with 1 x 10(9) progressively motile spermatozoa on each of two consecutive days had a higher pregnancy rate (16/25, 64%; P < 0.05) than mares inseminated once with 1 x 10(9) progressively motile spermatozoa (9/29, 31%) or those inseminated once with 2 x 10(9) progressively motile spermatozoa (12/29, 41%). Pregnancy rates did not differ significantly (P > 0.10) among stallions (69, 34 and 32%). Interval from last insemination to ovulation was 0.9, 2.0 and 2.0 d for mares in Groups 1, 2 and 3, respectively. Based on these results, the optimal insemination regimen is a dose of 1 x 10(9) progressively motile spermatozoa given on two consecutive days. However, a shorter interval (< or = 24 h rather than > 0.9 d) between insemination and ovulation may affect pregnancy rates, and needs to be investigated.  相似文献   

5.
The use of chilled-stored stallion semen is limited by its relatively short-term fertilizing capacity. An important reason for the decrease in fertility during storage is the peroxidation of sperm membrane lipids. In this study, effects of the antioxidants ascorbic acid (0.45 and 0.9 g/L) and catalase (0.45 x 10(6) and 1.8 x 10(6) units/L) on chilled-stored stallion semen were investigated. Semen was collected by artificial vagina from 7 stallions and was diluted with skim milk extender or glycin extender. Sperm motility and membrane integrity were investigated after dilution and after 24, 48 and 72 h at 5 degrees C. Ascorbic acid significantly increased the percentage of membrane-intact spermatozoa at 24, 48 and 72 h at 5 degrees C when compared with that of the controls (P < 0.05), irrespective of the extender. Ascorbic acid decreased the percentage of progressively motile spermatozoa (P < 0.05) at a concentration of 0.9 g/L in glycin extender. Catalase decreased (P < 0.05) progressively motile spermatozoa after 24, 48 and 72 h at 5 degrees C in skim milk extender at a concentration of 1.8 x 10(6) units/L. Catalase decreased (P < 0.05) the percentage of membrane-intact spermatozoa at 24 h. Motility and membrane integrity of spermatozoa after dilution with glycin extender containing catalase did not differ from the controls. In conclusion, ascorbic acid has protective effects on sperm membrane integrity in diluted stallion semen.  相似文献   

6.
A breeding trial was conducted to evaluate the effect of in vitro storage time and temperature on fertilizing capacity of equine spermatozoa. Semen obtained from one stallion and diluted with skim milk-glucose extender was used to artificially inseminate 45 estrussynchronized mares. The mares were assigned to one of three treatment groups (15 mares per group): 1) insemination with fresh semen (collected within 0.5 h of use), 2) insemination with semen stored for 24 h at 20 degrees C or 3) insemination with semen stored for 24 h at 5 degrees C. The mares were inseminated daily during estrus, from the detection of a 35-mm follicle until ovulation, with 250 x 10(6) progressively motile spermatozoa (based on initial sperm motility of fresh semen). Semen samples (n = 35) were evaluated prior to insemination for percentages of total sperm motility (TSM), progressive sperm motility (PSM) and sperm velocity (SV). Single-cycle 15-d pregnancy rates. resulting from insemination with fresh semen, from fresh semen stored for 24 h at 20 degrees C or from semen stored for 24 h at 5 degrees C were the same (11 15 ; 73%). Mean diameters (mm) of 15-d embryonic vesicles were not different (P>0.05) among these three treatment groups (21.5 +/- 2.9, 19.6 +/- 2.6 and 20.5 +/- 3.6, respectively). Ten pregnant mares were aborted on Day 15 of gestation for use in another project. The pregnancy status of the 23 remaining pregnant mares was again determined at 35 to 40 d and 55 to 60 d of gestation. No pregnancy losses occurred during this time period. Mean TSM percentages were different (P<0.05) among the three groups: the fresh semen percentage was 89 +/- 2, semen stored for 24 h at 20 degrees C was 57 +/- 11 and semen stored for 24 h at 5 degrees C was 80 +/- 6. Similar differences were found for mean PSM and SV. Semen storage at either 20 or 5 degrees C for 24 h had no apparent effect on the fertilizing capacity of the extended semen samples; however, the reduction in all motility parameters tested was more dramatic in semen stored at 20 degrees C than that stored at 5 degrees C.  相似文献   

7.
Uterine secretion was collected from five normal mares during estrus by the use of a tampon. In subsequent estrus cycles, mares were inseminated with 1 x 10(9) spermatozoa from a stallion of known fertility, and uterine secretion was collected randomly at 6, 12, and 24 hours after insemination. All mares had negative endometrial cytology before insemination. At the time of uterine secretion sampling, semen was collected from two stallions and extended with Kenney's extender to a concentration of 50 x 10(6) spermatozoa/mL. Extended semen was diluted 2:1 with uterine secretion; semen extender; and centrifuged uterine secretion (noncellular). Samples were kept at room temperature and sperm motion characteristics (corrected motility (CMOT), progressively motile spermatozoa (PMS), and mean path velocity (MPV) were evaluated using a computer-assisted semen analyzer every 40 minutes for a total of 4 hours. Sperm motion characteristics of spermatozoa were significantly better when incubated in semen extender compared to uterine secretion (P < 0.05). The CMOT and PMS were significantly better in uterine secretion collected before, compared to after AI with the lowest values observed in samples collected at 12 hours after breeding (P < 0.05). Sperm motion characteristics of spermatozoa incubated in centrifuged uterine secretion was only slightly suppressed compared to spermatozoa incubated in semen extender, suggesting that the altered motion characteristics were mostly due to the presence of polymorphonuclear neutrophils (PMNs) in the samples. It was concluded from this study that spermatozoa can survive in inflamed uterine secretion, but that sperm motion characteristics in vitro are altered.  相似文献   

8.
This study was done to determine the effects of processing techniques on the quality of semen from Dutch AI-bucks with the view on improving pregnancy rates after artificial insemination (AI) with liquid or frozen-thawed semen. Motility of spermatozoa was estimated under a microscope whereas the percentage live spermatozoa and the percentage live spermatozoa with intact acrosomes were determined by means of flow cytometry. Aspects of semen processing that were investigated are storage temperature of liquid semen (i), the effect of glycerol on liquid-stored semen (ii), removal of seminal plasma (iii) and type of extender (iv). The correlation between semen quality and fertility rates in inseminated does was also investigated. The percentage motile spermatozoa in semen stored in liquid form for 72 h progressively declined over time, irrespective of whether storage occurred at 4 or 18 degrees C. The percentage motile spermatozoa in semen stored at 18 degrees C was similar to that in semen stored at 4 degrees C if stored for 24 h but lower if stored for 48 h. Goats differ in the sensitivity of their spermatozoa to the deleterious effects of glycerol. Neither the removal of seminal plasma nor the type of extender had any effect on semen quality before freezing but semen frozen in a Tris-citric acid-glucose (TCG) buffer with egg yolk without removal of the seminal plasma had better quality after thawing than semen frozen in another diluent or after removal of seminal plasma. Remarkably no significant correlation between fertility and membrane integrity of spermatozoa could be found. Thus, although integrity assays for spermatozoa are useful to asses resistance to semen handling, the validity of these assays for predicting fertility is questioned.  相似文献   

9.
The sperm-rich fraction of stallion semen was collected in an AV and, after dilution in an extender, was cooled to 2--5 degrees C before placing in aluminium tubes for freezing in liquid nitrogen for several hours or months. The spermatozoa in about 200 ejaculates from 36 stallions were examined to compare their survival time, motility and velocity before and after thawing. According to the various indices used, 20% of stallions produced spermatozoa which were unaffected, 60% partly but not seriously affected and the remainder completely inactivated. The velocity of spermatozoa decreased from 51.4 micrometers/sec in the fresh semen to 36.8 micrometers/sec in the thawed semen. The fertilizing capacity of the spermatozoa of frozen--thawed semen of 5 stallions was examined in 14 mares. In all, 65 inseminations were made and the blastocysts were recovered non-surgically from the uterus 7--9 days after ovulation. A 20% drop in blastocyst recovery occurred as the result of freezing and thawing, when the same mares were used for insemination of raw and frozen--thawed semen. The capacity to freeze sucessfully proved to be a specific characteristic of certain stallions. Degenerate blastocysts were not recovered but those resulting from artificial insemination of frozen semen were much smaller in diameter than those following insemination of raw semen.  相似文献   

10.
An insemination trial was conducted to evaluate the fertility of extended slow-cooled stallion spermatozoa stored for 70 h or 80 h at 5 to 7 degrees C before insemination. Then, 1 or 2 of the first sperm-rich fractions were collected with an open-ended vagina from 4 stallions. Semen from each stallion was diluted within 2 to 3 min after collection with a modified Kenney skim milk extender (6). The proportion of raw semen in the insemination doses was 24+/-6%. One insemination dose (25 to 50 ml) consisted of approximately 2 billion total spermatozoa. In the trial, palpation per rectum and ultrasonography of 34 mares (40 cycles) were performed every 12 h. The pregnancy rate per cycle (30-d) with semen stored for 70 h before insemination was 77% (17 cycles) and, with semen stored for 80 h, 57% (23 cycles). The difference was not statistically significant. The combined pregnancy rate per cycle was 65%. These results indicate that stallion semen can retain its fertilizing capacity for up to 80 h when collected and diluted using this procedure and when the inseminations are done less than 12 h after ovulation.  相似文献   

11.
Different insemination doses have been used for artificial insemination(AI) in horses. Since the insemination dose can affect the pregnancy rate, it is important to ensure that an adequate dose be used regardless of the type of inseminationprotocol used. The aim of this study was to find out if it is possible to decrease the insemination dose from 500 x 10(6) progressively motile spermatozoa to 300 x 10(6) progressively motile spermatozoa and still maintain an acceptable pregnancy rate when using extended fresh semen. Thirteen stallions of known fertility and a well-defined group of 64 mares were used in the study. The mares were randomly assigned to 1 of 2 insemination groups. Examination for pregnancy was performed by ultrasonography per rectum approximately 16 d after the last insemination. When using an insemination dose of 300 x 10(6) progressively motile spermatozoa the pregnancy rate per cycle was 75%. With an insemination dose of 500 x 10(6) progressively motile spermatozoa the pregnancy rate per cycle was 64%. There was no significant difference in the pregnancy rate between the 2 insemination doses (P = 0.341). We conclude that when using fresh extended semen it is unlikely that an insemination dose of 300 x 10(6) progressively motile spermatozoa would yield a lower pregnancy rate than a dose of 500 x 10(6) progressively motile spermatozoa if stallions with good quality semen are selected.  相似文献   

12.
Stallion spermatozoa were cryopreserved in different extenders, and the correlations between laboratory assay results and sperm fertility were determined. Spermatozoa were cryopreserved in 1) a skim milk-egg yolk medium (CO); 2) a skim milk-egg yolk-sugar medium (SMEY); 3) CO after pretreatment with phosphatidylserine+cholesterol liposomes (CO + L); or 4) cooled to 5 degrees C without cryopreservation. The per cycle embryo recovery rates for mares inseminated with spermatozoa frozen in CO, SMEY, CO + L and spermatozoa cooled to 5 degrees C were 47, 42, 45 and 37%, respectively (P>0.05). The fertility rates of the 5 stallions used were 72, 71, 29, 25 and 16%, respectively (P<0.05). The percentage of motile spermatozoa immediately after thawing (42 to 47%) and after preparation for zona-free hamster oocyte penetration assays (27 to 35%) were not different across treatments (P>0.05). The percentages of motile spermatozoa after cryopreservation were not different across stallions (52 to 58%) initially but were different when spermatozoa were treated with 35 microM dilauroylphosphatidylcholine (PC12) to induce the acrosome reaction (17 to 42%; P<0.05). The percentages of viable spermatozoa and viable acrosome-intact spermatozoa ranged from 30 to 57% and 27 to 48%, respectively, across stallions. The percentages of penetrated hamster oocytes ranged from 19% to 55% and from 24% to 72% when spermatozoa were treated with 35 microM and 50 microM PC12, respectively. The number of spermatozoa penetrating each oocyte ranged from 0.21 to 1.16 sperm/oocyte and from 0.37 to 1.59 sperm/oocyte when spermatozoa were treated with 35 microM and 50 microM PC12, respectively. Analyses of single sperm parameters were not highly correlated with stallion fertility. However, a model utilizing data from flow cytometric analyses (percentage of viable spermatozoa), the percentage of motile spermatozoa, and hamster oocyte penetration (percentage of penetrated hamster oocytes) was highly correlated with stallion fertility (r = 0.85; P = 0.002).  相似文献   

13.
In the procedure used in this paper, semen was first diluted in INRA82+2% egg yolk (E1) at 37 degrees C. Before or after cooling to 4 degrees C, semen was centrifuged and diluted in E1+2.5% glycerol (E2). Cooled semen was frozen in 0.5-ml straws. Straws were thawed at 37 degrees C for 30s. For fertility trials, frozen ejaculates were used only if total post-thaw motility was above 35%. Most mares were inseminated two times before ovulation with 400 x 10(6) total spermatozoa every 24h. This paper presents post-thaw motility (CASA) and fertility results obtained when some steps of the procedure were evaluated.Use of the first three jets of ejaculate before the centrifugation did not improve post-thaw motility compared to use of the whole semen (25% versus 25%, 2 stallions x 12 ejaculates, P>0.80). When the first dilution was performed in E2 at 22 degrees C instead of in E1 at 37 degrees C, motility was slightly improved (38% versus 36%, n>283 ejaculates per group, P<0.04) but fertility was similar (51% versus 58%, n>196 cycles per group, P>0.10). Coating the spermatozoa with 0.5, 1, 2, 4 and 8mM of Concanavalin A resulted in unchanged post-thaw motility (6 stallions x 3 ejaculates, P>0.05). The extender E2 was modified or supplemented with different substances. Increasing egg yolk concentration from 2 to 4% (v/v) did not increase post-thaw motility (42% versus 34%, 6 stallions x 2 ejaculates, P>0.05). Different glycerol concentrations (range: 1.7-3.7%) had no significant effect on post-thaw motility even though 2.4-2.8% resulted in a nonsignificant higher motility (7 stallions x 2 ejaculates, P>0.05). Glutamine at 50mM in E2 improved post-thaw motility compared with no glutamine (49% versus 46%, n>584 ejaculates per group, P<0.0001) but not fertility (53% versus 54%, n>451 cycles per group, P>0.80). Thawing at 75 degrees C for 10s slightly increased motility after 120 min at 37 degrees C (6 stallions x 1 ejaculate, P<0.05) but no effect on per-cycle fertility was noted (32% (19 cycles) versus 41% (17 cycles), P>0.50). When post-thaw dilution was performed using a fixed molarity multi-step system (25 mOsm per step) from various osmolarities (900-690 mOsm) to 365 mOsm, motility was unaffected compared with dilution in one step (36% versus 38%, 6 stallions x 1 ejaculate, P>0.20).  相似文献   

14.
The fertility of frozen-thawed and fresh semen from three stallions was compared in a trial using a randomized block design and 90 mares for 108 cycles. Semen was collected every third day, diluted to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium, and centrifuged. The cells were resuspended at 700 x 10(6) progressively motile sperm/1.0 ml of added lactose-EDTA-egg yolk extender containing 4% glycerol, packaged by placing 0.55 ml into polypropylene straws, and frozen. Semen was thawed by immersion in 75 degrees C water for 10 sec. All of the 43 ejaculates collected were frozen, but 21 were discarded because progressive sperm motility was <35% immediately after thawing or <40% after 30 min of incubation at 37 degrees C. semen from the same stallions was collected daily for inseminations with fresh semen. Semen containing 200 x 10(6) progressively motile sperm was added to 10 ml of heated skimmilk extender. Mares were inseminated daily starting on the third day of estrus or when a >/=4-cm follicle was detected, whichever came later, and continuing through the end of estrus or for nine days. Based on palpation per rectum on day 50 postovulation, the pregnancy rates from inseminations during one estrus were 50, 56 and 61% with frozen semen and 67, 67 and 61% with fresh semen (P>0.05) from the three stallions, respectively. Thus, mean pregnancy rate with frozen semen was 86% of the rate attained with fresh semen.  相似文献   

15.
Results on procedures for freezing stallion semen and the subsequent fertility during 20 years are presented. The present system applied in French National Stud includes: (1) a freezing protocol (dilution in milk, centrifugation and addition of freezing extender (INRA82+egg yolk (2%, v/v)+glycerol (2.5%, v/v) at 22 degrees C, a moderate cooling rate to 4 degrees C and freezing at -60 degrees C/min in 0.5-ml straws); (2) selection of ejaculates showing post-thaw rapid motility >35%; and (3) an insemination protocol (mares examined once daily, two AI of 400 x 10(6) spermatozoa 24 h apart before ovulation, sufficient number of straws to have the possibility to perform six AI of 400 x 10(6) total spermatozoa, i.e. 2.4 x 10(9) total spermatozoa available per mare per season). This system was applied to >110 stallions per year, the average post-thaw motility of ejaculates was 50% (>1800 ejaculates) before selection. The semen freezability was defined as the number of selected ejaculates divided by the total number of ejaculates frozen. Of the stallions, 5, 4, 5, 21 and 64% had semen freezability of 0-10, 10-33, 33-60, 60-90 and over 90%, respectively. Per-cycle pregnancy rate was 45-48% (>1500 mares per year, 1.8 cycles per mare) and foaling rate 64%. In comparison, per-cycle pregnancy rate and foaling rate of mares hand-mated to stallions were 57-59% and 64%, respectively. The average number of straws used was 32-35 (1.75 x 10(9) total spermatozoa) per mare per season. According to our results and the literature, the most important factors for improving fertility of frozen equine semen include: (1) a low concentration of glycerol (2-3.5% final concentration); (2) a suitable base extender for freezing like Lactose-Glucose EDTA or INRA82; (3) a post-thaw motility >30-35%; and (4) a sufficient number of spermatozoa per mare per season (1.5-2 x 10(9) total spermatozoa for two to three cycles) divided into small units. Numbers of spermatozoa, lower than 750.10(6) total spermatozoa per cycle, could result in lower per-cycle pregnancy rate with higher additional costs for management of mares. Because there are no particular regulations on quality and quantity of equine semen in the European Community, there is a need for the uniformity of information about frozen semen. A codification is suggested, based on the number of spermatozoa available per mare per season, the post-thaw motility and the final glycerol concentration.  相似文献   

16.
A breeding trial was conducted to determine if a semen extender containing polymixin-B sulfate would improve the fertility of a stallion with seminal vesiculitis due to Pseudomonas aeruginosa . Twenty-three mares were bred to the stallion by one of three methods: artificial insemination with raw semen (Group 1, n = 10), artificial insemination with semen mixed 1:1 with a nonfat dry skim milk/glucose extender containing 1000 units/ml polymixin-B sulfate (Group 2, n = 9), or natural service immediately following infusion of the uterus with 100 ml of the same extender (Group 3, n = 4). Artificial breedings contained a minimum insemination dose of 500 x 10(6) progressively motile spermatozoa. All mares were bred every other day while in estrus. Pregnancy status was determined by transrectal ultrasound examination 15 d after the last breeding. First-cycle pregnancy rate for Group 2 mares (78%) was greater (P < 0.01) than for Group 1 mares (10%). There was a tendency (P = 0.10) for the pregnancy rate of Group 3 mares (50%) to be greater than Group 1 mares. The use of a semen extender containing polymixin-B sulfate improved the fertility of this stallion.  相似文献   

17.
We conducted two studies to improve preservation of rabbit semen. The objective of the first study was determine whether a glucose- and fructose-based extender with two different amounts of gelatin would solidify at 15 degrees C, and to evaluate the influence of gelatin supplementation on sperm motility parameters after storing semen up to 10 days at 15 degrees C. The fertility of rabbit semen diluted in the best gelatin-supplemented extender established in Study 1 and stored for up to 5 days was evaluated in the second study. In Study 1, semen was collected with an artificial vagina from 40 bucks. Each ejaculate was diluted to (80-100) x 10(6) spermatozoa/mL (1:3, semen/extender) at 37 degrees C in one of the three following glucose- and fructose-based extenders: control (standard liquid extender), semi-gel or gel (0.7 or 1.4 g gelatin in 100 mL extender, respectively). Pools of semen were allocated among 0.6 mL plastic artificial insemination (AI) guns. Thirty (10 per extender group) AI doses were immediately analyzed (0 h) and the remainder stored in a refrigerator (15 degrees C) for 12, 24, 36, 48, 72, 96, or 240 h. All doses with gelatin extenders solidified at 15 degrees C. Semen samples, prewarmed to 37 degrees C, were evaluated with a computer-assisted sperm analysis (CASA) system. The percentage of motile cells was significantly lower using the liquid compared to the gel extenders during semen storage from 0 to 96 h. Although significance was lost, these differences persisted after 240 h of storage. Motility of spermatozoa in the semi-gel extender was intermediate between that of liquid and gel extender throughout the study. Study 2 was performed on 1250 multiparous lactating does. Five homogeneous groups of 250 does previously synchronized were inseminated using semen previously stored for 120, 96, 72, 48 or 24 h, respectively. Rabbit does receiving 24 h-stored semen (diluted with the control extender used in Study 1) served as controls. The remaining females received seminal doses supplemented with 1.4 g/100mL gelatin (gel extender used in Study 1). Kindling rates for rabbit does inseminated with gelatin-supplemented (solid) semen doses stored for 48 h (88%) or 72 h (83%) were similar to those recorded for liquid controls stored for 24 h (81%), whereas rates significantly decreased when the semen was solid and stored for 96 h (64%) or 120 h (60%) before AI. In conclusion, rabbit spermatozoa were effectively stored in the solid state at 15 degrees C, with fertility preserved for up to 5 days. Solid storage of rabbit semen would facilitate commercial distribution.  相似文献   

18.
The fertility of frozen-thawed and fresh semen from each of three stallions was compared in an experiment with a randomized block design using 128 mares. Semen was collected every third day, extended in lactose-EDTA-egg yolk extender at a concentration of 500 × 106 progressively motile sperm per 1.0 ml, and frozen in individual-dose, 1.0-ml straws (1.9 mm × 267 mm). The same stallions were collected daily for inseminations with fresh semen. For each insemination dose with fresh semen, 300 × 106 progressively motile sperm were added to 10 ml of heated skim milk extender. Mares were inseminated daily from the second day of estrus through the end of estrus. Of 52 ejaculates processed and frozen, 38% were discarded because < 35% of the sperm were progressively motile after thawing. Based on rectal palpations on day 50 post-ovulation, pregnancy rates for inseminations during one estrus to semen from the three stallions were 17, 33 and 35% for frozen-thawed semen and 60, 62 and 64% for fresh semen. Pregnancy rates with frozen semen from two of the three stallions were 54% of the rates attained with fresh semen.  相似文献   

19.
A problem of semen extenders based on milk or egg yolk is the fact that these biological products consist of a variety of substances. Extenders containing only components with clearly protective effects on spermatozoa would thus be an advantage. In this study, we have compared the effects of an extender containing defined caseinates and whey proteins only (EquiPro, defined milk protein extender) with skim milk extender on equine spermatozoa during cooled storage. The defined milk protein extender was used with and without the antioxidant N-acetyl cysteine (NAC). In a second experiment, semen was diluted with PBS or defined milk protein extender and was either stored directly or 90% of seminal plasma was removed by centrifugation and replaced by defined milk protein extender before storage. In both experiments, eight stallions were available for semen collections. Motility, velocity and membrane integrity of spermatozoa were determined by CASA immediately after semen processing and after 24, 48 and 72 h of storage at 5 degrees C. Total motility after 24 h of storage was lowest in semen diluted with PBS (p<0.05 versus all extenders). At 48 and 72 h, motility of spermatozoa in defined milk protein extender was significantly (p<0.05) higher than in PBS or skim milk extender. Velocity of spermatozoa after storage was highest in defined milk protein extender. Membrane integrity after storage was significantly (p<0.05) lower in semen diluted with PBS than in semen diluted with both extenders. Addition of NAC was without effect on the examined parameters. Centrifugation further increased the percentage of motile and membrane-intact spermatozoa in the defined milk protein extender (p<0.05). Velocity of spermatozoa in this extender was not negatively affected by centrifugation.  相似文献   

20.
The freezability of stallion semen defined as the number of selected ejaculates/total number of ejaculates frozen from 161 different stallions was analyzed. Of the stallions, 19, 30, 27 and 24% had a freezability of 0%, 0 to 33%, 33 to 66%, over 66%, respectively In 85 different stallions, the correlation of freezability between first and second year was 0.60 (P < 0.001). The relationship between fertility with fresh and frozen semen and freezability was analyzed in 40 stallions whose freezability and fertility information was recorded during 5 years. There was a strong relationship between fertility of fresh semen and semen freezability (P < 0.001). However, the relationship between fertility of frozen semen and freezability was not as marked (P < 0.05). Analysis of the field fertility per cycle results when mares were bred with 300 or 150 x 10(6) total spermatozoa at different frequencies until ovulation indicated that mares that were inseminated 2 times or more per estrus show an improved fertility in comparison with mares inseminated only once (34%, n = 1576 vs 26%, n = 626; P < 0.001). Foaling rate when mares were inseminated with frozen semen (1858 mares during 8 breeding seasons) was mainly influenced by mare age (< 16 years: 54% vs >/= 16 years 42% p < 0.001). Date of first insemination (before May 15: 58% vs after May 15: 37%) also had a significant effect on foaling rate (P < 0.001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号