首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy expenditure in muscle comprises reactions related to intermediary metabolism and those of posture and activity. The metabolic reactions respond to a wide range of nutritional and hormonal stimuli and are often apparently co-ordinated; in magnitude, however, their contribution to energy requirements can be minor compared with locomotion and posture. Metabolic reactions include protein turnover, ion transport and substrate cycles. In young ruminants muscle protein synthesis responds to intake but effects on energy expenditure are less pronounced; the situation with the adult is unclear. The involvement of insulin in ruminants may differ from that in monogastrics but effects are observed with thyroid hormones. Ruminant muscle may have a higher energy requirement for Na+, K+ transport which responds in proportion to total oxygen uptake to alterations in intake. Thyroid hormone treatment and, probably, the catecholamines enhance both Na+, K+ and Ca2+ transport. Muscle has fewer substrate cycles than liver and each may contribute only 1-3% toward oxygen consumption. Several are sensitive to insulin, but larger responses are observed with thyroxine and epinephrine and under stress conditions, therefore, may account for significant proportions of heat increment. Energy costs of standing may be considerable and posture movements may change with diet quality and quantity. Locomotory activity may mask changes in the contribution of metabolic reactions in response to different stimuli. Approximately 80% of energy costs for muscle in vivo are accounted for by protein turnover (20-25%), ion transport (25-30%), substrate cycling (5-8%) and standing (30%). Better integration of experiments in vivo and in vitro is required to improve the quantification and resolve data anomalies.  相似文献   

2.
We assessed the effect of short‐term underfeeding on weight and protein mass of splanchnic tissues in adult ewes submitted to a factorial experimental design. In a pre‐experimental period, 18 ewes divided into 2 groups of 9 were fed a second cut of natural grassland hay during 4 weeks at 112 or 38% of their energy maintenance requirements. Three ewes of each group were then fed the same hay during 4 weeks at either low (group L), moderate (group M) or high intake (group H), corresponding to 38, 75 or 112% of their energy maintenance requirements, respectively, then slaughtered. Fresh weight and protein mass of splanchnic organs were measured. No carry‐over effect of the pre‐experimental level of intake on weight and protein mass was observed for any splanchnic organs. Splanchnic tissues contributed at 10.7 and 8.6% to the decrease in live weight for groups M and L, respectively. The decrease in weight of splanchnic tissues (‐15%) was mainly attributed to reticulorumen (‐23%), liver (‐21%), and at a lesser extent small intestine (‐11%). No large change in the mass ratio between mucosa and muscular‐sercsa in both dorsal and ventral sacs occurred in the rumen wall. These results are discussed together with previous published results on long‐term underfed ewes, and suggest that the decrease in energy expenditure in whole animal induced by underfeeding is mainly related to the decrease in splanchnic weight at short‐term, and to the decrease in other tissues at long‐term, splanchnic weight being stabilized.  相似文献   

3.
We studied interindividual variation in body temperature and energy expenditure, the relation between these two, and the effect of mild decrease in environmental temperature (16 vs. 22 degrees C) on both body temperature and energy expenditure. Nine males stayed three times for 60 h (2000-0800) in a respiration chamber, once at 22 degrees C and twice at 16 degrees C, in random order. Twenty-four-hour energy expenditure, thermic effect of food, sleeping metabolic rate, activity-induced energy expenditure, and rectal and skin temperatures were measured. A rank correlation test with data of 6 test days showed significant interindividual variation in both rectal and skin temperatures and energy expenditures adjusted for body composition. Short-term exposure of the subjects to 16 degrees C caused a significant decrease in body temperature (both skin and core), an increase in temperature gradients, and an increase in energy expenditure. The change in body temperature gradients was negatively related to changes in energy expenditure. This shows that interindividual differences exist with respect to the relative contribution of metabolic and insulative adaptations to cold.  相似文献   

4.
Guo J  Hall KD 《PloS one》2011,6(1):e15961
The mouse is an important model organism for investigating the molecular mechanisms of body weight regulation, but a quantitative understanding of mouse energy metabolism remains lacking. Therefore, we created a mathematical model of mouse energy metabolism to predict dynamic changes of body weight, body fat, energy expenditure, and metabolic fuel selection. Based on the principle of energy balance, we constructed ordinary differential equations representing the dynamics of body fat mass (FM) and fat-free mass (FFM) as a function of dietary intake and energy expenditure (EE). The EE model included the cost of tissue deposition, physical activity, diet-induced thermogenesis, and the influence of FM and FFM on metabolic rate. The model was calibrated using previously published data and validated by comparing its predictions to measurements in five groups of male C57/BL6 mice (N = 30) provided ad libitum access to either chow or high fat diets for varying time periods. The mathematical model accurately predicted the observed body weight and FM changes. Physical activity was predicted to decrease immediately upon switching from the chow to the high fat diet and the model coefficients relating EE to FM and FFM agreed with previous independent estimates. Metabolic fuel selection was predicted to depend on a complex interplay between diet composition, the degree of energy imbalance, and body composition. This is the first validated mathematical model of mouse energy metabolism and it provides a quantitative framework for investigating energy balance relationships in mouse models of obesity and diabetes.  相似文献   

5.
Little is known about the role of energy consuming processes during metabolic depression. We have shown that aestivation in the Australian desert frog Neobatrachus centralis is accompanied by an in vivo metabolic depression of 77%. Using an in vitro liver slice preparation, we have measured an in vitro metabolic depression in liver of 55%, with a concomitant 67% decrease in the rate of protein synthesis. The decrease in protein synthesis accounts for 52% of the metabolic depression of the tissue, but only 4.9% of the metabolic depression of the whole animal. No in vitro metabolic depression or decrease in protein synthesis during aestivation was measured in muscle, but a decrease in the low rate of protein synthesis in muscle in vivo could not, in any case, account for more than 3% of the metabolic depression of the whole animal. The liver, although not a quantitatively important tissue in terms of metabolic depression in vivo, offers the opportunity to characterise the regulation of protein synthesis in a system in which metabolic depression is not confounded by changes in ambient temperature and PO2.  相似文献   

6.
Objective: Obesity arises mainly due to the imbalance between energy storage and its expenditure. Metabolically active brown adipose tissue (BAT) has recently been detected in humans and has been proposed as a new target for anti‐obesity therapy because of its unique capacity to regulate energy expenditure. Myostatin (Mst), a negative regulator of muscle mass, has been identified as a potential target to regulate overall body composition. Although the beneficial effects of Mst inhibition on muscle mass are well known, its role in the regulation of lipid metabolism, and energy expenditure is not very clear. Design and Methods: We tested the effects of Mst inhibition on the gene regulatory networks that control BAT differentiation using both in vivo and in vitro model systems. PRDM16 and UCP1, two key regulators of brown fat differentiation were significantly up regulated in levator‐ani (LA) and gastrocnemius (Gastroc) muscles as well as in epididymal (Epi) and subcutaneous (SC) fat pads isolated from Mst knock out (Mst KO) male mice compared with wild type (WT) mice. Results: Using mouse embryonic fibroblast (MEFs) primary cultures obtained from Mst KO group compared to the WT group undergoing adipogenic differentiation, we also demonstrate a significant increase in select genes and proteins that improve lipid metabolism and energy expenditure. Conclusion: Treatment of Mst KO MEFs with recombinant Mst protein significantly inhibited the gene expression levels of UCP1, PRDM16, PGC1‐α/β as well as BMP7. Future studies to extend these findings and explore the therapeutic potential of Mst inhibition on metabolic disorders are warranted.  相似文献   

7.
The utrophin-dystrophin deficient (DKO) mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD). However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL) muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1) and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.  相似文献   

8.
Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.  相似文献   

9.
We sought to determine if decrements in the mass of fat-free body mass (FFM) and other lean tissue compartments, and related changes in protein metabolism, are appropriate for weight loss in obese older women. Subjects were 14 healthy weight-stable obese (BMI > or =30 kg/m(2)) postmenopausal women >55 yr who participated in a 16-wk, 1, 200 kcal/day nutritionally complete diet. Measures at baseline and 16 wk included FFM and appendicular lean soft tissue (LST) by dual-energy X-ray absorptiometry; body cell mass (BCM) by (40)K whole body counting; total body water (TBW) by tritium dilution; skeletal muscle (SM) by whole body MRI; and fasting whole body protein metabolism through L-[1-(13)C]leucine kinetics. Mean weight loss (+/-SD) was 9.6+/-3.0 kg (P<0.0001) or 10.7% of initial body weight. FFM decreased by 2.1+/-2.6 kg (P = 0.006), or 19.5% of weight loss, and did not differ from that reported (2.3+/-0.7 kg). Relative losses of SM, LST, TBW, and BCM were consistent with reductions in body weight and FFM. Changes in [(13)C]leucine flux, oxidation, and synthesis rates were not significant. Follow-up of 11 subjects at 23.7 +/-5.7 mo showed body weight and fat mass to be below baseline values; FFM was nonsignificantly reduced. Weight loss was accompanied by body composition and protein kinetic changes that appear appropriate for the magnitude of body mass change, thus failing to support the concern that diet-induced weight loss in obese postmenopausal women produces disproportionate LST losses.  相似文献   

10.
This study investigated the effects of mild calorie restriction (CR) (5%) on body weight, body composition, energy expenditure, feeding behavior, and locomotor activity in female C57BL/6J mice. Mice were subjected to a 5% reduction of food intake relative to baseline intake of ad libitum (AL) mice for 3 or 4 weeks. In experiment 1, body weight was monitored weekly and body composition (fat and lean mass) was determined at weeks 0, 2, and 4 by dual energy X‐ray absorptiometry. In experiment 2, body weight was measured every 3 days and body composition was determined by quantitative magnetic resonance weekly, and energy expenditure, feeding behavior, and locomotor activity were determined over 3 weeks in a metabolic chamber. At the end of both experiments, CR mice had greater fat mass (P < 0.01) and less lean mass (P < 0.01) compared with AL mice. Total energy expenditure (P < 0.05) and resting energy expenditure (P < 0.05) were significantly decreased in CR mice compared with AL mice over 3 weeks. CR mice ate significantly more food than AL mice immediately following daily food provisioning at 1600 hours (P < 0.01). These findings showed that mild CR caused increased fat mass, decreased lean mass and energy expenditure, and altered feeding behavior in female C57BL/6J mice. Locomotor activity or brown adipose tissue (BAT) thermogenic capacity did not appear to contribute to the decrease in energy expenditure. The increase in fat mass and decrease in lean mass may be a stress response to the uncertainty of food availability.  相似文献   

11.
Maternal metabolism begins to return to homeostasis (re-set) following birth and is accelerated by lactation. Delay in metabolic re-set may contribute to postpartum weight retention and later-life metabolic consequences. Folic acid (FA) is essential during pregnancy but inadequate intakes may alter 1-carbon metabolism, consequently affecting energy homeostatic systems. Our objectives were to examine the effects of FA content 1)below and 2)above requirements during pregnancy on the re-set of body weight, markers of hepatic 1-carbon metabolism and central and peripheral energy metabolic pathways in Wistar rat mothers early post-weaning (PW) compared to pregnant controls. Pregnant Wistar rats were fed an AIN-93G diet with FA at 0X, 1X (control, 2 mg FA/kg) or a range above requirements at 2.5X, 5X or 10X recommended levels then the control diet during lactation up to 1 week PW. Dams fed below (0X) or above (5X and 10X) FA requirements had delayed weight-loss from weaning up to 1 week PW, higher plasma insulin and HOMA-IR and changes in glucose and lipid metabolism-regulating genes in muscle, but not liver or adipose tissue compared to controls. Expression of folate-related genes in liver were lower in high FA fed dams. Central food intake neurons were not affected by FA diets. In conclusion, intakes of FA below (0X) or above (5X, 10X) requirements during pregnancy delayed weight-loss, dysregulated 1-carbon pathways in the liver and peripheral energy metabolic pathways in the Wistar rat mother up to 4 weeks after dietary exposure; potentially programming long-term negative metabolic effects and that of her future offspring.  相似文献   

12.
Severe burn injury evokes hypermetabolism and muscle wasting, despite nominally adequate nutrition. Although there is much information on whole organism and isolated tissue metabolism after burn injury, data examining regional burn hypermetabolism in vivo are lacking. Using surgically implanted (general anesthesia) regional vascular catheters and primed constant infusion of l-[1-(13)C]phenylalanine tracer, we have determined in vivo burn-induced alterations in rabbit hindquarter protein and energy metabolism. Burn injury evokes increased whole body resting energy expenditure and phenylalanine turnover, accompanied by significantly increased hindquarter proteolysis, creating a negative protein balance in burned rabbit hindquarter. Hindquarter oxygen consumption showed an increase after burn injury, but it did not reach statistical significance. Burn-induced changes in hindquarter protein turnover account for approximately one-third of the whole animal hypermetabolism. This model offers a system for regional manipulation of postburn hypermetabolism.  相似文献   

13.
The regulation of adipose tissue mass and energy expenditure is currently subject to intensive research, which primarily relates to the discovery of leptin. Leptin is a peptide, which is the product of the obese (ob) gene expressed in adipose tissue of several species icluding humans. Leptin is supposed to serve both as an index of fat mass and as a sensor of energy balance. Administration of recombinant murine leptin in ob/ob-mice, which do not produce leptin, decreases food intake and increases thermogenesis both of which result in a reduction in body weight and adipose tissue mass. The calorigenic effect of leptin presumably acts through an increase in sympathetic outflow which in turn activates the beta3 adrenergic receptor in brown adipose tissue. The regulation and action of endogenous leptin in humans are less well understood, and clinical grade recombinant human leptin is so far not available. Serum leptin correlates logarithmically with total body fat in both normal weight and obese subjects, which suggest insensitivity to leptin in obese patients. Furthermore, more rapid excursions in serum leptin have been reported following short-term changes in caloric intake and administration of insulin. Growth hormone (GH) exerts pronounced effects on lipid metabolism and resting energy expenditure. The lipolytic actions of GH appear to involve both increased sensitivity to the beta-adrenergic pathway, and a suppression of adipose tissue lipoprotein lipase activity. The calorigenic effects of GH have been shown not only to be secondary to changes in lean body mass. Growth hormone administration furthermore increases the peripheral conversion of thyroxine to triiodothyronine, which may contribute to the overall actions of GH on fuel and energy metabolism. So far, little is known about the effects of GH and iodothyronines on serum leptin levels in humans. We therefore measured serum leptin levels and energy expenditure before and after the administration of GH and triiodothyronine, alone and in combinaion, in a randomized double-blind placebo-controlled study in healthy young male adults. The dose of triiodothyronine was selected to obtain serum levels comparable to those seen after GH administration.  相似文献   

14.
A cascade of morphological, ecological, demographical and behavioural changes operates within island communities compared to mainland. We tested whether metabolic rates change on islands. Using a closed circuit respirometer, we investigated resting metabolic rate (RMR) of three species of Crocidurinae shrews: Suncus etruscus, Crocidura russula, and C. suaveolens. For the latter, we compared energy expenditure of mainland and island populations. Our measurements agree with those previously reported for others Crocidurinae: the interspecific comparison (ANCOVA) demonstrated an allometric relation between energy requirements and body mass. Energy expenditure also scaled with temperature. Island populations (Corsica and Porquerolles) of C. suaveolens differed in size from mainland (gigantism). A GLM showed a significant relationship between energy expenditure, temperature, body mass and locality. Mass specific RMR allometrically scales body mass, but total RMR does not significantly differ between mainland and island, although island shrews are giant. Our results are consistent with other studies: that demonstrated that the evolution of mammalian metabolism on islands is partially independent of body mass. In relation to the insular syndrome, we discuss how island selective forces (changes in resource availability, decrease in competition and predation pressures) can operate in size and physiological adjustments.  相似文献   

15.
Adipose tissue is an important metabolic organ that integrates a wide array of homeostatic processes and is crucial for whole‐body insulin sensitivity and energy metabolism. Brown adipose tissue (BAT) is a key thermogenic tissue with a well‐established role in energy expenditure. BAT dissipates energy and protects against both hypothermia and obesity. Thus, BAT stimulation therapy is a rational strategy for the looming pandemic of obesity, whose consequences and comorbidities have a huge impact on the aged. Shc‐deficient mice (ShcKO) were previously shown to be lean, insulin sensitive, and resistant to high‐fat diet and obesity. We investigated the contribution of BAT to this phenotype. Insulin‐dependent BAT glucose uptake was higher in ShcKO mice. Primary ShcKO BAT cells exhibited increased mitochondrial respiration; increased expression of several mitochondrial and lipid‐oxidative enzymes was observed in ShcKO BAT. Levels of brown fat‐specific markers of differentiation, UCP1, PRDM16, ELOVL3, and Cox8b, were higher in ShcKO BAT. In vitro, Shc knockdown in BAT cell line increased insulin sensitivity and metabolic activity. In vivo, pharmacological stimulation of ShcKO BAT resulted in higher energy expenditure. Conversely, pharmacological inhibition of BAT abolished the improved metabolic parameters, that is the increased insulin sensitivity and glucose tolerance of ShcKO mice. Similarly, in vitro Shc knockdown in BAT cell lines increased their expression of UCP1 and metabolic activity. These data suggest increased BAT activity significantly contributes to the improved metabolic phenotype of ShcKO mice.  相似文献   

16.
Energy budget of juvenile fat snook Centropomus parallelus fed live food   总被引:1,自引:0,他引:1  
The fat snook Centropomus parallelus is a tropical estuarine species with importance for recreational and commercial fisheries and further aquaculture potential. Considering ingested energy (C) is channeled into growth (P), metabolic expenditure (R), excretion (U) and feces (F), a balanced energy budget was established for isolated and grouped juvenile C. parallelus (5.18 to 10.25 g wet mass) by experimental quantification of each of these parameters. Fish were fed live prawn (Macrobrachium sp.) at 25 degrees C and 20 per thousand for 19 days and daily energy budgets could be calculated. Energy content of food (live prawn), fish whole body and feces were 17.7, 14.5 and 6.1 KJ g(-1) dry mass (DW), respectively. Mass-specific rates of oxygen consumption and ammonia-N excretion were 0.271 and 0.0082 mg of O(2) or NH(3)-N g(-1) wet mass (WW) h(-1), respectively, resulting in O:N=23.4. Daily ingestion (C) was dependent on the amount of food offered and ranged between 4.9% to 7.4% of initial wet weight. Growth (P) was positively correlated with initial mass varying from 0.008 to 0.104 g day(-1). Feces release also correlated to fish mass and averaged 9.53 mg dry mass day(-1). The components of energy budget showed mean values of 2.39 (C), 0.24 (P), 1.96 (R), 0.11 (U) and 0.06 (F) KJ ind(-1) day(-1). As percentage of ingested energy, C. parallelus channeled 10% in growth (P), 82% in metabolism (R), 4.6% in excretion (U) and 2.5% in feces (F). Gross (K(1)) and net (K(2)) growth efficiencies were 9.2% and 9.9%, respectively. On the course of this period of juvenile development, K(1) and K(2) increased significantly. Partitioning of ingested energy in P, R, U and F was significantly different in individually and group maintained fish (P<0.05). Energy budget of C. parallelus fed a highly digestible diet (live prawn) revealed poor growth and growth efficiencies (K(1) and K(2)) possibly associated with an elevated metabolic demand and a high channeling of metabolized energy (P+R) into metabolism (R) in both isolated and grouped fish. Data can be applied to ecosystem modeling and may contribute to identify species potential to aquaculture.  相似文献   

17.
Overweight and obesity correspond with metabolic syndromes, such as glucose intolerance and type 2 diabetes. The objective of this study was to determine whether decreased thermogenesis mass and glucose intolerance are directly related to changes in body mass in Mongolian gerbils. High body weight gerbils displayed increase in total body fat mass especially epididymal fat pad, and decrease in nonshivering thermogenesis, as indicated by depressed mitochondrial protein content and uncoupling protein-1 content in brown adipose tissue. No variations of sirtuin 1 and subunit IV of cytochrome oxidase expression were found in brown adipose tissue and skeletal muscle between the two groups. High body weight gerbils showed increased serum leptin and insulin concentrations but surprisingly increased glucose tolerance, suggesting a difference from other obese species in the regulation of glucose metabolism. Serum leptin levels were negatively correlated with UCP1 content in BAT and positively correlated with energy intake and insulin concentration. Our data suggest that leptin may be involved in thermogenesis regulation, insulin secretion and glucose metabolism in HBW gerbils.  相似文献   

18.
The green striped burrowing frog, Cyclorana alboguttata, spends, on average, nine to ten months of every year in aestivation. Recently, C. alboguttata has been the focus of much investigation regarding the physiological processes involved in aestivation, yet our understanding of this frog's capacity to metabolically depress remains limited. This study aimed to extend our current knowledge of metabolic depression during aestivation in C. alboguttata. C. alboguttata reduced whole animal metabolism by 82% within 5 weeks of aestivation. The effects of aestivation on mass specific in vitro tissue metabolic rate (VO2) varied among individual organs, with muscle and liver slices showing significant reductions in metabolism; kidney VO2 was elevated and there was no change in the VO2 of small intestine tissue slices. Organ size was also affected by aestivation, with significant reductions in the mass of all tissues, except the gastrocnemius. These reductions in organ size, combined with changes in mass specific VO2 of tissue slices, resulted in further energy savings to aestivating animals. This study shows that C. alboguttata is capable of selectively down- or up-regulating individual tissues, using both changes in metabolic rate and morphology. This strategy allows maximal energy savings during aestivation without compromising organ functionality and survival at arousal.  相似文献   

19.
Several complementary studies were undertaken on a single species of deep-sea fish (the eel Synaphobranchus kaupii) within a small temporal and spatial range. In situ experiments on swimming and foraging behaviour, muscle performance, and metabolic rate were performed in the Porcupine Seabight, northeast Atlantic, alongside measurements of temperature and current regime. Deep-water trawling was used to collect eels for studies of animal distribution and for anatomical and biochemical analyses, including white muscle citrate synthase (CS), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), and pyruvate kinase (PK) activities. Synaphobranchus kaupii demonstrated whole-animal swimming speeds similar to those of other active deep-sea fish such as Antimora rostrata. Metabolic rates were an order of magnitude higher (31.6 mL kg(-1) h(-1)) than those recorded in other deep-sea scavenging fish. Activities of CS, LDH, MDH, and PK were higher than expected, and all scaled negatively with body mass, indicating a general decrease in muscle energy supply with fish growth. Despite this apparent constraint, observed in situ burst or routine swimming performances scaled in a similar fashion to other studied species. The higher-than-expected metabolic rates and activity levels, and the unusual scaling relationships of both aerobic and anaerobic metabolism enzymes in white muscle, probably reflect the changes in habitat and feeding ecology experienced during ontogeny in this bathyal species.  相似文献   

20.
“The Biggest Loser” weight-loss competition offered a unique opportunity to investigate human energy metabolism and body composition before, during, and after an extreme lifestyle intervention. Here, I reinterpret the results of “The Biggest Loser” study in the context of a constrained model of human energy expenditure. Specifically, “The Biggest Loser” contestants engaged in large, sustained increases in physical activity that may have caused compensatory metabolic adaptations to substantially decrease resting metabolic rate and thereby minimize changes in total energy expenditure. This interpretation helps explain why the magnitude of persistent metabolic adaptation was largest in contestants with the greatest increases in sustained physical activity and why weight-loss interventions involving lower levels of physical activity have not measured similarly large metabolic adaptations. Additional longitudinal studies quantifying the interrelationships between various components of energy expenditure and energy intake are needed to better understand the dynamics of human body weight regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号