首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study on the survival of Lecanicillium lecanii conidia in storage at room temperature was carried out. Firstly, drying methods of conidia powder were compared. Vacuum-freeze drying (VFD) was more suitable for drying conidia as compared to vacuum drying (VD) at room temperature. Vacuum-freeze drying for 24-h resulted in a water content of 5.4%, and a viability, determined as germination of conidia in 2% glucose solution after16 h, was 90.3% and the infection in greenhouse whitefly, Trialeurodes vaporariorum was about 94.7% at a dose of 1×108 conidia/mL. Secondly, the factors influencing viability of conidia stored at room temperature were evaluated in the laboratory. Temperature was the most critical factor influencing conidial storage stability, among the tested factors affecting survival of conidia stored at room temperature for 6 months. Both conidial germination and infection of hosts decreased with storage temperature increasing from 15 to 35°C, and at 35°C the survival of stored conidia for 6 months was near zero. The moisture content of the conidial powder was another major factor influencing viability of stored conidia at room temperature. Conidial powder dried to about 5% moisture content showed higher viability than non-dried conidial powder. For the carriers, clay and charcoal were more suitable for storage of L. lecanii conidia at room temperature. At a room temperature of 25°C, L. lecanii conidia which were dried to 5% water content and mixed with clay or charcoal could retain about 50% survival after 6 months' storage.  相似文献   

2.
The effects of drying methods (freeze-, spray-, and fluid bed-drying) on viability of Penicillium frequentans conidia were compared. Viability, estimated by germination of fluid bed- and freeze-dried conidia, was similar to that of fresh conidia. Skimmed milk alone, or in combination with other protectants, was added to conidia before freeze-drying. After the freeze-drying process, all protectants used, except glycerol improved conidial viability. Freeze-dried P. frequentans conidia did not maintain viability after 30 days of storage at room temperature, while conidia dried by fluid bed-drying showed 28% viability following 180 days after drying. This work also demonstrated a relationship between conidial viability after 1 year of storage at room temperature, moisture content after fluid bed-drying and initial weight of sample. Conidial moisture contents must be reduced to 5-15% for optimal storage at room temperature. P. frequentans conidia dried by fluid bed-drying were as effective as fresh conidia in controlling brown rot of peaches.  相似文献   

3.
The per cent viability of Bacillus popilliae after lyophilization of liquid nitrogen frozen cells was determined. Lyophilization of 9- to 12-hr cells which had been suspended in 5% sodium glutamate plus 0.5% gum tragacanth, frozen in liquid nitrogen vapor, and dried 4 to 5 hr with the ampoules exposed to room temperature resulted in survival of 64.6% of the original cells. After storage of these lyophilized preparations for 6 months at room temperature, 10.5% of the original cells were still viable.  相似文献   

4.
An oral killed cholera vaccine containing 1×1011 cells of Vibrio cholerae O1 (heat- or formalin-killed) representing the Ogawa and Inaba biotypes and containing 1 mg of B-subunit of cholera toxin (CTB) produced by recombinant DNA technology (the WC/rCTB vaccine) was subjected to temperatures of 4 C, 30 C or 42 C for up to 6 months time. Lipopolysaccharide antigen (LPS) and CTB content of the vaccine samples determined at various times remained unchanged during the study except for the CTB component which decreased by about 50% after 6 months of storage at 42 C. Immunogenicity determined by immunization of rabbits with the vaccine in Freund's complete adjuvant and measuring anti-LPS and anti-CTB antibody titers in the serum by an ELISA was also found to be unaltered. Lyophilization of the vaccine and storage at room temperature for 7 days also did not have any adverse effect on antigen content or immunogenicity as tested above. There was up to one log reduction in serum antibody titers after immunization without using any adjuvant or using Freund's incomplete adjuvant, and up to two logs following oral immunization. Immunization by oral feeding of the vaccine followed by RITARD challenge with a virulent V. cholerae O1 strain showed evidence of protection against severe or lethal diarrhea. The results suggest that the vaccine retains its antigen content and ability to induce antibodies unchanged when maintained at elevated temperatures for relatively long periods of time.  相似文献   

5.
The Preservation of Bacteriophage by Drying   总被引:1,自引:0,他引:1  
SUMMARY: Two bacteriophages were stored a t room temperature after being dried and recoveries of them were compared with those from broth suspensions which were stored at 4°. The T, phage of Escherichia coli was recovered without loss from both broth and dried material after 30 months. Some loss of C phage of Bacillus meguteriurn occurred on drying but recoveries from the desiccates were much higher than from the broth suspensions after prolonged storage.  相似文献   

6.
A simple high-performance liquid chromatographic method for the simultaneous analysis of quinine and 3-hydroxyquinine in blood samples dried on filter paper is described. Sample preparation involves liquid-liquid extraction with toluene-butanol 75:25 (v/v) followed by evaporation. A reversed-phase liquid chromatography system with fluorescence detection was used. The limit of determination was 10 nM for both quinine and 3-hydroxyquinine and the recovery varied between 78 and 109%. The within- and between-assay coefficients of variation varied between 2-5% and 4-10%, respectively. No loss of either analyte occurred after storage for 2 months at room temperature or at 37 degrees C. This method for sampling has advantages that make it of great value for clinical and pharmacokinetic studies especially in remote regions where storage and transportation is problematic.  相似文献   

7.
AIM: To find a formulation of Epicoccum nigrum conidia that maintains a high viability over time and which proves efficient to biocontrol peach rot caused by Monilinia spp. METHODS AND RESULTS: We tested the effect of stabilizers and desiccants on the shelf-life of Epicoccum nigrum conidia. Conidial samples were dried for 40 min at 40 degrees C in a fluidized bed-dryer to obtain moisture contents <15%. The toxicity of additives was tested by assaying production of conidia in fermentations and germinability of the produced conidia: 50% PEG300, 10%-5% KCl (stabilizers) and 95.24% Cl(2)Ca (desiccant) significantly (P = 0.05) reduced conidial germination. To enhance shelf-life of dried conidia, nontoxic stabilizers were added at the following different stages of the production-drying process: (i) to substrate contained in bags before production, (ii) to conidial centrifuge pellets obtained after production, before filtering and drying, (iii) to conidial centrifuge pellets obtained after production, before adding talc and drying, and (iv) to conidial centrifuge pellets obtained after production, before adding silica powder and drying. Conidial germinability was tested at 0, 180 and 365 days after storage at room temperature. Shelf-life of formulations retaining the highest viability were conidia produced with 1% KCl or 50% PEG 8000, conidia dried with 2.5% methylcellulose, and conidia dried with 1% KCl + silica powder. All these formulations improved the shelf-life of E. nigrum conidia and significantly reduced brown rot on peaches. CONCLUSIONS: Our results show that additives improve the shelf-life of E. nigrum and assist controlling brown rot on peaches. SIGNIFICANCE AND IMPACT OF THE STUDY: New improved formulations of a biocontrol agent have been obtained which will improve the control of Monilinia on peach.  相似文献   

8.
The endoparasitic nematophagous fungus, Esteya vermicola, is a bio-control agent with demonstrated ability to attack pinewood nematode (Bursaphelenchus xylophilus). An optimized solution for the protection and preservation of E. vermicola conidia is needed in order to ensure their survival during transportation, preservation, and application. Five protectants, kaolin, arabinose, sorbitol, PEG8000, and Span 80, were selected from 34 agents. These were incorporated into calcium alginate gel capsules at the following concentrations: 10% kaolin, 0.1% Span 80, 1% arabinose, 5% sorbitol, and 5% PEG8000. The improved diffluent formula contained 69.9% soluble starch, 14% wheat flour, 5% PEG8000, 0.1% span 80, 1% arabinose and 10% skim milk. The viability of E. vermicola conidia preserved in the protectant (5% sorbitol and 20% PEG8000) at six temperatures,–70,–20, 4, 26, 37°C, and room temperature (uncontrolled), was also assessed. The highest viability after storage for one month was achieved at–70°C.  相似文献   

9.
Experiments to determine the conditions necessary for room temperature storage of coconut pollen, particularly of the ‘Jamaica Tall’ variety, are described. Preliminary experiments using the “Speedivac 5 PS freeze-drier” over a wide range of drying times indicated that 15 minutes was better than the longer periods tried, and room temperature storage for periods in excess of three months was recorded. Pre-cooling with dry ice and acetone was found to be unnecessary. Centrifuging during drying lowered drying efficiency and good viability was retained only when initial pollen moisture content was low The effect of longer drying periods with centrifuging have not yet been investigated. The optimum residual moisture content for successful storage at room temperature was found to be in the range 3.5–10.0%. Germination was sometimes improved by exposing the pollen to moist air for two to four hours. Viable seed has been obtained following pollination with freeze-dried pollen; the results of further test pollinations are to be reported later.  相似文献   

10.
The effects of moisture content and temperature on the medium-term (3-4 months) storage of conidia of Metarhizium flavoviride were investigated. Conidia harvested after 24 days of culturing on rice showed greater tolerance to long storage than conidia from 12-day cultures. The moisture content of the conidia was of greatest importance; at harvest from the culture, conidial moisture contents could be 40%, while the optimal moisture content for storage was found to be 4-5%. Dried conidia stored in oil benefited from the addition of dried silica gel, as did conidia stored as powder. A range of mineral oils proved satisfactory for storage, and when dried silica gel was added to suspensions, germination levels were 79.8% after 105 days at 28-32 C. Dried conidia stored in oil maintained germination levels of up to 96 and 85% after 80 days at 10-14 C and 28-32 C respectively. Dried conidia stored as powder retained germination levels of 95% at 10-14 C, but only up to 27% at 28-32 C. In another experiment, dried conidia maintained greater than 90% germination over 128 days, with or without silica gel at 10 - 14 C or -15 - -18 C.  相似文献   

11.
Aims: The survival rate of freeze‐dried cultures is not enough information for technological applications of micro‐organisms. There could be serious metabolic/structural damage in the survivors, leading to a delay time that can jeopardize the design of a rapid biochemical oxygen demand (BOD) metabolic‐based bioassay. Therefore, we will study the metabolic activity (as ferricyanide reduction activity) and the survival rate (as colony‐forming units, CFU) of different Klebsiella pneumoniae freeze‐dried cultures looking for stable metabolic conditions after 35 days of storage. Method and Results: Here, we tried several simple freeze‐drying processes of Kl. pneumoniae. Electrochemical measurements of ferrocyanide and survival rates obtained with the different freeze‐dried cultures were used to choose the best freeze‐drying process that leads to a rapid metabolic‐based bioassay. Conclusions: The use of milk plus monosodium glutamate was the best choice to obtain a Kl. pneumoniae freeze‐dried culture with metabolic stable conditions after storage at ?20°C without the need of vacuum storage and ready to use after 20 min of rehydration. We also demonstrate that the viability and the metabolic activity are not always directly correlated. Significance and Impact of the Study: This study shows that the use of this Kl. pneumoniae freeze‐dried culture is appropriate for the design of a rapid BOD bioassay.  相似文献   

12.
A multiply embedded nucleopolyhedrovirus isolated from Anagrapha falcifera (Kirby) (AfMNPV) can lose insecticidal activity during months of dry storage in ambient room conditions. We tested the spray-dried AfMNPV formulations after storage for up to 1 year at room temperatures for insecticidal activity against neonate Trichoplusia ni (Hübner). Experimental formulations were made using combinations of corn flours, lignin, and sucrose, and were selected based on previous work which demonstrated that these formulations resisted solar degradation in field experiments. Twelve experimental formulations (organized in three groups of four formulations) compared the effect of (1) the ratio of formulation ingredients (lignin and corn flour) to virus concentration, (2) different sources of lignin, or (3) different corn flours and sugar. Based on a single-dose plant assay with these 12 formulations, none of the formulations lost significant activity due to the drying process, when compared with the unformulated wet AfMNPV. Samples of the 12 dried formulations were stored at room (22+/-3 degrees C) and refrigerated (4 degrees C) temperatures. Insecticidal activity (LC(50)) was determined with a dosage-response assay for neonates fed on treated cotton-leaf disks. After 6 (or 9) and 12 months storage, refrigerated samples maintained insecticidal activity better than corresponding samples stored at room temperatures with LC(50)s that averaged 2.0 x 10(6) polyhedral inclusion bodies per milliliter (pibs/ml) for refrigerated samples and 5.4 x 10(6) pibs/ml for samples stored at room temperatures. Compared with unformulated stock virus stored frozen, six formulations stored at room temperature and 10 formulations stored in the refrigerator did not lose significant insecticidal activity after 1 year based on overlapping 90% confidence intervals. Changing the ratio of virus to formulation ingredients did not provide a clear trend over the range of concentrations tested, and may be less important for shelf-life of virus activity compared with formulations made with different ingredients. Two of the four formulations made with different lignins were about 15 times less active after 1 year at room temperature compared with refrigerated samples, indicating that specific formulation ingredients can affect storage stability. Formulations that contained sugar generally maintained activity during storage better than formulations without sugar. Unformulated virus stock maintained insecticidal activity (ranged from 0.20 to 2.5 x 10(6) pibs/ml) better during storage than dried formulations with LC(50)s that ranged from 0.39 to 27 x 10(6) pibs/ml. Unformulated virus stock, which is essentially a suspension of virus occlusion bodies in homogenized insect cadavers, did not lose activity when stored at refrigerated or room temperature. We believe that stability of AfMNPV insecticidal activity during storage as dry formulations is related to the general composition of the formulation and that sugar may play a critical role in maintaining insecticidal activity.  相似文献   

13.
We observed the preservation of microRNAs in unrefrigerated dried serum blots. Preservation was not adversely affected by drying or storing at 37, 45, or 60 °C instead of room temperature, but it was harmed when blots were dried incompletely before storage. Preservation of microRNAs in serum was not diminished if, instead of being kept frozen at −80 °C, it was stored as dried blots at room temperature for 5 months or at 37 °C for 4 weeks. Thus, dried blots can be a convenient and safer way to save, transport, and store serum for microRNA assays.  相似文献   

14.
An adequate shelf-life of mycoherbicidial products is an essential requirement for their acceptance and commercialization. Therefore, attempts were made to study the effects of temperature, granule size, and water activity (R.H./100) on the viability of the encapsulated propagules of Fusarium oxysporum 'Foxy 2' in 'Pesta' granules during storage. 'Pesta' granules were made with different inocula of Foxy 2, including: microconidia; mixture of mycelia and microconidia; fresh and dried chlamydospore-rich biomass. Two sizes of each granular preparation (0.5-2 and 0.25-0.5 mm) were stored in the refrigerator at 4°C as well as at room temperature (21±3°C) for 1 year. Additional samples were also stored at water activities (aw) of 0.12 and 0.41 at 25°C. Regardless of the type of formulated propagules and the granule size, all samples stored at 4°C maintained a significantly higher viability compared to those kept under room temperature. At 4°C, the 'Pesta' preparations with the larger granule size (0.5-2 mm) maintained more viable propagules than those with the smaller one (0.25-0.5 mm) in case of microconidia, mycelia plus microconidia and fresh chlamydospore inoculum after 1 year of storage. Granule size did not affect the viability of the dried chlamydospores. At 25°C, shelf-life of all 'Pesta' granules was significantly prolonged when stored at a low water activity of 0.12 compared to the storage at 0.41 aw. The results of the combined effect of water activity and temperature also revealed clearly that all formulated propagules in 'Pesta' granules retained a significantly higher viability when stored at 0.62 aw and 4°C than at 0.12 aw and 25°C, indicating the most pronounced effect of storage temperature.  相似文献   

15.
The survival and development of cow eggs in the rabbit oviduct after storage at room temperature and after cooling and storage at 0-7-5 degrees C was examined. In PBS medium at room temperature 88% of Day-5 and 85% of Day-3 eggs showed normal development, but in TCM 199, 71% of Day-5 and only 49% of Day-3 eggs showed normal development. Duration of storage (1 1/2-2 hr or 6 1/2-7 1/2 hr) and cleavage stage before storage had no appreciable effect on development. Some retardation of development occurred in Day-3 eggs after 96 hr in the rabbit oviduct when compared to Day-5 eggs after 48 hr. Cooling of Day-5 and Day-6 eggs to 0-7-5 degrees C resulted in degeneration of a large proportion of eggs. Of the factors examined, storage medium (PBS or PBS+20%FCS), storage time (2 min, 24 hr) and storage temperature (0, 2, 5 or 7-5 degrees C) had little effect, but slower cooling rates tended to improve survival of eggs although the differences were not significant. More morulae (greater than 32 cells) than 8-to 24-celled eggs developed normally.  相似文献   

16.
? Premise of the study: Fern spores are unicellular and haploid, making them a potential model system to study factors that regulate lifespan and mechanisms of aging. Aging rates of nongreen spores were measured to compare longevity characteristics among diverse fern species and test for orthodox response to storage temperature and moisture. ? Methods: Aging of spores from 10 fern species was quantified by changes in germination and growth parameters. Storage temperature ranged from ambient room to -196°C (liquid nitrogen); spores were dried to ambient relative humidity (RH) or using silica gel. ? Key results: Survival of spores varied under ambient storage conditions, with one species dying within a year and two species having greater than 50% survival after 3 years. Few changes in germination or growth were observed in spores stored at either -80°C or -196°C over the same 3-yr study period. Spores stored at -25°C aged anomalously quickly, especially those dried to ambient RH or subjected to repeated freeze-thaw cycles. ? Conclusions: Spore longevity is comparable to orthodox seed longevity under ambient storage conditions, with wide variation among species and shelflife extended by drying or cooling. However, faster aging during freezer storage may indicate a similar syndrome of damage experienced by seeds categorized as "intermediate". The damage is avoided by storage at -80°C or liquid nitrogen temperatures, making cryoconservation an effective and broadly applicable tool to extend fern spore longevity. The study demonstrates that spore banks are a feasible approach for ex situ conservation of this important plant group.  相似文献   

17.
The capacity of dried Klebsiella cell-free vaccine, obtained from strain No. 204 by the disintegration of microbial cells with hydroxylamine, for protecting mice from Klebsiella septic infection caused by the homologous serovar and 9 heterologous serovars of K. pneumoniae was studied. The newly developed preparation was found capable of stimulating immunity not only to the homologous K. pneumoniae serovar, but also to other K. pneumoniae heterologous serovars: K1, K9, K11, K16, K20, K61. The protective capacity of the preparation with respect to these serovars was not inferior to that of the vaccines prepared by the same method from the corresponding homologous strains. The capacity of the vaccine to protect mice from Klebsiella sepsis was manifested irrespective of the virulence of the strains used for challenge.  相似文献   

18.
The objective of the present work was to develop a method for the preservation of T. harzianum conidia at room temperature and the immobilised conidia propagation in submerged culture. This was accomplished by immobilising the strain in sodium alginate capsules (white capsules) and subsequently propagating them in a column bubble reactor (green capsules). Three capsule diameters were tested (micro, medium and large capsules), which were produced by emulsion internal gelation and dripping methods. Tested variables were the immobilised conidia propagation in submerged culture for free conidia production, the immobilised conidia viability throughout the time (two years), the resistance of the encapsulated conidia to the UV irradiation of short and long wavelength, and the antagonistic effect of the encapsulated T. harzianum against four phytopathogenic fungi. It was found that the medium capsules (1.5?±?0.3?mm) favoured the massive production of released conidia in submerged culture and that the higher the density of conidia per capsule, the greater the protection against the ultraviolet irradiation. Regarding the conidia preservation in calcium alginate, a viability loss of around 30% was observed two years after storage at environmental temperature in both white and green capsules; along the two years that the viability of conidia was analyzed, the purity of the formulation was corroborated. The results presented here show the efficacy of the green and white capsules for T. harzianum preservation at room temperature for a long period of time.  相似文献   

19.
AIMS: The effects of freeze-drying, spray-drying and fluidized bed-drying on survival of Epicoccum nigrum conidia were compared. METHODS AND RESULTS: Viability of E. nigrum conidia (estimated by measuring its germination) was 100% after fluidized bed-drying and freeze-drying, but it was determined that skimmed milk must be added in the case of freeze-drying conidia. Addition of other protectants (Tween-20, peptone, sucrose, glucose, starch and peptone + starch) to skimmed milk before freeze-drying did not improve the conidial viability which was obtained with skimmed milk alone. Glycerol had a negative effect on the lyophilization of E. nigrum conidia. Epicoccum nigrum conidia freeze-dried with skimmed milk, or fluidized bed-dried alone maintained an initial viability for 30 and 90 days, respectively, for storage at room temperature. Epicoccum nigrum conidial viability after spray-drying was lower than 10%. CONCLUSIONS: The best method to dry E. nigrum conidia was fluidized bed-drying. Conidia without protectants dried by this method had 100% viability and survived for 90 days at room temperature. SIGNIFICANCE AND IMPACT OF STUDY: This paper deals with methods for the potential formulation of a biocontrol agent which is being tested for eventual commercialization.  相似文献   

20.
Mannheimia haemolytica is the principal microorganism responsible for bovine pneumonic pasteurellosis, or shipping fever. We have previously expressed a fragment of leukotoxin, a major virulent factor of M. haemolytica A1, as a fusion protein with green fluorescent protein (GFP) in transgenic white clover and demonstrated that this antigen was immunogenic and elicited toxin neutralizing antibodies in rabbits. These previous results showed that using plants to produce M. haemolytica antigen for use as a vaccine against this disease is a viable strategy. In this present study, we examined the stability of the truncated leukotoxin GFP-fusion protein (Lkt50-GFP) in field-grown transgenic white clover. Transgenic clover expressing Lkt50-GFP was clonally propagated and a confined field trial was established. Western immunoblotting showed that the level of Lkt50-GFP expression in field plants was the same as in transgenic plants maintained under optimal conditions in the greenhouse. We also observed that after harvesting and oven drying at 50 °C, the antigen was still present in the dried clover after 1 year of storage at ambient temperature. As special post-harvest conditions (e.g., refrigeration) are not required, the use of transgenic plants to deliver an oral vaccine against shipping fever appears to be economically feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号