首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cytochemical localization of blood group ABH antigens was examined in secretory cells of human cervical glands by application of a post-embedding lectin-gold as well as immuno-gold labeling procedure using monoclonal antibodies. Blood group specific lectins such as Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) and Ulex europaeus agglutinin-I (UEA-I) reacted with secretory granules but not with other cytoplasmic organellae such as nucleus and cell membrane. The reactivity of secretory granules with these lectins showed strict dependence on the blood group and secretor status of tissue donors. The binding patterns with these lectins were not homogeneous, but exhibited marked cellular and subcellular heterogeneity. Thus, for example, in blood group A individuals, some granules were stained strongly with DBA and others were weakly or not at all with the lectin. Such a heterogenous labeling with the lectin was observed even in the same cells. Similar results were obtained with UEA-I and GSAI-B4 staining in blood group O and B secretor individuals, respectively. Monoclonal antibodies likewise reacted specifically with the granules but they occasionally bound to some nucleus. The labeling pattern of the antibodies with the granules was essentially the same as those of lectins. However, difference was also observed between monoclonal antibody and lectin staining, that is, monoclonal anti-A antibody reacted weakly but consistently with granules from blood group A nonsecretors but DBA (HPA) did not; staining with UEA-I was observed in granules from the secretor individuals of any blood groups whereas monoclonal anti-H antibody reacted with granules from blood group O and some A secretor individuals but not from B and AB secretor individuals; GSAI-B4 reacted uniformly with granules throughout the cells whereas monoclonal anti-B antibody bound to limited number of granules in the same cells. This was confirmed by the double labeling experiments with the lectin and the antibody. These results suggest that the different types of antigens as to the binding ability for monoclonal antibodies and lectins are expressed on different granules in the same cell.  相似文献   

2.
Y Okamura 《Histochemistry》1990,94(5):489-496
Cytochemical localization of blood group ABH antigens was examined in secretory cells of human cervical glands by application of a post-embedding lectin-gold as well as immuno-gold labeling procedure using monoclonal antibodies. Blood group specific lectins such as Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) and Ulex europaeus agglutinin-I (UEA-I) reacted with secretory granules but not with other cytoplasmic organellae such as nucleus and cell membrane. The reactivity of secretory granules with these lectins showed strict dependence on the blood group and secretor status of tissue donors. The binding patterns with these lectins were not homogeneous, but exhibited marked cellular and subcellular heterogeneity. Thus, for example, in blood group A individuals, some granules were stained strongly with DBA and others were weakly or not at all with the lectin. Such a heterogenous labeling with the lectin was observed even in the same cells. Similar results were obtained with UEA-I and GSAI-B4 staining in blood group O and B secretor individuals, respectively. Monoclonal antibodies likewise reacted specifically with the granules but they occasionally bound to some nucleus. The labeling pattern of the antibodies with the granules was essentially the same as those of lectins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We investigated localization of blood group antigens and their related substances in human labial salivary and submandibular glands by application of a post-embedding cytochemical staining procedure using lectin- or glycoprotein-gold complexes. Surgical tissue was obtained from 10 patients. Blood group-specific lectins, such as Dolichos biflorus agglutinin or Helix pomatia agglutinin (group A-specific), Griffonia simplicifolia agglutinin-I B4 (group B-specific), and Ulex europaeus agglutinin I (group H-specific) could recognize A, B, and H antigens, respectively, only in mature secretory granules (mature SG), which were found preferentially in cells in the late phase of the maturation cycle. In immature secretory granules (immature SG), which were found in cells in the early or middle phase of the maturation cycle, no binding with these lectins was observed. The Golgi complexes and endoplasmic reticula also were not labeled with these lectins. In blood group O and B secretors, blood group antigens were uniformly distributed throughout all the mature SG examined. However, in blood group A secretors, the distribution was heterogeneous, i.e., in some granules only H antigen was demonstrated, whereas in others both A antigens and a small amount of H antigens were detected. Among the blood group-nonspecific lectins, wheat germ agglutinin (WGA) was found to bind more preferentially to immature SG than to mature SG. This was demonstrated irrespective of the blood group and secretor status of the tissue donor, except that in blood group A secretors WGA bound strongly to some mature SG which possessed A antigen. We discuss the significance of cellular and subcellular mosaic distribution of blood group antigens in connection with morphological differences of secretory granules and the maturation cycle of mucous cells.  相似文献   

4.
Summary Eleven different fluorescent lectin-conjugates were used to reveal the location of carbohydrate residues in frozen sections of the anterior segment of bovine eyes. The lectins were specific for the following five major carbohydrate groups: (1) glucose/mannose group (Concanavalin A (Con A)); (2)N-acetylglucosamine group (wheat germ agglutinin (WGA)); (3) galactose/N-acetylgalactosamine group (Dolichos biflorus agglutinin (DBA),Helix pomatia agglutinin (HPA),Helix aspersa agglutinin (HAA),Psophocarpus tetragonolobus agglutinin (PTA),Griffonia simplicifolia agglutinin-I-B4 (GSA-I-B4),Artocarpus integrifolia agglutinin (JAC), peanut agglutinin (PNA) andRicinus communis agglutinin (RCA-I)); (4)l-fucose group (Ukex europaeus agglutinin (UEA-I)); (5) sialic acid group (wheat germ agglutinin (WGA)). All the studied lectins except UEA-I reacted widely with different structures and the results suggest that there are distinct patterns of expression of carbohydrate residues in the anterior segment of the bovine eye. UEA-I bound only to epithelial structures. Some of the lectins reacted very intensely with apical cell surfaces of conjunctival and corneal epithelia suggesting a different glycosylation at the glycocalyx of the epithelia. Also, the binding patterns of conjunctival and corneal epithelia differed with some of the lectins: PNA and RCA-I did not bind at all, and GSA-I-B4 bound only very weakly to the epithelium of the cornea, whereas they bound to the epithelium of the conjunctiva. In addition, HPA, HAA, PNA and WGA did not bind to the corneal basement membrane, but bound to the conjunctiva and vascular basement membranes. This suggests that corneal basement membrane is somehow different from other basement membranes. Lectins with the same carbohydrate specificity (DBA, HPA, HAA and PTA) reacted with the sections almost identically, but some differences were noticed: DBA did not bind to the basement membrane of the conjunctiva and the sclera and did bind to the basement membrane of the cornea, whereas other lectins with same carbohydrate specificities reacted vice versa. Also, the binding of PTA to the trabecular meshwork was negligible, whereas other lectins with the same carbohydrate specificities reacted with the trabecular meshwork. GSA-I-B4 reacted avidly with the endothelium of blood vessels and did not bind to the stroma, so that it made blood vessels very prominent and it might be used as an endothelial marker. This lectin also reacted avidly with the corneal endothelium. Therefore, GSA-I-B4 appears to be a specific marker in bovine tissues for both blood vessel and corneal endothelium cells.  相似文献   

5.
Summary Lectin histochemical study was performed on twenty-eight specimens of formalin-fixed paraffin embedded tissues of proximal duodenum from human, cat, dog and Rhesus (macaque) monkey to demonstrate the pattern of carbohydrate residues in submucosal glands of Brunner as compared to that of the duodenal absorptive and goblet cells. Ten different biotinylated lectins were used as probes, and avidin-biotin-peroxidase (ABC) or avidin-gold-silver (AGS) complexes were used as visualants. Brunner's gland cells of the four species studied exhibited a similar lectin-binding pattern which differ from other duodenal cells. The epithelium of Brunner's gland stained intensely with Ricinus communis agglutinin-I (RCA-I), succinylated-WGA (S-WGA) and wheat-germ agglutinin (WGA), moderately with Bandeirea simplicifolia agglutinin-I (BS-I), Concanavalia ensiformis agglutinin (Con A) peanut agglutinin (PNA) and Ulex europaeus agglutinin-I (UEA-I) and occasionally with Dolichos biflorus agglutinin (DBA), Lens culinaris agglutinin (LCA) and soybean agglutinin (SBA). Desialylation with neuraminidase resulted in only a slight elevation in binding intensities of PNA, DBA and SBA, indicating that glycoconjugates of the Brunner's gland cells are rich in asialo-oligosaccharides, which differs from duodenal epithelial cells. In addition, these histochemical reagents were useful in localizing Brunner's gland elements in the duodenal mucosa.  相似文献   

6.
Lectin histochemical study was performed on twenty-eight specimens of formalin-fixed paraffin embedded tissues of proximal duodenum from human, cat, dog and Rhesus (macaque) monkey to demonstrate the pattern of carbohydrate residues in submucosal glands of Brunner as compared to that of the duodenal absorptive and goblet cells. Ten different biotinylated lectins were used as probes, and avidin-biotin-peroxidase (ABC) or avidin-gold-silver (AGS) complexes were used as "visualants". Brunner's gland cells of the four species studied exhibited a similar lectin-binding pattern which differ from other duodenal cells. The epithelium of Brunner's gland stained intensely with Ricinus communis agglutinin-I (RCA-I), succinylated-WGA (S-WGA) and wheat-germ agglutinin (WGA), moderately with Bandeirea simplicifolia agglutinin-I (BS-I), Concanavalia ensiformis agglutinin (Con A) peanut agglutinin (PNA) and Ulex europaeus agglutinin-I (UEA-I) and occasionally with Dolichos biflorus agglutinin (DBA), Lens culinaris agglutinin (LCA) and soybean agglutinin (SBA). Desialylation with neuraminidase resulted in only a slight elevation in binding intensities of PNA, DBA and SBA, indicating that glycoconjugates of the Brunner's gland cells are rich in asialo-oligosaccharides, which differs from duodenal epithelial cells. In addition, these histochemical reagents were useful in localizing Brunner's gland elements in the duodenal mucosa.  相似文献   

7.
Summary The reactivity was examined of horseradish peroxidase labelledUlex europaeus agglutinin-I (UEA-I) andGriffonia simplicifolia agglutinin I-B4 (GSAI-B4) with red blood cells and vascular endothelium in formalin-fixed, paraffin embedded tissues from 18 primate species. The expression of blood group ABH antigens in these cells as well as secretions from other tissues was also examined by the indirect immunoperoxidase method using monoclonal anti-ABH antibodies as primary antibodies. In Prosimians and New World monkeys which lack ABH antigens on both red blood cells and endothelial cells, but produce these antigens in other tissue secretions, GSAI-B4 always reacted with both red blood cells and endothelial cells. In Old World monkeys, which express blood group antigens on endothelial cells but not on red blood cells, neither GSAI-B4 nor UEA-I reactivity were observed, except the endothelial cells from blood group B or O individuals occasionally reacted with GSAI-B4 or UEA-I, respectively. Although UEA-I reactivity was not observed in the endothelial cells of gibbon, it reacted with these cells from chimpanzees. In these two anthropoid apes, both endothelial cells and red blood cells expressed ABH antigens as in humans. These results suggest the close evolutionary relationship between the expression of blood group ABH antigens and lectin binding properties of red blood cells and endothelial cells in primate species.  相似文献   

8.
The hemagglutinating activity of Biomphalaria glabrata hemolymph was examined with different erythrocyte samples of several human donors. The agglutinin was not specific for the ABO blood group antigens of man. In further tests, the hemolymph was investigated for soluble inhibitors of anti-human blood group agglutinins. An inhibition was observed with respect to human anti-A and anti-B isoagglutinins as well as to anti-P and anti-H reagents. These results were confirmed in agar-gel double diffusion tests: The hemolymph showed very strong precipitation lines with several anti-A, anti-B, and anti-H lectins of invertebrate and plant origins. Some of the indicated blood group reactive substances were identified as glycoproteins. The role of these sugar-containing macromolecules in the relationship between Schistosoma miracidia and the intermediate host snail Biomphalaria glabrata is discussed.  相似文献   

9.
Summary Goblet cell mucin in 39 human colons was studied by methods specific for various sugar residues, including staining with three lectins,Dolichos biflorus agglutinin (DBA, specific for blood group A antigen),Griffonia simplicifolia agglutinin-I (GSA-I, B) and peanut agglutinin (PNA, T antigen), and immunostaining for A, B, H and T. Isoantigens A, B or H were found only in the right colon. GSA-I reactive goblet cells occurred in the right colon of both blood group A and B patients and possibly contained isoantigens. However DBA reactive cells were found in all cases. Prior neuraminidase digestion imparted anti-A, GSA-I and DBA reactivities to the cells lining the lower crypts in all cases. This pretreatment also imparted PNA and anti-T reactivities to goblet cells, only the latter reactivity being eliminated by galactose oxidase. Goblet cell mucin in transitional mucosa revealed decreased A and B, and increased H antigens. Enhanced galactose oxidase—Schiff (GOS) and anti-T reactivities were also noted. The present results revealed that some lectin reactions of goblet cells might be related to blood group antigens but others were not, and that different techniques for demonstrating reputedly the same sugar residues produced different results, indicating a need for proper evaluation of their specificity.  相似文献   

10.
Binding specificities of ABO blood group-recognizing lectins toward blood group antigens on neoglycoproteins, glycoproteins and complex-type oligosaccharides were studied by lectin-blotting analysis, enzyme linked immunosorbent assay and lectin-conjugated agarose column chromatography. Human serum albumin conjugated with A- and B-trisaccharides was clearly recognized by Helix pomatia (HPA), Phaseolus lunatus, Dolichos biflorus agglutinins, and Griffonia simplicifolia I agglutinin B(4), respectively. Almost the same results were obtained for human group A and B ovarian cyst and A-active hog gastric mucins, but Glycine max agglutinin only reacted to the group A hog mucin. When human plasma von Willebrand factor (vWF), having Asn-linked blood group antigens, was tested, HPA was highly sensitive to blood group A antigen on the vWF. Ulex europaeus agglutinin I (UEA-I) preferentially bound to the vWF from blood group O plasma. Within the GalNAc-recognizing lectins examined, a biantennary complex-type oligosaccharide having the blood group A structure retarded on an HPA-agarose column, and the affinity was diminished after digestion with alpha-N-acetylgalactosaminidase. This product bound to UEA-I agarose column. These results indicate that HPA and UEA-I are most sensitive for detection of glycoproteins possessing small amounts of blood group A and H antigens and also useful for fractionation of complex-type oligosaccharides with blood group A and H antigens, respectively.  相似文献   

11.
Using immunochemical and immunohistochemical methods, the binding site ofAnguilla anguilla agglutinin (AAA) was characterized and compared with the related fucose-specific lectin fromUlex europaeus (UEA-I). In solid-phase enzyme-linked immunoassays, the two lectins recognized Fuc1-2Gal-HSA. AAA additionally cross-reacted with neoglycolipids bearing lacto-N-fucopentaose (LNFP) I [H type 1] and II [Lea] and lactodifucotetraose (LDFT) as glycan moieties. UEA-I, on the other hand, bound to a LDFT-derived neoglycolipid but not to the other neoglycolipids tested. Binding of AAA to gastric mucin was competitively neutralized by Lea-specific monoclonal antibodies. UEA-I binding, on the other hand, was reduced after co-incubation with H type 2- and Ley-specific monoclonal antibodies. According to our results, AAA reacts with fucosylated type 1 chain antigens, whereas UEA-I binds only to the 1-2-fucosylated LDFT-derived neoglycolipid. In immunohistochemical studies, the reactivity of AAA and UEA-I in normal pyloric mucosa from individuals with known Lewis and secretor status was analysed. AAA showed a broad reaction in the superficial pyloric mucosa from secretors and non-secretors, but AAA reactivity was more pronounced in Le(a+b-) individuals. On the other hand, UEA-I stained the superficial pyloric mucosa only from secretor individuals. A staining of deep mucous glands by the lectins was found in all specimens. Both reacted with most human carcinomas of different origin. Slight differences in their binding pattern were observed and may be explained by the different fine-specificities of the lectins.  相似文献   

12.
Using a post-embedding immunogold labeling procedure, we found that monoclonal antibody against A (MAb-A) or B antigen (MAb-B) reacted with nuclear heterochromatin regions, as well as secretory granules, in mucous cells of human cervical glands. Systematic and critical observation of specimens from 24 individuals of different blood groups revealed that the labeling pattern with MAb with strictly dependent on the blood group (A,B, or O) of the donors, i.e., MAb-A reacted with the heterochromatin from blood group A and AB but not with B and O individuals. Labeling with MAb-B was also specific for the heterochromatin from blood group B donors. On the other hand, MAb against H antigen did not react with the heterochromatin from any individuals examined, despite the fact that H antigens were detected by the MAb in secretory granules. Such specific reactions provide evidence that certain types of blood group-related antigens exist in the nuclear heterochromatin in mucous cells of human cervical glands. In contrast to the secretory granules in which ABH antigens were recognized by blood group-specific lectin, heterochromatin regions had little or no affinity for these lectins. Furthermore, the secretory status of individuals affected the staining intensity with MAb in secretory granules but not in the heterochromatin. These results suggest that the blood group substances found in the heterochromatin may have different molecular properties from those in the secretory granules, although both have the same determinant structures of ABH antigens.  相似文献   

13.
Several studies have shown the deletion of blood group A or B antigens and the accumulation of H antigens in human breast carcinomas. Other studies have independently demonstrated that the binding sites of lectins such asHelix pomatia agglutinin (HPA) andGriffonia simplicifolia agglutinin I-B4 (GSAI-B4) are highly expressed in these cells. In order to clarify the molecular mechanisms of malignant transformation and metastasis of carcinoma cells, it is important to understand the relationship between such phenotypically distinct events. For this purpose, we examined whether the binding sites of these lectins andUlex europaeus agglutinin I (UEA-I) are expressed concomitantly in the same carcinoma cells and analyzed their backbone structures. The expression of the binding sites of these lectins was observed independently of the blood group (ABO) of the patients and was not affected by the histological type of the carcinomas. Observation of serial sections stained with these lectins revealed that the distribution of HPA binding sites was almost identical to that of GSAI-B4 in most cases. Furthermore, in some cases, UEA-I binding patterns were similar to those of HPA and GSAI-B4 but in other cases, mosaic staining patterns with these lectins were also observed, i.e., some cell clusters were stained with both HPA and GSAI-B4 but not with UEA-I and adjacent cell clusters were stained only with UEA-I. Digestion with endo-β-galactosidase orN-glycosidase F markedly reduced the staining intensity of these lectins. Together with the reduction of staining by these lectins, reactivity withGriffonia simplicifolia agglutinin II appeared in carcinoma cells following endo-β-galactosidase digestion. Among the lectins specific to poly-N-acetyllactosamine,Lycopersicon esculentum agglutinin (LEA) most vividly and consistently stained the cancer cells. Next to LEA, pokeweed mitogen agglutinin was also effective in staining these cells. Carcinoma cells reactive with these lectins corresponded well to those stained with both HPA and GSAI-B4, and in some cases, with UEA-I. These results demonstrate that the binding sites of UEA-I, HPA, and GSAI-B4 are expressed concomitantly in the same carcinoma cells and all carry linear and branched poly-N-acetyllactosamine onN-glycans, suggesting that the synthesis of this complex carbohydrate is one of the most important and basic processes leading to the malignant transformation of cells, invasion, and metastasis of carcinoma cells.  相似文献   

14.
 Although the role of the blood group antigens in the gastrointestinal tract is not well understood, alterations in blood group-related antigens have been described in some pathological processes. Thus, the knowledge of their expression under normal conditions is of special interest. Those individuals expressing their ABO blood group in exocrine epithelia and secretions are called secretors. The aim of the present study was the localization of H antigen expression in the normal human gastric epithelial cells of non-O blood group individuals. For this, a monoclonal anti-H antibody was examined by immunocytochemical methods at both the light and electron microscopic levels. In combination with enzymatic and chemical treatments, the nature of the oligosaccharide chains containing the H antigen was characterized. The selected cases were four A secretors, three A non-secretors, and three B non-secretors. The labeling of the anti-H antibody in the human stomach is described, irrespective of the blood group of the individuals. The staining was abolished when O-linked oligosaccharides were removed. Since commercially available anti-H antibodies usually also recognize other H-related antigens, the labeling of the antibody by H-related antigens cannot be dismissed. Our findings suggest the existence of H or H-related antigens in the O-linked oligosaccharides of the secretory granules of the surface, gastric pit, mucous neck, and transitional cells of the fundic mucosa, and in the intracellular canaliculi and tubulovesicular system of parietal cells. The H or H-related antigens were also localized in the apical membrane of all the cell types of the epithelial cells of the human fundic mucosa. The overall distribution of the H or H-related antigens in the stomach in non-O blood group individuals suggests the constitutive expression of an α(1,2)fucosyltransferase. Received: 24 October 1997 / Accepted: 3 March 1998  相似文献   

15.
Summary The monoclonal antibody 5-D-4 recognizes heavily sulphated forms of keratan sulphate epitope. It reacted strongly with the cell surfaces of most thyroid papillary carcinomas from all the individuals examined, independently of the blood group of the patients. Cells of follicular variants of papillary carcinomas were also labelled by 5-D-4. In contrast, no labelling with this antibody was observed in other types of thyroid neoplasms, or in normal tissues. The reactivity of 5-D-4 with papillary carcinomas was markedly reduced or abolished by prior digestion with endo-β-galactosidase keratanase II, or N-glycosidase F. Although keratanase digestion had no effect on 5-D-4 labelling, it revealed the binding sites ofGriffonia simplicifolia agglutinin II (GSA-II), which recognizes terminalN-acetylglucosamine in a limited number of carcinoma cells from some individuals. Blood group ABH antigens, which are simultaneously expressed together with keratan sulphate epitope in cancer cells, were eliminated by digestion with endo-β-galactosidase and N-glycosidase F, but were resistant to keratanase and keratanase II treatment. These results indicate that keratan sulphate oligosaccharides are cancer-associated and are probably oncofoetal antigens, as are the blood group antigens in human thyroid glands. The results suggests that poly-N-acetyllactosamine, which is ubiquitously and consistently produced in papillary carcinomas, is modified in two different ways: sulphation on the 6-position of at least some units of either galactose, orN-acetylglucosamine or both, and decoration of non-reducing termini with the blood group antigens. Along with the endo-β-galactosidase-GSA-II labelling procedure, labelling with 5-D-4 may be a useful diagnostic means for distinguishing papillary carcinoma from other types of thyroid neoplasms.  相似文献   

16.
We used three anti-H monoclonal antibodies (MAbs) specific for H Type 1, H Type 2, and H Type 3/4 antigens to investigate the distribution of H Type 1-H Type 4 chains of the ABO(H) histo-blood group in the human respiratory system. Strong staining of H Type 1 chain and weak staining of H Type 2 chain were observed in mucous cells of submucosal glands of bronchial epithelium, which were dependent on the secretor status. No H Type 3/4 chains were detected in mucous cells. Serous cells of submucosal glands of respiratory system showed no staining by three anti-H antibodies. H Type 1 and H Type 3/4 antigens were detected heterogeneously in apical surfaces of bronchial epithelium from secretors but not from nonsecretors. In contrast, basal cells of bronchial epithelium expressed H Type 2 irrespective of the secretor status, probably regulated by the H gene. Some alveolar Type II cells contained only H Types 3/4, which were dependent on the secretor status, whereas alveolar Type I cells had no H antigens. Our results indicated that different cell types in respiratory epithelium expressed different types of carbohydrate chains of histo-blood group antigens under the control of the H or the Se gene.  相似文献   

17.
Paraffin sections of submandibular, sublingual, minor salivary, and parotid glands from ten human autopsy cases were stained with a battery of ten lectins conjugated to horseradish peroxidase. Variable affinity for one or another lectin between mucous cells in a gland evidenced cellular heterogeneity in mucin production. Mucous cells of a given type of gland varied among individuals, but for a single individual appeared markedly but not completely similar from one type of salivary gland to another. The individual variation related, in part, to the ABO blood group and secretor status of the individual. For mucous cells in secretors of blood group A and B all antigens stained strongly for the presence of terminal alpha-N-acetylgalactosamine or alpha-galactose, respectively. Mucous cells in AB secretors contained both antigens, whereas those of O (H) secretors lacked both. Mucous cells of three presumed nonsecretors, two of whom were immature infants and possibly too young to produce ABO antigen, failed to stain. Mucous cells in glands from the presumed nonsecretors, however, revealed a staining pattern consistent with the presence of Lea antigen. Mucous cells of nonsecretors stained with Lotus tetragonolobus agglutinin but not with Ulex europeus I agglutinin, whereas mucous cells of ABO secretors stained with both lectins. This difference in lectin binding indicated that sites reactive only with Lotus tetragonolobus agglutinin contain 1----4 linked fucosyl residues and sites stained by both lectins contain fucose linked 1----2 to the oligosaccharide. Staining of mucous cells of nonsecretors with Pisum sativum agglutinin indicate that either the lectin binds to internal N-acetylglucosamine of Lea substance or the mucous cells contain an N-glycosidic glycoprotein of the type thought to bind this lectin. Serous cells stained less strongly than mucous cells and differed in lectin affinities from one type of gland to another in an individual. Staining of serous cells of a given gland varied markedly among different subjects. This individual variability did not relate to blood group as terminal sugars demonstrative of A or B blood group antigens were not detected in any serous cells. Serous cells in the submandibular glands from the two immature infants were unreactive with all lectin conjugates. Secretions in parotid and submandibular serous cells generally contained a higher content of fucose than those in sublingual serous cells, which contained higher levels of a terminal galactose-sialic acid dimer. Some but not other cells of striated and interlobular ducts of submandibular glands of one subject stained for alpha-N-acetylgalactosamine.  相似文献   

18.
Seven plant lectins, Dolichos biflorus agglutinin (DBA), Griffonia simplicifolia agglutinin (GSA, isolectin A4), Helix pomatia agglutinin (HPA), soybean (Glycine max) agglutinin (SBA), Salvia sclarea agglutinin (SSA), Vicia villosa agglutinin (VVA, isolectin B4) and Wistaria floribunda agglutinin (WFA), known to be specific for N-acetyl-D-galactosamine-(GalNAc) bearing glycoconjugates, have been compared by the binding of their radiolabelled derivatives, to eight well-characterized synthetic oligosaccharides immobilized via a spacer on an inert silica matrix (Synsorb). The eight oligosaccharides included the Forssman, the blood group A and the T antigens, as well as alpha GalNAc coupled directly to the support (Tn antigen) and also structures with GalNAc linked alpha or beta to positions 3 or 4 of an unsubstituted Gal. The binding studies clearly distinguished the lectins into alpha GalNAc-specific agglutinins like DBA, GSA and SSA, and lectins which recognize alpha- as well as beta-linked GalNAc residues like HPA, VVA, WFA and SBA. HPA was the only lectin which bound to the beta Gal1----3 alpha GalNAc-Synsorb adsorbent (T antigen) indicating that it also recognizes internal GalNAc residues. Among the alpha GalNAc-specific lectins, DBA strongly recognized blood group A structures while GSA displayed weaker recognition, and SSA bound only slightly to this affinity matrix. In addition, DBA and SSA were able to distinguish between GalNAc linked alpha 1----3 and GalNAc linked alpha 1----4, to the support, the latter being a much weaker ligand. These results were corroborated by the binding of the lectins to biological substrates as determined by their hemagglutination titers with native and enzyme-treated red blood cells carrying known GalNAc determinants, e.g. blood group A, and the Cad and Tn antigens. For SSA, the binding to the alpha GalNAc matrix was inhibited by a number of glycopeptides and glycoproteins confirming the strong preference of this lectin for alpha GalNAc-Ser/Thr-bearing glycoproteins.  相似文献   

19.
We have investigated by immunochemistry the distribution of H Type 3/4 chains of the ABO histo-blood group system in human submandibular gland using a monoclonal anti-H MBr1 antibody specific for H Type 3/4 chains, and have found the expression of H Type 3/4 chains was mainly in the serous cells. Serous cells from secretors were stained by MBr1 but not by anti-A and anti-B antibodies, whereas serous cells from nonsecretors exhibited a negative reaction with MBr1. Mucous cells were not stained by MBr1. Only a few striated duct cells showed a weak reaction with anti-H MBr1. These results suggested that the H Type 3/4 chains were distributed predominantly in the serous cells of the human submandibular gland and that secretor Type alpha(1,2)fucosyltransferase (Se enzyme) controlled the synthesis of H Type 3/4 chains in vivo. Saliva also contained H Type 3/4 chains, which were controlled by the secretor gene (FUT2). The differences in the distributions of H Type 1, H Type 2, and H Type 3/4 chains of the ABO histo blood group system in the submandibular gland are discussed.  相似文献   

20.
A monoclonal antibody (14 A4) raised against human A erythrocytes has been produced. It specifically reacts with a subclass of human blood group A determinants. Whereas all the major secreted and membrane-bound glycoproteins of A+ rabbit jejunum epithelium bear human blood group A-like determinants recognized by anti-A polyclonal serum or a monoclonal antibody with broad specificity (Cl 3.3), expression of the A-subclass recognized by 14 A4 is very restricted. The contents of secretory granules of Paneth cells but not the mucins of goblet cells were labeled by 14 A4. In the enterocytes, glycans recognized by 14 A4 were present in the glycocalyx, on an early expressed 140 K glycoprotein of brush border membranes and also on a glycoconjugate of the basolateral membrane of immature crypt cells. In the jejunal brush border membrane of blood group A secretor humans, only one glycoprotein of molecular weight 140 K bears the A-subclass recognized by 14 A4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号