首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Nephrocystin is the protein product of the gene mutated in juvenile nephronophthisis, an autosomal recessive cystic kidney disease afflicting children and young adults. Because the normal cellular function of nephrocystin is largely unknown, the molecular defects underlying disease pathogenesis remain obscure. Analysis of nephrocystin amino acid sequences from human and other species revealed three distinct conserved domains including Src homology 3 and coil-coil domains in the N-terminal region, as well as a large highly conserved C-terminal region bearing no obvious homology to other proteins and hence referred to as the "nephrocystin homology domain" (NHD). The objective of this study was to gain insight into nephrocystin function by defining functional properties of the conserved domains. We analyzed a series of nephrocystin deletion mutants expressed in Madin-Darby canine kidney and COS-7 cells. This analysis revealed previously unrecognized functional attributes of the NHD, including abilities to promote both self-association and epithelial cell-cell junctional targeting. We further observed that Madin-Darby canine kidney cell lines stably expressing a nephrocystin mutant with a deletion of the Src homology 3 domain have reduced ability to establish tight junctions as measured by transepithelial electrical resistance. Finally, from a two-hybrid screen and coimmunoprecipitation studies we identified members of the filamin family of actin-binding proteins as having the capacity to interact with the NHD. These findings support a functional role for nephrocystin as a docking protein involved in organizing a protein complex to regulate the actin cytoskeleton at sites of epithelial cell-cell adhesion and further suggest that these properties are important for establishing epithelial cell polarity.  相似文献   

2.
Basolateral maturation of retroviruses in polarized epithelial cells.   总被引:20,自引:12,他引:8       下载免费PDF全文
We have investigated the maturation sites of avian and mammalian C-type retroviruses in polarized epithelial cells. Examination of thin sections of Madin Darby canine kidney cells infected with RD114 or avian reticuloendotheliosis virus revealed that these viruses mature from the basolateral membrane domains. Similar results were obtained with a continuous line of mouse mammary epithelial cells infected with Friend, Moloney, Rauscher, or Kirsten murine leukemia viruses, or Friend virus-related or Moloney virus-related mink cell focus-forming viruses. Immunofluorescence observations indicate that viral glycoproteins are inserted only at the basolateral membranes in these cells. Because of the availability of DNA and protein sequence data, and of molecularly cloned viruses, these virus systems offer advantages for molecular studies on directional transport of plasma membrane glycoproteins.  相似文献   

3.
Genetic screens in Drosophila have identified regulators of endocytic trafficking as neoplastic tumor suppressor genes. For example, Drosophila endosomal sorting complex required for transport (ESCRT) mutants lose epithelial polarity and show increased cell proliferation, suggesting that ESCRT proteins could function as tumor suppressors. In this study, we show for the for the first time to our knowledge that ESCRT proteins are required to maintain polarity in mammalian epithelial cells. Inhibition of ESCRT function caused the tight junction protein claudin-1 to accumulate in intracellular vesicles. In contrast E-cadherin and occludin localization was unaffected. We investigated the cause of this accumulation and show that claudin-1 is constitutively recycled in kidney, colon, and lung epithelial cells, identifying claudin-1 recycling as a newly described feature of diverse epithelial cell types. This recycling requires ESCRT function, explaining the accumulation of intracellular claudin-1 when ESCRT function is inhibited. We further demonstrate that small interfering RNA knockdown of the ESCRT protein Tsg101 causes epithelial monolayers to lose their polarized organization and interferes with the establishment of a normal epithelial permeability barrier. ESCRT knockdown also reduces the formation of correctly polarized three-dimensional cysts. Thus, in mammalian epithelial cells, ESCRT function is required for claudin-1 trafficking and for epithelial cell polarity, supporting the hypothesis that ESCRT proteins function as tumor suppressors.  相似文献   

4.
The generation of cell surface polarity in transporting epithelial cells occurs in three distinct stages that involve cell-cell recognition and adhesion, cell surface remodelling to form biochemically and functionally distinct cell surface domains, and development of vectorial function. A widely used model system to study mechanisms involved in these stages is the Madin-Darby canine kidney (MDCK) cell line. Under appropriate growth conditions, MDCK cells develop in similar stages into polarized, multicellular epithelial structures. Analysis of membrane-cytoskeletal proteins ankyrin and fodrin during development of MDCK cell surface polarity shows that they gradually assemble into an insoluble protein complex on the basal-lateral membrane domain upon cell-cell adhesion, concomitantly with the redistribution of Na+,K(+)-ATPase, a marker protein of the basal-lateral membrane. Biochemical analysis shows that ankyrin, fodrin occur in a complex with Na+,K(+)-ATPase and the cell adhesion molecule uvomorulin in MDCK cells. A model is presented in which assembly of membrane-cytoskeletal complexes at sites of uvomorulin-induced cell-cell contact causes a remodelling of the cell surface distribution of specific membrane proteins which, in turn, contributes to the generation of epithelial cell surface polarity.  相似文献   

5.
We have studied the role of microtubules and actin filaments in the biogenesis of epithelial cell surface polarity, using influenza hemagglutinin and vesicular stomatitis G protein as model apical and basolateral proteins in infected Madin-Darby canine kidney cells. Addition of colchicine or nocodazole to confluent monolayers at concentrations sufficient to completely disassemble microtubules did not affect the asymmetric budding of influenza or vesicular stomatitis virus and only slightly reduced the typical asymmetric surface distribution of their envelope proteins, despite extensive cytoplasmic redistribution of the Golgi apparatus. Alteration of microtubular function by taxol or dissociation of actin filaments by cytochalasin D also failed to have a significant effect. Furthermore, neither colchicine nor cytochalasin D pretreatment blocked the ability of subconfluent Madin-Darby canine kidney cells to sustain polarized budding of influenza virus a few hours after attachment to the substrate. Our results indicate that domain-specific microtubule or actin filament "tracks" are not responsible for the vectorial delivery of apically or basolaterally directed transport vesicles. In conjunction with currently available evidence, they are compatible with a model in which receptors in the cytoplasmic aspect of apical or basolateral regions provide vectoriality to the transport of vesicles carrying plasma membrane proteins to their final surface localization.  相似文献   

6.
Clathrin assembly protein, AP180, was originally identified as a brain-specific protein localized to the presynaptic junction. AP180 acts to limit vesicle size and maintain a pool of releasable synaptic vesicles during rapid recycling. In this study, we show that polarized epithelial Madin-Darby canine kidney (MDCK) cells express two AP180-related proteins: the ubiquitously expressed 62-kDa clathrin assembly lymphoid myeloid leukemia (CALM, AP180-2) protein and a novel high-molecular-weight homolog that we have named AP180-3. Sequence analysis of AP180-3 expressed in MDCK cells shows high homology to AP180 from rat brain. AP180-3 contains conserved motifs found in brain-specific AP180, including the epsin NH2-terminal homology (ENTH) domain, the binding site for the -subunit of AP-2, and DLL repeats. Our studies show that AP180-3 from MDCK cells forms complexes with AP-2 and clathrin and that membrane recruitment of these complexes is modulated by phosphorylation. We demonstrate by immunohistochemistry that AP180-3 is localized to cytoplasmic vesicles in MDCK cells and is also present in tubule epithelial cells from mouse kidney. We observed by immunodetection that a high-molecular-weight AP180-related protein is expressed in numerous cells in addition to MDCK cells. clathrin assembly lympoid myeloid leukemia; kidney epithelial cells; epsin NH2-terminal homology domain; DLL repeats; clathrin; AP-2  相似文献   

7.
The tight junction of the epithelial cell determines the characteristics of paracellular permeability across epithelium. Recent work points toward the claudin family of tight junction proteins as leading candidates for the molecular components that regulate paracellular permeability properties in epithelial tissues. Madin-Darby canine kidney (MDCK) strain I and II cells are models for the study of tight junctions and based on transepithelial electrical resistance (TER) contain "tight" and "leaky" tight junctions, respectively. Overexpression studies suggest that tight junction leakiness in these two strains of MDCK cells is conferred by expression of the tight junction protein claudin-2. Extracellular signal-regulated kinase (ERK) 1/2 activation by hepatocyte growth factor treatment of MDCK strain II cells inhibited claudin-2 expression and transiently increased TER. This process was blocked by the ERK 1/2 inhibitor U0126. Transfection of constitutively active mitogen-activated protein kinase/extracellular signal-regulated kinase kinase into MDCK strain II cells also inhibited claudin-2 expression and increased TER. MDCK strain I cells have higher levels of active ERK 1/2 than do MDCK strain II cells. U0126 treatment of MDCK strain I cells decreased active ERK 1/2 levels, induced expression of claudin-2 protein, and decreased TER by approximately 20-fold. U0126 treatment also induced claudin-2 expression and decreased TER in a high resistance mouse cortical collecting duct cell line (94D). These data show for the first time that the ERK 1/2 signaling pathway negatively controls claudin-2 expression in mammalian renal epithelial cells and provide evidence for regulation of tight junction paracellular transport by alterations in claudin composition within tight junction complexes.  相似文献   

8.
Most cells in tissues are polarized and usually have two distinct plasma membrane domains-an apical membrane and a basolateral membrane, which are the result of polarized trafficking of proteins and lipids. However, the mechanism underlying the cell polarization is not fully understood. In this study, we investigated the involvement of synaptotagmin-like protein 2-a (Slp2-a), an effector molecule for the small GTPase Rab27, in polarized trafficking by using Madin-Darby canine kidney II cells as a model of polarized cells. The results show that the level of Slp2-a expression in MDCK II cells increases greatly as the cells become polarized and that its expression is specifically localized at the apical membrane. The results also reveal that Slp2-a is required for targeting of the signaling molecule podocalyxin to the apical membrane in a Rab27A-dependent manner. In addition, ezrin, a downstream target of podocalyxin, and ERK1/2 are activated in Slp2-a-knockdown cells, and their activation results in a dramatic reduction in the amount of the tight junction protein claudin-2. Because both Slp2-a and claudin-2 are highly expressed in mouse renal proximal tubules, Slp2-a is likely to regulate claudin-2 expression through trafficking of podocalyxin to the apical surface in mouse renal tubule epithelial cells.  相似文献   

9.
The cellular prion protein (PrP(C)) plays a fundamental role in prion disease. PrP(C) is a glycosylphosphatidylinositol (GPI)-anchored protein with two variably occupied N-glycosylation sites. In general, GPI-anchor and N-glycosylation direct proteins to apical membranes in polarized cells whereas the majority of mouse PrP(C) is found in basolateral membranes in polarized Madin-Darby canine kidney (MDCK) cells. In this study we have mutated the first, the second, and both N-glycosylation sites of PrP(C) and also replaced the GPI-anchor of PrP(C) by the Thy-1 GPI-anchor in order to investigate the role of these signals in sorting of PrP(C) in MDCK cells. Cell surface biotinylation experiments and confocal microscopy showed that lack of one N-linked oligosaccharide leads to loss of polarized sorting of PrP(C). Exchange of the PrP(C) GPI-anchor for the one of Thy-1 redirects PrP(C) to the apical membrane. In conclusion, both N-glycosylation and GPI-anchor act on polarized sorting of PrP(C), with the GPI-anchor being dominant over N-glycans.  相似文献   

10.
Tight junctions (TJs) are the most apical cell-cell junctions, and claudins, the recently identified TJ proteins, are critical for maintaining cell-cell adhesion in epithelial cell sheets. Based on their in vivo distribution and the results of overexpression studies, certain claudins, including claudin-1 and -4, are postulated to increase, whereas other claudins, especially claudin-2, are postulated to decrease the overall transcellular resistance. The overall ratio among claudins expressed in a cell/tissue has been hypothesized to define the complexity of TJs. Disruption of the TJs contributes to various human diseases, and a correlation between reduction of TJ function and tumor dedifferentiation has been postulated. The epidermal growth factor (EGF) receptor (EGFR) is overexpressed in a wide spectrum of epithelial cancers, and its expression correlates with a more metastatic cancer phenotype. However, normal functioning of EGFR is essential for normal epithelial cell proliferation and differentiation. The role of EGFR-dependent signaling in the development and maintenance of epithelial TJ integrity has not been studied in detail. This study demonstrates that, in polarized Madin-Darby canine kidney II cells, EGF-induced EGFR activation significantly inhibited claudin-2 expression while simultaneously inducing cellular redistribution and increased expression of claudin-1, -3, and -4. Accompanying these EGF-induced changes in claudin expression was a 3-fold increase in transepithelial resistance, a functional measure of TJs. In contrast, there were no alterations in protein expression and/or intracellular localization of other TJ-related proteins (ZO-1 and occludin) or adherens junction-associated proteins (E-cadherin and beta-catenin), suggesting that EGF regulates TJ function through selective and differential regulation of claudins.  相似文献   

11.
Li Q  Dai XQ  Shen PY  Cantiello HF  Karpinski E  Chen XZ 《FEBS letters》2004,576(1-2):231-236
The tandem affinity purification (TAP) procedure was initially developed as a tool for rapid purification of native protein complexes expressed at their natural levels in yeast cells. This purification procedure was also applied to study interactions between soluble proteins in mammalian cells. In order to apply this procedure to mammalian membrane proteins, we created a modified TAP tag expression vector and fused with the PKD2 gene, encoding a membrane cation channel protein, polycystin-2, mutated in 15% of autosomal dominant polycystic kidney disease. We generated epithelial Madin-Darby canine kidney cell line stably expressing TAP-tagged polycystin-2, improved the subsequent steps for membrane protein release and stability, and succeeded in purifying this protein. Using patch clamp electrophysiology, we detected specific polycystin-2 channel activities when the purified protein was reconstituted into a lipid bilayer system. Thus, this modified TAP procedure provides a powerful alternative to functionally characterize membrane proteins, such as ion channels, transporters and receptors, using cell-free system derived from mammalian cells.  相似文献   

12.
Angiotensin-converting enzyme-2 (ACE2) is a homologue of angiotensin-I converting enzyme (ACE), the central enzyme of the renin-angiotensin system (RAS). ACE2 is abundant in human kidney and heart and has been implicated in renal and cardiac function through its ability to hydrolyze Angiotensin II. Although ACE2 and ACE are both type I integral membrane proteins and share 61% protein sequence similarity, they display distinct modes of enzyme action and tissue distribution. This study characterized ACE2 at the plasma membrane of non-polarized Chinese hamster ovary (CHO) cells and polarized Madin-Darby canine kidney (MDCKII) epithelial cells and compared its cellular localization to its related enzyme, ACE, using indirect immunofluorescence, cell-surface biotinylation, Western analysis, and enzyme activity assays. This study shows ACE2 and ACE are both cell-surface proteins distributed evenly to detergent-soluble regions of the plasma membrane in CHO cells. However, in polarized MDCKII cells under steady-state conditions the two enzymes are differentially expressed. ACE2 is localized predominantly to the apical surface ( approximately 92%) where it is proteolytically cleaved within its ectodomain to release a soluble form. Comparatively, ACE is present on both the apical ( approximately 55%) and basolateral membranes ( approximately 45%) where it is also secreted but differentially; the ectodomain cleavage of ACE is 2.5-fold greater from the apical surface than the basolateral surface. These studies suggest that both ACE2 and ACE are ectoenzymes that have distinct localization and secretion patterns that determine their role on the cell surface in kidney epithelium and in urine.  相似文献   

13.
Nephronophthisis is the most common genetic cause of end-stage renal failure during childhood and adolescence. Genetic studies have identified disease-causing mutations in at least 11 different genes (NPHP1-11), but the function of the corresponding nephrocystin proteins remains poorly understood. The two evolutionarily conserved proteins nephrocystin-1 (NPHP1) and nephrocystin-4 (NPHP4) interact and localize to cilia in kidney, retina, and brain characterizing nephronophthisis and associated pathologies as result of a ciliopathy. Here we show that NPHP4, but not truncating patient mutations, negatively regulates tyrosine phosphorylation of NPHP1. NPHP4 counteracts Pyk2-mediated phosphorylation of three defined tyrosine residues of NPHP1 thereby controlling binding of NPHP1 to the trans-Golgi sorting protein PACS-1. Knockdown of NPHP4 resulted in an accumulation of NPHP1 in trans-Golgi vesicles of ciliated retinal epithelial cells. These data strongly suggest that NPHP4 acts upstream of NPHP1 in a common pathway and support the concept of a role for nephrocystin proteins in intracellular vesicular transport.  相似文献   

14.
EEA1 is an early endosomal Rab5 effector protein that has been implicated in the docking of incoming endocytic vesicles before fusion with early endosomes. Because of the presence of complex endosomal pathways in polarized and nonpolarized cells, we have examined the distribution of EEA1 in diverse cell types. Ultrastructural analysis demonstrates that EEA1 is present on a subdomain of the early sorting endosome but not on clathrin-coated vesicles, consistent with a role in providing directionality to early endosomal fusion. Furthermore, EEA1 is associated with filamentous material that extends from the cytoplasmic surface of the endosomal domain, which is also consistent with a tethering/docking role for EEA1. In polarized cells (Madin-Darby canine kidney cells and hippocampal neurons), EEA1 is present on a subset of "basolateral-type" endosomal compartments, suggesting that EEA1 regulates specific endocytic pathways. In both epithelial cells and fibroblastic cells, EEA1 and a transfected apical endosomal marker, endotubin, label distinct endosomal populations. Hence, there are at least two distinct sets of early endosomes in polarized and nonpolarized mammalian cells. EEA1 could provide specificity and directionality to fusion events occurring in a subset of these endosomes in polarized and nonpolarized cells.  相似文献   

15.
Scribble (Scrib) is a conserved polarity protein required in Drosophila melanogaster for synaptic function, neuroblast differentiation, and epithelial polarization. It is also a tumor suppressor. In rodents, Scrib has been implicated in receptor recycling and planar polarity but not in apical/basal polarity. We now show that knockdown of Scrib disrupts adhesion between Madin-Darby canine kidney epithelial cells. As a consequence, the cells acquire a mesenchymal appearance, migrate more rapidly, and lose directionality. Although tight junction assembly is delayed, confluent monolayers remain polarized. These effects are independent of Rac activation or Scrib binding to betaPIX. Rather, Scrib depletion disrupts E-cadherin-mediated cell-cell adhesion. The changes in morphology and migration are phenocopied by E-cadherin knockdown. Adhesion is partially rescued by expression of an E-cadherin-alpha-catenin fusion protein but not by E-cadherin-green fluorescent protein. These results suggest that Scrib stabilizes the coupling between E-cadherin and the catenins and are consistent with the idea that mammalian Scrib could behave as a tumor suppressor by regulating epithelial cell adhesion and migration.  相似文献   

16.
Rho family GTPases are important regulators of epithelial tight junctions (TJs); however, little is known about how the GTPases themselves are controlled during TJ assembly and function. We have identified and cloned a canine guanine nucleotide exchange factor (GEF) of the Dbl family of proto-oncogenes that activates Rho and associates with TJs. Based on sequence similarity searches and immunological and functional data, this protein is the canine homologue of human GEF-H1 and mouse Lfc, two previously identified Rho-specific exchange factors known to associate with microtubules in nonpolarized cells. In agreement with these observations, immunofluorescence of proliferating MDCK cells revealed that the endogenous canine GEF-H1/Lfc associates with mitotic spindles. Functional analysis based on overexpression and RNA interference in polarized MDCK cells revealed that this exchange factor for Rho regulates paracellular permeability of small hydrophilic tracers. Although overexpression resulted in increased size-selective paracellular permeability, such cell lines exhibited a normal overall morphology and formed fully assembled TJs as determined by measuring transepithelial resistance and by immunofluorescence and freeze-fracture analysis. These data indicate that GEF-H1/Lfc is a component of TJs and functions in the regulation of epithelial permeability.  相似文献   

17.
Syntaxins, integral membrane proteins that are part of the ubiquitous membrane fusion machinery, are thought to act as target membrane receptors during the process of vesicle docking and fusion. Several isoforms of the syntaxin family have been previously identified in mammalian cells, some of which are localized to the plasma membrane. We investigated the subcellular localization of these putative plasma membrane syntaxins in polarized epithelial cells, which are characterized by the presence of distinct apical and basolateral plasma membrane domains. Syntaxins 2, 3, and 4 were found to be endogenously present in Madin-Darby canine kidney cells. The localization of syntaxins 1A, 1B, 2, 3, and 4 in stably transfected Madin-Darby canine kidney cell lines was studied with confocal immunofluorescence microscopy. Each syntaxin isoform was found to have a unique pattern of localization. Syntaxins 1A and 1B were present only in intracellular structures, with little or no apparent plasma membrane staining. In contrast, syntaxin 2 was found on both the apical and basolateral surface, whereas the plasma membrane localization of syntaxins 3 and 4 were restricted to the apical or basolateral domains, respectively. Syntaxins are therefore the first known components of the plasma membrane fusion machinery that are differentially localized in polarized cells, suggesting that they may play a central role in targeting specificity.  相似文献   

18.
Generation of epithelial cell polarity requires mechanisms to sort plasma membrane proteins to the apical and basolateral domains. Sorting involves incorporation into specific vesicular carriers and subsequent fusion to the correct target membranes mediated by specific SNARE proteins. In polarized epithelial cells, the SNARE protein syntaxin 4 localizes exclusively to the basolateral plasma membrane and plays an important role in basolateral trafficking pathways. However, the mechanism of basolateral targeting of syntaxin 4 itself has remained poorly understood. Here we show that newly synthesized syntaxin 4 is directly targeted to the basolateral plasma membrane in polarized Madin-Darby canine kidney (MDCK) cells. Basolateral targeting depends on a signal that is centered around residues 24-29 in the N-terminal domain of syntaxin 4. Furthermore, basolateral targeting of syntaxin 4 is dependent on the epithelial cell-specific clathrin adaptor AP1B. Disruption of the basolateral targeting signal of syntaxin 4 leads to non-polarized delivery to both the apical and basolateral surface, as well as partial intercellular retention in the trans-Golgi network. Importantly, disruption of the basolateral targeting signal of syntaxin 4 leads to the inability of MDCK cells to establish a polarized morphology which suggests that restriction of syntaxin 4 to the basolateral domain is required for epithelial cell polarity.  相似文献   

19.
Urea transport in MDCK cells that are stably transfected with UT-A1   总被引:2,自引:0,他引:2  
Progress in understanding the cell biology of urea transporter proteins has been hampered by the lack of an appropriate cell culture system. The goal of this study was to create a polarized epithelial cell line that stably expresses the largest of the rat renal urea transporter UT-A isoforms, UT-A1. The gene for UT-A1 was cloned into pcDNA5/FRT and transfected into Madin-Darby canine kidney (MDCK) cells with an integrated Flp recombination target site. The cells from a single clone were grown to confluence on collagen-coated membranes until the resistance was >1,500 ·cm2. Transepithelial [14C]urea fluxes were measured at 37°C in a HCO3/CO2 buffer, pH 7.4, with 5 mM urea. The baseline fluxes were not different between unstimulated UT-A1-transfected MDCK cells and nontransfected or sham-transfected MDCK cells. However, only in the UT-A1-transfected cells was UT-A1 protein expressed (as measured by Western blot analysis) and urea transport stimulated by forskolin or arginine vasopressin. Forskolin and arginine vasopressin also increased the phosphorylation of UT-A1. Thionicotinamide, dimethylurea, and phloretin inhibited the forskolin-stimulated [14C]urea fluxes in the UT-A1-transfected MDCK cells. These characteristics mimic those seen in rat terminal inner medullary collecting ducts. This new polarized epithelial cell line stably expresses UT-A1 and reproduces several of the physiological responses observed in rat terminal inner medullary collecting ducts. urea transporter-A1; arginine vasopressin; collecting duct; Madin-Darby canine kidney cells  相似文献   

20.
MDCK (Madin-Darby canine kidney) cells represent a good model of polarized epithelium to investigate the signals involved in the apical targeting of proteins. As reported previously, GPI (glycosylphosphatidylinositol) anchors mediate the apical sorting of proteins in polarized epithelial cells through their interaction with lipid rafts. However, using a naturally N-glycosylated and GPI-anchored protein, we found that the GPI anchor does not influence the targeting of the protein. It is, in fact, the N-glycans that signal the protein to the apical surface. In the present review, the role of N-glycans and GPI anchors as apical signals is discussed along with the putative mechanisms involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号