首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jun Nakamura 《BBA》1983,723(2):182-190
The effects of ATP on Ca2+ binding in the absence of added Mg2+ to the purified sarcoplasmic reticulum Ca2+-ATPase were studied at pH 7.0 and 0°C. ATP increased the number of Ca2+-binding sites of the enzyme from 2 to 3 mol per mol of phosphorylatable enzyme. The association constant for the ATP-induced Ca2+ binding was 4·105 M?1, which was not significantly different from that obtained in the absence of ATP. AdoP[CH2]PP has little effect on the Ca2+-binding process. The amount of phosphoenzyme formed was equivalent to the level of ATP-induced Ca2+ binding. ADP decreased the level of ATP-induced Ca2+ binding and phosphoenzyme by the same amount. These results suggest that ATP-induced Ca2+ binding exists in the form of an ADP-reactive phosphoenzyme·Ca complex. In addition, the Ca2+ bound to the enzyme in the presence of ATP was released on the addition of 1 mM MgCl2; after the release of Ca2+, the phosphoenzyme decayed. These observations suggest that Mg2+, added after the ATP-induced Ca2+-binding process, may replace the Ca2+ on the phosphoenzyme and initiate phosphoenzyme decomposition.  相似文献   

2.
The role of sialic acid in the frequency of miniature endplate potentials (MEPPs) was examined using neuraminidase and gangliosides in the mouse diaphragm. Neuraminidase increased and decreased MEPP frequency in normal K+ and high K+ solution, respectively. The effects were dependent on the presence of Ca2+ in extracellular medium. Neuraminidase liberated sialic acid from and lowered Ca2+- binding capacity of synaptosomal membrane. Gangliosides treatment of the tissue partially restored the effects of neuraminidase on the frequency of MEPP and Ca2+-binding capacity. It is possible that sialic acid in the nerve endings provides a functional storage site which supply intracellular Ca2+ to cause a transmitter release.  相似文献   

3.
The interaction of the carbocyanine dye Stains-all with the Ca2+-binding proteins calmodulin, troponin C, and parvalbumin has been monitored by means of absorption spectra and CD. In the absence of Ca2+, complexes with Stains-all of all three proteins exhibit at high dye: protein mole ratios an intense J absorption band at 600–650 nm, which is associated with a characteristic CD spectrum. In the cases of calmodulin and troponin C, the J-band is progressively lost as the dye: protein ratio decreases and is replaced by bands of the γ and β types at 450–550 nm, which likewise give rise to characteristic CD spectra. For parvalbumin, only the J-band is observed; its intensity is undiminished at the lowest dye: protein ratios examined. In the presence of excess Ca2+ the J-band is lost for all three proteins. For calmodulin and troponin C it is replaced by σ- and β-bands; in the case of parvalbumin the bound dye is released. A tentative model has been proposed to account for these observations.  相似文献   

4.
Vacuoles of radish (Raphanus sativus) contained a Ca2+-binding protein (RVCaB) of 43 kDa. We investigated the Ca2+-binding properties of the protein. RVCaB was expressed in Escherichia coli and was purified from an extract by ion-exchange chromatography, nitrocellulose membrane filtration, and gel-filtration column chromatography. Ca2+-binding properties of the recombinant protein were examined by equilibrium dialysis with 45Ca2+ and small dialysis buttons. The protein was estimated to bind 19Ca2+ ions per molecule with a K d for Ca2+ of 3.4 mM. Ca2+ was bound to the protein even in the presence of high concentrations of Mg2+ or K+. The results suggested that the protein bound Ca2+ with high ion selectivity, high capacity, and low affinity.  相似文献   

5.
We have shown previously that the Ca2+-dependent inhibition of lens epithelial cell-to-cell communication is mediated in part by the direct association of calmodulin (CaM) with connexin43 (Cx43), the major connexin in these cells. We now show that elevation of [Ca2+]i in HeLa cells transfected with the lens fiber cell gap junction protein sheep Cx44 also results in the inhibition of cell-to-cell dye transfer. A peptide comprising the putative CaM binding domain (aa 129-150) of the intracellular loop region of this connexin exhibited a high affinity, stoichiometric interaction with Ca2+-CaM. NMR studies indicate that the binding of Cx44 peptide to CaM reflects a classical embracing mode of interaction. The interaction is an exothermic event that is both enthalpically and entropically driven in which electrostatic interactions play an important role. The binding of the Cx44 peptide to CaM increases the CaM intradomain cooperativity and enhances the Ca2+-binding affinities of the C-domain of CaM more than twofold by slowing the rate of Ca2+ release from the complex. Our data suggest a common mechanism by which the Ca2+-dependent inhibition of the α-class of gap junction proteins is mediated by the direct association of an intracellular loop region of these proteins with Ca2+-CaM.  相似文献   

6.
A novel Mr 17,000 Ca2+-binding protein isolated from bovine brain was found to be a potent inhibitor of the Ca2+- and phospholipid-dependent protein kinase (protein kinase C), also isolated from bovine brain. Halfmaximal inhibition by this calciprotein of the initial rate of phosphorylation of histone III-S by protein kinase C occurred at a calciprotein concentration of 2.2 μM under standard conditions. Comparison of the effects of a number of Ca2+-binding proteins on protein kinase C activity indicated that the Mr 17,000 Ca2+-binding protein was the most potent inhibitor, followed by the intestinal Ca2+-binding protein and calcineurin. Calmodulin, troponin C, S-100 protein and a Mr 21,000 Ca2+-binding protein of bovine brain were relatively weak inhibitors of protein kinase C. The inhibitory effect of the Mr 17,000 Ca2+-binding protein was apparently not due to its interaction with phospholipid or the basic protein substrate and therefore appears to be due to a direct effect on the protein kinase C. These observations suggest that the novel Mr 17,000 Ca2+-binding protein, and possibly other Ca2+-binding proteins, may play a physiological role in regulating the activity of protein kinase C.  相似文献   

7.
When the (pHi) surrounding myofilaments of striated muscle is reduced there is an inhibition of both the actin-myosin reaction as well as the Ca2+-sensitivity of the myofilaments. Although the mechanism for the effect of acidic pH on Ca2+-sensitivity has been controversial, we have evidence for the hypothesis that acidic pH reduces the affinity of troponin C (TNC) for Ca2+. This effect of acidic pH depends not only on a direct effect of protons on Ca2+-binding to TNC, but also upon neighboring thin filament proteins, especially TNI, the inhibitory component of the TN complex. Using flourescent probes that report Ca2+-binding to the regulatory sites of skeletal and cardiac TNC, we have shown, for example, that acidic pH directly decreases the Ca2+-affinity of TNC, but only by a relatively small amount. However, with TNC in whole TN or in the TNI-TNC complex, there is about a 2-fold enhancement of the effects of acidic pH on Ca2+-binding to TNC. Acidic pH decreases the affinity of skeletal TNI for skeletal TNC, and also influences the micro-environment of a probe postioned at Cys-133 of TNI, a region of interaction with TNC. Other evidence that the effects of acidic pH on Ca2+-TNC activation of myofilaments are influenced by TNI comes from studies with developing hearts. In contrast, to the case with the adult preparations, Ca2+-activation of detergent extracted fibers prepared from dog or rat hearts in the peri-natal period are weakly affected by a drop in pH from 7.0 to 6.5. This difference in the effect of acidic (pHi) appears to be due to a difference in the isoform population of TNI, and not to differences in isotype population or amount of TNC.  相似文献   

8.
The utility of the acetoxymethyl esters of two tetracarboxylic acids, fura-2 and quin-2, in the determination of ionic calcium levels within synaptosomes and mitochondria was compared. Synaptosomes and isolated mitochondria both accumulated the esters but mitochondria had a much more limited capacity to hydrolyze them. Dye-loaded synaptosomes maintain their external membrane potential of magnitude similar to values for unloaded controls and do not accumulate radioactive Ca2+ in excess with time. Both fluorescent compounds yielded similar values (about 300–400 nM) for free intrasynaptosomal calcium [Ca2+]i. Mitochondrial Ca2+ could be measured only with fura-2. Isolated mitochondria contained 0.9–1 μM free Ca2+ in a similar extrasynaptosomal medium. Fura-2 tended to overestimate [Ca2+]i while quin-2 tended to underestimate it due to chelation of these dyes with intrasynaptosomal trace elements. Fura-2 requiring the use of two excitation wavelengths was significantly superior to the single wavelength method using quin-2. Advantages included reduced danger of erroneous readings due to (i) synaptosomal sedimentation, (ii) photobleaching of the dye, (iii) underestimation of intrasynaptosomal calcium during correction for dye leakage by manganese entry into synaptosomes. Fura-2 interfered less with synaptosomal Ca2+ transients than quin-2, probably due to lower intrasynaptosomal concentration of dye needed. Both unstimulated and K+-stimulated 45Ca2+ uptake were increased in quin-2-loaded synaptosomes but only K+-stimulated uptake in fura-2 loaded ones. This series of advantages makes fura-2 of superior utility in the determination of free intrasynaptosomal calcium.  相似文献   

9.
The chronic administration of disulfiram (DS) to rats resulted in significant decrease of synaptosomal Ca2+, Mg2+-ATPase activity. In vitro studies indicated that DS (ID50=20 M) produced a dose-dependent inhibition of Ca2+, Mg2+-ATPase. However, diethyldithio-carbamate, a metabolite of DS, failed to modify Ca2+, Mg2+-ATPase activity, implying that the decrease in ATPase activity in DS administered rats was due to the effect of parent compound. The DS-mediated inhibition (48%) of ATPase activity was comparable with a similar degree of inhibition (49%) achieved by treating the synaptosomal membranes with N-ethylmaleimide (ID50=20 M) in vitro. Furthermore, the inhibition by DS was neither altered by washing the membranes with EGTA nor reversed by treatment with sulfhydryl reagents such as GSH or dithiothreitol. About 74% and 68% decrease of synaptosomal Ca2+, Mg2+-ATPase specific activity was observed when treated with DS (30 M) and EGTA (100 M) respectively. The remaining 25–30% of total activity is suggested to be of Mg2+-dependent ATPase activity. This indicates that both these drugs may act on a common target, calmodulin component that represents 70–75% of total Ca2+, Mg2+-ATPase activity. Therefore, DS-mediated modulation of synaptosomal Ca2+, Mg2+-ATPase activity could affect its function of maintaining intracellular Ca2+ concentration. This could contribute to the deleterious effects on CNS.  相似文献   

10.
The Ca2+ indicator, arsenazo III, binds to subcellular fractions of rabbit skeletal muscle with sufficient affinity that in living muscle containing 1–2 mM arsenazo III, the estimated free arsenazo III concentration is only 50–200 μM; 80–90% of the bound arsenazo III is associated with soluble proteins.The binding of arsenazo III to soluble proteins decreases the optical response of the dye to Ca2+; this is due to a decrease in the affinity of the protein-bound dye for Ca2+. Approximately half of the bound arsenazo III is released from the particulate fraction and soluble proteins upon addition of 5 mM Ca2+, suggesting that the Ca-arsenazo complex has lower affinity for the protein binding sites than the free dye.The Ca2+ binding to the soluble protein fraction of rabbit skeletal muscle is attributable largely to its parvalbumin content.  相似文献   

11.
A procedure for the isolation of highly purified sarcoplasmic reticulum vesicles from rabbit skeletal muscle has been described using sucrose gradient centrifugation in zonal rotors. The yield of our purest fraction was 300 mg of sarcoplasmic reticulum protein using 1 kg muscle. The sarcoplasmic reticulum vesicles were relatively simple in composition. The Ca2+-pump protein accounted for most (approx. two-thirds) of the sarcoplasmic reticulum protein. Two other protein components, a Ca2+-binding protein and a M55 protein (approx. 55 000 daltons) each accounted for about 5–10% of the protein. Enrichment in the level of phosphoenzyme by the Ca2+-pump protein was regarded as an important index of the purification of sarcoplasmic reticulum vesicles. The sarcoplasmic reticulum vesicles were capable of forming 6.4 nmoles of 32P-labelled phosphoenzyme per mg protein and had a high capacity of energized Ca2+ uptake. The Ca2+-dependent formation of phosphoenzyme has been used to estimate the sarcoplasmic reticulum protein content in rabbit skeletal muscle and found to be about 2.5% of the total muscle protein.The Ca2+-pump and Ca2+-binding proteins were isolated with a purity of 90% or more by treating the purified sarcoplasmic reticulum vesicles with bile acids in the presence of salt. The solubilized Ca2+-pump protein reaggregated during dialysis together with phospholipid to form membranous vesicles which were capable of forming approx. 9 nmoles 32P-labelled phosphoenzyme per mg protein. The Ca2+-binding protein was water soluble and contained a high percentage of acidic amino acids (35% of total residues).Ca2+ binding by sarcoplasmic reticulum vesicles and by the Ca2+-pump and Ca2+-binding proteins was studied by equilibrium dialysis. Sarcoplasmic reticulum vesicles and Ca2+-pump protein contained nonspecific high-affinity Ca2+ binding sites with a capacity of 90–100 and 55–70 nmoles Ca2+ per mg protein, respectively. Both of them specifically bound 10–15 nmoles Ca2+ per mg protein. The binding constants for nonspecific and specific Ca2+ binding by both preparations were approx. 1 μM?1. The Ca2+-binding protein nonspecifically bound 900–1000 nmoles Ca2+ per mg protein with a binding constant of about 0.25 μM?1.  相似文献   

12.
Polycystin-2 (PC2) belongs to the transient receptor potential (TRP) family and forms a Ca2+-regulated channel. The C-terminal cytoplasmic tail of human PC2 (HPC2 Cterm) is important for PC2 channel assembly and regulation. In this study, we characterized the oligomeric states and Ca2+-binding profiles in the C-terminal tail using biophysical approaches. Specifically, we determined that HPC2 Cterm forms a trimer in solution with and without Ca2+ bound, although TRP channels are believed to be tetramers. We found that there is only one Ca2+-binding site in the HPC2 Cterm, located within its EF-hand domain. However, the Ca2+ binding affinity of the HPC2 Cterm trimer is greatly enhanced relative to the intrinsic binding affinity of the isolated EF-hand domain. We also employed the sea urchin PC2 (SUPC2) as a model for biophysical and structural characterization. The sea urchin C-terminal construct (SUPC2 Ccore) also forms trimers in solution, independent of Ca2+ binding. In contrast to the human PC2, the SUPC2 Ccore contains two cooperative Ca2+-binding sites within its EF-hand domain. Consequently, trimerization does not further improve the affinity of Ca2+ binding in the SUPC2 Ccore relative to the isolated EF-hand domain. Using NMR, we localized the Ca2+-binding sites in the SUPC2 Ccore and characterized the conformational changes in its EF-hand domain due to trimer formation. Our study provides a structural basis for understanding the Ca2+-dependent regulation of the PC2 channel by its cytosolic C-terminal domain. The improved methodology also serves as a good strategy to characterize other Ca2+-binding proteins.  相似文献   

13.
Solubilized Ca2+, Mg2+-ATPase of sarcoplasmic reticulum was phosphorylated with ATP without added MgCl2. The phosphoenzyme formed was ADP-sensitive. Ca2+ in the medium was chelated after phosphorylation. This induced a slow transition of the phosphoenzyme from ADP-sensitive to ADP-insensitive forms. The ADP-sensitivity was restored by subsequent addition of CaCl2. These results showed that the transition was caused by dissociation of Ca2+ bound to the phosphoenzyme. Further observations indicated that, when Ca2+ in the medium was chelated, Ca2+ bound to the phosphoenzyme was dissociated much more slowly than Ca2+ bound to the dephosphoenzyme. This suggests a possible formation of the occluded form of the Ca2+-binding site in the phosphoenzyme.  相似文献   

14.
[14C]GABA is taken up by rat brain synaptosomes via a high affinity, Na+-dependent process. Subsequent addition of depolarizing levels of potassium (56.2 MM) or veratridine (100 μM) stimulates the release of synaptosomal [14C]GABA by a process which is sensitive to the external concentration of divalent cations such as Ca2+, Mg2+, and Mn2+. However, the relatively smaller amount of [14C]GABA taken up by synaptosomes in the absence of Na+ is not released from synaptosomes by Ca2+ -dependent, K +-stimulation. [14C]DABA, a competitive inhibitor of synaptosomal uptake of GABA (Iversen & Johnson , 1971) is also taken up by synaptosomal fractions via a Na + -dependent process; and is subsequently released by Ca2+ -dependent, K+-stimulation. On the other hand, [14C]β-alanine, a purported blocker of glial uptake systems for GABA (Schon & Kelly , 1974) is a poor competitor of GABA uptake into synaptosomes. Comparatively small amounts of [14C] β-alanine are taken up by synaptosomes and no significant amount is released by Ca2+ -dependent, K+-stimulation. These data suggest that entry of [14C]GABA into a releasable pool requires external Na+ ions and maximal evoked release of [14C]GABA from the synaptosomal pool requires external Ca2+ ions. The GABA analogue, DABA, is apparently successful in entering the same or similar synaptosomal pool. The GABA analogue, β-alanine, is not. None of the compounds or conditions studied were found to simultaneously affect both uptake and release processes. Compounds which stimulated release (veratridine) or inhibited release (magnesium) were found to have minimal effect on synaptosomal uptake. Likewise compounds (DABA) or conditions (Na+-free medium) which inhibited uptake, had little effect on release.  相似文献   

15.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca2+ channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca2+-binding proteins are of particular importance as sensors of presynaptic Ca2+, and a multiple of them are indeed utilized in the signaling of Ca2+ channels. However, despite its conserved structure, CaM is the only known EF-hand Ca2+-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca2+ channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca2+-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca2+-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca2+, PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca2+ channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

16.
Franklin Fuchs  Charles Fox 《BBA》1982,679(1):110-115
A simple double-isotope procedure has been developed for making simultaneous measurements of bound Ca2+ and relative force in glycerinated rabbit psoas bundles containing two fibers. With this preparation it is possible to study Ca2+-troponin interactions coincident with MgATP-induced force development. Over the free [Ca2+] range 6 · 10?8–1.2 · 10?5 M the bound Ca2+ varied from 0.25 to 1.65 μmol/g protein. The free [Ca2+] at half-maximal Ca2+ saturation was 2 · 10?7 M while that a half-maximal force was 5 · 10?7 M. Half-maximal Ca2+ saturation was associated with 20% maximal force. The force-[Ca2+] saturation curve showed a steep rise in slope at greater than half saturation. The observed relationship was consistent with a model in which multiple occupancy of troponin Ca2+-binding sites is essential for initiation of cross-bridge cycling.  相似文献   

17.
A high affinity Ca2+/Mg2+ ATPase has been identified and localized in synaptic membrane subfractions. This enzyme is stimulated by low concentrations of Ca2+ (1 M) believed to approximate the range of Ca2+ in the synaptosomal cytosol (0.1 to 5.0 M). The opiate agonist levorphanol, in a concentration-dependent fashion, inhibited Ca2+-stimulated ATP hydrolysis in lysed synaptic membranes. This inhibition was reversed by naloxone, while dextrorphan, the inactive opiate isomer, was without effect. Inhibition by levorphanol was most pronounced in a subfraction of synaptic membranes (SPM-1). The inhibition of Ca2+-stimulated ATP hydrolysis was characterized by a reduction inV max for Ca2+. Levorphanol pretreatment reduced the Hill coefficient (HN) of 1.5 to 0.7, suggesting cooperative interaction between the opiate receptor and the enzyme protein. Levorphanol, but not dextrorphan, also inhibited (28%) ATP-dependent Ca2+ uptake by synaptic membranes. Opiate ligand stereoisomers were tested for their effects on calmodulin stimulating of high affinity Ca2+/Mg2+ ATPase in synaptic membranes. Levorphanol (10 M), but not the inactive stereoisomer (+)dextrorphan, significantly inhibited (35%) the calmodulin-activated Ca2+-dependent ATP hydrolysis activity in a preparation of lysed synaptic membranes. Both Ca2+-dependent and calmodulin-dependent stimulation of the enzyme in the presence of optimal concentrations of the other co-substrate were inhibited by levorphanol (35–40%) but not dextrorphan. Inhibition of ATP hydrolysis was characterized by a reduction inV max for both Ca2+ and calmodulin stimulation of the enzyme. Calmodulin stimulation of enzyme activity was most pronounced in SPM-1, the membrane fraction which also exhibits the maximal opiate inhibition (40%) of the Ca2+-ATPase. The results demonstrate that opiate receptor activation inhibits a high affinity Ca2+/Mg2+ ATPase in synaptic plasma membranes in a stereospecific fashion. The inhibition of the enzyme may occur by a mechanism involving both Ca2+ and calmodulin. Inhibition of calmodulin activation may contribute to the mechanism by which opiate ligands disrupt synaptosomal Ca2+ buffering mechanisms. Changes in the cytosolic distribution of synaptosomal Ca2+ following inhibition of Ca2+/Mg2+ ATPase may underlie some of the pharmacological effects of opiate drugs.  相似文献   

18.
The release of preloaded [3H]dopamine by the synaptosomal fraction prepared from rat forebrain was examined in the presence and absence of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin inhibitor. The release induced by high K+ was blocked by W-7 in a concentration-dependent manner after the pretreatment with and in the presence of the inhibitor. The inhibition by W-7 may specifically involve calmodulin, because little effects were seen with N-(6-aminohexyl)-naphthalenesulfonamide, an analog of W-7 with only a low affinity for calmodulin. W-7 may not affect the voltage-dependent Ca2+ channel of synaptosomal plasmalemma, since the inhibitor produced no change in the synaptosomal 45Ca2+ uptake induced by high K+ depolarization. Thus, calmodulin may play a role in transmitter release and may function at the step(s) after the increase of free Ca2+ concentration in the cytosol of the nerve terminal. W-7 affected only to a small extent [3H]dopamine release in the presence of A23187 plus Ca2+.  相似文献   

19.
Intracellular Ca2+ has been implicated in the signal transduction processes during the development of the plant defense system against fungal pathogens. From wheat cultured cells that had been treated with the elicitor derived from Typhula ishikariensis, the ccd-1 gene encoding a 14 kDa Ca2+-binding protein with an acidic amphiphilic feature was isolated. The ccd-1-encoded protein (CCD-1) shares homology to the C-terminal half domain of centrin, a Ca2+-binding protein conserved in eukaryotes. Unlike typical eukaryotic centrins, CCD-1 contains only one Ca2+-binding loop, which corresponds to the one in the fourth EF-hand from the N-terminus of centrin. The recombinant CCD protein expressed in Escherichia coli bound to a phenyl-Sepharose column in the presence of Ca2+ and was eluted out by EGTA. It also showed a Ca2+-dependent electrophoretic mobility shift on the non-denaturing polyacrylamide gel. The ccd-1 mRNA expression was rapidly induced by treatment with fungal and chitosan oligosaccharide elicitors, implying that it might have a role in transducing Ca2+ signals provoked by the elicitors. The expression of the ccd-1 mRNA was induced by treatment with A23187, and the induction was suppressed by La3+ or 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid (BAPTA). This study suggests the involvement of intracellular Ca2+ in the elicitor-induced mRNA expression of a novel class of Ca2+-binding proteins conserved in higher plants.  相似文献   

20.
The stimulation of the (Ca2+ + Mg2+)ATPase of erythrocyte ghosts by calmodulin was observed not only in intact ghosts, but also in the solubilized (Triton X-100) and partially purified, reconstituted (phosphatidylserine liposomes) forms. Since the solubilized form of the enzyme migrated on Sepharose 6B at a position corresponding to a molecular weight of about 150,000, these results show that calmodulin stimulates by direct interaction with the ATPase complex. Additionally, the effects of calmodulin on erythrocyte ghosts prepared by the Dodge-EDTA method (hypotonic ghosts) and by the method of Ronner et al. (involving lysis followed by an isotonic wash repeated several times) were compared (P. Ronner, P. Gazzotti, and E. Carafoli, 1977, Arch. Biochem. Biophys. 179, 578–583). The (Ca2+ + Mg2+)ATPase of the hypotonic ghosts was low and was stimulated by added calmodulin while that of the isotonic ghosts was high and changed only slightly upon calmodulin addition; this difference in response to calmodulin persisted in the solubilized and reconstituted forms. Hypotonic ghosts bound 125I-labeled calmodulin, while isotonic ghosts did not. This comparison of two types of ghosts showed that isotonic ghosts possess an intact calmodulin-(Ca2+ + Mg2+)ATPase complex, and that the calmodulin remained with the ATPase during solubilization and reconstitution. The isotonic preparation is a particularly useful method of preparing ghosts with an intact calmodulin-ATPase complex, since it requires no special equipment and produces an enzyme activity which is stable to freezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号