首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Organization of the cytoskeleton in early Drosophila embryos   总被引:29,自引:21,他引:8       下载免费PDF全文
The cytoskeleton of early, non-cellularized Drosophila embryos has been examined by indirect immunofluorescence techniques, using whole mounts to visualize the cortical cytoplasm and sections to visualize the interior. Before the completion of outward nuclear migration at nuclear cycle 10, both actin filaments and microtubules are concentrated in a uniform surface layer a few micrometers deep, while a network of microtubules surrounds each of the nuclei in the embryo interior. These two filament-rich regions in the early embryo correspond to special regions of cytoplasm that tend to exclude cytoplasmic particles in light micrographs of histological sections. After the nuclei in the interior migrate to the cell surface and form the syncytial blastoderm, each nucleus is seen to be surrounded by its own domain of filament-rich cytoplasm, into which the cytoskeletal proteins of the original surface layer have presumably been incorporated. At interphase, the microtubules seem to be organized from the centrosome directly above each nucleus, extending to a depth of at least 40 microns throughout the cortical region of cytoplasm (the periplasm). During this stage of the cell cycle, there is also an actin "cap" underlying the plasma membrane immediately above each nucleus. As each nucleus enters mitosis, the centrosome splits and the microtubules are rearranged to form a mitotic spindle. The actin underlying the plasma membrane spreads out, and closely spaced adjacent spindles become separated by transient membrane furrows that are associated with a continuous actin filament-rich layer. Thus, each nucleus in the syncytial blastoderm is surrounded by its own individualized region of the cytoplasm, despite the fact that it shares a single cytoplasmic compartment with thousands of other nuclei.  相似文献   

2.
Summary Changes in the pattern of microtubules during the cell cycle of the hepaticReboulia hemisphaerica (Bryophyta) were studied by indirect immunofluorescence using conventional and confocal laser scanning microscopy (CLSM). The first indication that a cell is preparing for division is fusiform shaping of the nucleus accompanied by the appearance of well-defined polar organizers (POs) at the future spindle poles. Microtubules emanating from the POs ensheath the nucleus and eventually develop into the half-spindles of mitosis. Some of the microtubules from each PO pass tangential to the nucleus and interact in the region of the future mitotic equator. A preprophase band (PPB) forms in this region later in prophase and coexists with the prophase spindle. Thus, the plane of division appears to be determined by interaction of opposing arrays of microtubules emanating from POs. Prometaphase is marked by disappearance of the POs, loss of astral microtubules, and conversion of the fusiform spindle of prophase to a truncated, barrel-shaped spindle more typical of higher plants. Restoration of cortical microtubules in daughter cell occurs on the cell side distal to the new cell plate, but nucleation of microtubules is associated with the nuclear envelope and not with organized POs. At the next division POs appear at opposite poles of preprophase nuclei with no evidence of division and migration that is characteristic of cells with centriolar centrosomes. These data lend additional support for the view that mitosis in hepatics is transitional between green algae and higher plants.Abbreviations AMS axial microtubule system - CLSM confocal laser scanning microscopy - MTOC microtubule organizing center - PO polar organizer - PPB preprophase band of microtubules - QMS quadripolar microtubule system - TEM transmission electron microscopy  相似文献   

3.
Localization of dynein–green fluorescent protein (GFP) to cytoplasmic microtubules allowed us to obtain one of the first views of the dynamic properties of astral microtubules in live budding yeast. Several novel aspects of microtubule function were revealed by time-lapse, three-dimensional fluorescence microscopy. Astral microtubules, about four to six in number for each pole, exhibited asynchronous dynamic instability throughout the cell cycle, growing at 0.3–1.5 μm/min toward the cell surface then switching to shortening at similar velocities back to the spindle pole body (SPB). During interphase, a conical array of microtubules trailed the SPB as the nucleus traversed the cytoplasm. Microtubule disassembly by nocodozole inhibited these movements, indicating that the nucleus was pushed around the interior of the cell via dynamic astral microtubules. These forays were evident in unbudded G1 cells, as well as in late telophase cells after spindle disassembly. Nuclear movement and orientation to the bud neck in S/G2 or G2/M was dependent on dynamic astral microtubules growing into the bud. The SPB and nucleus were then pulled toward the bud neck, and further microtubule growth from that SPB was mainly oriented toward the bud. After SPB separation and central spindle formation, a temporal delay in the acquisition of cytoplasmic dynein at one of the spindle poles was evident. Stable microtubule interactions with the cell cortex were rarely observed during anaphase, and did not appear to contribute significantly to spindle alignment or elongation into the bud. Alterations of microtubule dynamics, as observed in cells overexpressing dynein-GFP, resulted in eventual spindle misalignment. These studies provide the first mechanistic basis for understanding how spindle orientation and nuclear positioning are established and are indicative of a microtubule-based searching mechanism that requires dynamic microtubules for nuclear migration into the bud.  相似文献   

4.
Microtubule drugs, which block cell cycle progression through mitosis, have seen widespread use in cancer chemotherapies. Although microtubules are subject to regulation by signal transduction mechanisms, their pharmacological modulation has so far relied on compounds that bind to the tubulin subunit. A new microtubule pharmacophore, diphenyleneiodonium, causing disassembly of the microtubule cytoskeleton is described here. Although this synthetic compound does not affect the assembly state of purified microtubules, it profoundly suppresses microtubule assembly in vivo, causes paclitaxel-stabilized microtubules to cluster around the centrosomes, and selectively disassembles dynamic microtubules. Similar to other microtubule drugs, this new pharmacophore blocks mitotic spindle assembly and mitotic cell division.  相似文献   

5.
To assemble mitotic spindles, cells nucleate microtubules from a variety of sources including chromosomes and centrosomes. We know little about how the regulation of microtubule nucleation contributes to spindle bipolarity and spindle size. The Aurora A kinase activator TPX2 is required for microtubule nucleation from chromosomes as well as for spindle bipolarity. We use bacterial artificial chromosome-based recombineering to introduce point mutants that block the interaction between TPX2 and Aurora A into human cells. TPX2 mutants have very short spindles but, surprisingly, are still bipolar and segregate chromosomes. Examination of microtubule nucleation during spindle assembly shows that microtubules fail to nucleate from chromosomes. Thus, chromosome nucleation is not essential for bipolarity during human cell mitosis when centrosomes are present. Rather, chromosome nucleation is involved in spindle pole separation and setting spindle length. A second Aurora A-independent function of TPX2 is required to bipolarize spindles.  相似文献   

6.
Early cell biologists perceived centrosomes to be permanent cellular structures. Centrosomes were observed to reproduce once each cycle and to orchestrate assembly a transient mitotic apparatus that segregated chromosomes and a centrosome to each daughter at the completion of cell division. Centrosomes are composed of a pair of centrioles buried in a complex pericentriolar matrix. The bulk of microtubules in cells lie with one end buried in the pericentriolar matrix and the other extending outward into the cytoplasm. Centrioles recruit and organize pericentriolar material. As a result, centrioles dominate microtubule organization and spindle assembly in cells born with centrosomes. Centrioles duplicate in concert with chromosomes during the cell cycle. At the onset of mitosis, sibling centrosomes separate and establish a bipolar spindle that partitions a set of chromosomes and a centrosome to each daughter cell at the completion of mitosis and cell division. Centriole inheritance has historically been ascribed to a template mechanism in which the parental centriole contributed to, if not directed, assembly of a single new centriole once each cell cycle. It is now clear that neither centrioles nor centrosomes are essential to cell proliferation. This review examines the recent literature on inheritance of centrioles in animal cells.Key words: centrosome, centriol, spindle, mitosis, microtubule, cell cycle, checkpoints  相似文献   

7.
BACKGROUND: The regulated assembly of microtubules is essential for bipolar spindle formation. Depending on cell type, microtubules nucleate through two different pathways: centrosome-driven or chromatin-driven. The chromatin-driven pathway dominates in cells lacking centrosomes. RESULTS: Human RHAMM (receptor for hyaluronic-acid-mediated motility) was originally implicated in hyaluronic-acid-induced motility but has since been shown to associate with centrosomes and play a role in astral spindle pole integrity in mitotic systems. We have identified the Xenopus ortholog of human RHAMM as a microtubule-associated protein that plays a role in focusing spindle poles and is essential for efficient microtubule nucleation during spindle assembly without centrosomes. XRHAMM associates both with gamma-TuRC, a complex required for microtubule nucleation and with TPX2, a protein required for microtubule nucleation and spindle pole organization. CONCLUSIONS: XRHAMM facilitates Ran-dependent, chromatin-driven nucleation in a process that may require coordinate activation of TPX2 and gamma-TuRC.  相似文献   

8.
Vertebrate oocytes do not contain centrosomes and therefore form an acentrosomal spindle during oocyte maturation. gamma-Tubulin is known to be essential for nucleation of microtubules at centrosomes, but little is known about the behaviour and role of gamma-tubulin during spindle formation in oocytes. We first observed sequential localization of gamma-tubulin during spindle formation in Xenopus oocytes. gamma-Tubulin assembled in the basal regions of the germinal vesicle (GV) at the onset of germinal vesicle breakdown (GVBD) and remained on the microtubule-organizing centre (MTOC) until a complex of the MTOC and transient-microtubule array (TMA) reached the oocyte surface. Prior to bipolar spindle formation, oocytes formed an aggregation of microtubules and gamma-tubulin was concentrated at the centre of the aggregation. At the late stage of bipolar spindle formation, gamma-tubulin accumulated at each pole. Anti-dynein antibody disrupted the localization of gamma-tubulin, indicating that the translocation described above is dependent on dynein activity. We finally revealed that XMAP215, a microtubule-associated protein cooperating with gamma-tubulin for the assembly of microtubules, but not gamma-tubulin, was phosphorylated during oocyte maturation. These results suggest that gamma-tubulin is translocated by dynein to regulate microtubule organization leading to spindle formation and that modification of the molecules that cooperate with gamma-tubulin, but not gamma-tubulin itself, is important for microtubule reorganization.  相似文献   

9.
Chromosome segregration and cell division requires the regulated assembly of the mitotic spindle apparatus. This mitotic spindle is composed of condensed chromosomes attached to a dynamic array of microtubules. The microtubule array is nucleated by centrosomes and organized by associated structural and motor proteins. Mechanical linkages between sister chromatids and microtubules are critical for spindle assembly and chromosome segregation. Defects in either chromosome or centrosome segregation can lead to aneuploidy and are correlated with cancer progression. In this review, we discuss current models of how centrosomes and chromosomes organize the spindle for their equal distribution to each daughter cell.  相似文献   

10.
Maternally contributed cyclin A and B proteins are initially distributed uniformly throughout the syncytial Drosophila embryo. As dividing nuclei migrate to the cortex of the embryo, the A and B cyclins become concentrated in surface layers extending to depths of approximately 30-40 microns and 5-10 microns, respectively. The initiation of nuclear envelope breakdown, spindle formation, and the initial congression of the centromeric regions of the chromosomes onto the metaphase plate all take place within the surface layer occupied by cyclin B on the apical side of the blastoderm nuclei. Cyclin B is seen mainly, but not exclusively, in the vicinity of microtubules throughout the mitotic cycle. It is most conspicuous around the centrosomes. Cyclin A is present at its highest concentrations throughout the cytoplasm during the interphase periods of the blastoderm cycles, although weak punctate staining can also be detected in the nucleus. It associates with the condensing chromosomes during prophase, segregates into daughter nuclei in association with chromosomes during anaphase, to redistribute into the cytoplasm after telophase. In contrast to the cycles following cellularization, neither cyclin is completely degraded upon the metaphase-anaphase transition.  相似文献   

11.
Centrosome splitting during nuclear elongation in the Drosophila embryo   总被引:1,自引:0,他引:1  
In the early Drosophila embryo, nuclear elongation occurs during cellularization of the syncytial blastoderm. This process is closely related to the presence of microtubular bundles forming a basket-like structure surrounding the nuclei. In immunofluorescence observations with antibodies against alpha-tubulin, the microtubules appear to radiate from two bright foci widely separated from each other. We used electron microscopy to show that these foci are true centrosomes constituted by daughter and parent centrioles orthogonally disposed and surrounded by pericentriolar electrondense material. The centrosomes may be observed in the apical region of the blastoderm cells from the beginning of cellularization until the reestablishment of the first postblastodermic mitosis, when they organize the spindle poles. Until this time the dimensions of the procentrioles remain unchanged. The significance of these results is discussed in relation to the known behavior of centrioles in the cell cycle.  相似文献   

12.
Double labeling of microtubules and actin filaments revealed that in prophase subsidiary mother cells of Zea mays a monopolar prophase microtubule "half-spindle" is formed, which lines the nuclear hemisphere distal to the inducing guard mother cell. The nuclear hemisphere proximal to the guard mother cell is lined by an F-actin cap, consisting of a cortical F-actin patch and actin filaments originating from it. The microtubules of the "half-spindle" decline from the nuclear surface and terminate to the preprophase microtubule band. After disintegration of the latter, a bipolar metaphase spindle is organized. The polar F-actin cap persists during mitosis and early cytokinesis, extending to the chromosomes and the subsidiary cell daughter nucleus. In oryzalin treated subsidiary mother cells the prophase nuclei move away from the polar site. Cytochalasin B and latrunculin-B block the polar migration of subsidiary mother cell nuclei, but do not affect those already settled to the polar position. The prophase nuclei of latrunculin-B treated subsidiary mother cells are globally surrounded by microtubules, while the division plane of latrunculin-B treated subsidiary mother cells is misaligned. The prophase nuclei of brick 1 mutant Zea mays subsidiary mother cells without F-actin patch are also globally surrounded by microtubules. The presented data show that the prophase microtubule "half-spindle"-preprophase band complex anchors the subsidiary mother cell nucleus to the polar cell site, while the polar F-actin cap stabilizes the one metaphase spindle pole proximal to the inducing guard mother cell.  相似文献   

13.
This work focuses on the assembly and transformation of the spindle during the progression through the meiotic cell cycle. For this purpose, immunofluorescent confocal microscopy was used in comparative studies to determine the spatial distribution of alpha- and gamma-tubulin and nuclear mitotic apparatus protein (NuMA) from late G2 to the end of M phase in both meiosis and mitosis. In pig endothelial cells, consistent with previous reports, gamma-tubulin was localized at the centrosomes in both interphase and M phase, and NuMA was localized in the interphase nucleus and at mitotic spindle poles. During meiotic progression in pig oocytes, gamma-tubulin and NuMA were initially detected in a uniform distribution across the nucleus. In early diakinesis and just before germinal vesicle breakdown, microtubules were first detected around the periphery of the germinal vesicle and cell cortex. At late diakinesis, a mass of multi-arrayed microtubules was formed around chromosomes. In parallel, NuMA localization changed from an amorphous to a highly aggregated form in the vicinity of the chromosomes, but gamma-tubulin localization remained in an amorphous form surrounding the chromosomes. Then the NuMA foci moved away from the condensed chromosomes and aligned at both poles of a barrel-shaped metaphase I spindle while gamma-tubulin was localized along the spindle microtubules, suggesting that pig meiotic spindle poles are formed by the bundling of microtubules at the minus ends by NuMA. Interestingly, in mouse oocytes, the meiotic spindle pole was composed of several gamma-tubulin foci rather than NuMA. Further, nocodazole, an inhibitor of microtubule polymerization, induced disappearance of the pole staining of NuMA in pig metaphase II oocytes, whereas the mouse meiotic spindle pole has been reported to be resistant to the treatment. These results suggest that the nature of the meiotic spindle differs between species. The axis of the pig meiotic spindle rotated from a perpendicular to a parallel position relative to the cell surface during telophase I. Further, in contrast to the stable localization of NuMA and gamma-tubulin at the spindle poles in mitosis, NuMA and gamma-tubulin became relocalized to the spindle midzone during anaphase I and telophase I in pig oocytes. We postulate that in the centrosome-free meiotic spindle, NuMA aggregates the spindle microtubules at the midzone during anaphase and telophase and that the polarity of meiotic spindle microtubules might become inverted during spindle elongation.  相似文献   

14.
In centrosome-containing cells, microtubules nucleated at centrosomes are thought to play a major role in spindle assembly. In addition, microtubule formation at kinetochores has also been observed, most recently under physiological conditions in live cells. The relative contributions of microtubule formation at kinetochores and centrosomes to spindle assembly, and their molecular requirements, remain incompletely understood. Using mammalian cells released from nocodazole-induced disassembly, we observed microtubule formation at centrosomes and at Bub1-positive sites on chromosomes. Kinetochore-associated microtubules rapidly coalesced into pole-like structures in a dynein-dependent manner. Microinjection of excess importin-beta or depletion of the Ran-dependent spindle assembly factor, TPX2, blocked kinetochore-associated microtubule formation, enhanced centrosome-associated microtubule formation, but did not prevent chromosome capture by centrosomal microtubules. Depletion of the chromosome passenger protein, survivin, reduced microtubule formation at kinetochores in an MCAK-dependent manner. Microtubule formation in cells depleted of Bub1 or Nuf2 was indistinguishable from that in controls. Our data demonstrate that microtubule assembly at centrosomes and kinetochores is kinetically distinct and differentially regulated. The presence of microtubules at kinetochores provides a mechanism to reconcile the time required for spindle assembly in vivo with that observed in computer simulations of search and capture.  相似文献   

15.
《The Journal of cell biology》1995,131(5):1125-1131
Chromosomes are known to enhance spindle microtubule assembly in grasshopper spermatocytes, which suggested to us that chromosomes might play an essential role in the initiation of spindle formation. Chromosomes might, for example, activate other spindle components such as centrosomes and tubulin subunits upon the breakdown of the nuclear envelope. We tested this possibility in living grasshopper spermatocytes. We ruptured the nuclear envelope during prophase, which prematurely exposed the centrosomes to chromosomes and nuclear sap. Spindle assembly was promptly initiated. In contrast, assembly of the spindle was completely inhibited if the nucleus was mechanically removed from a late prophase cell. Other experiments showed that the trigger for spindle assembly is associated with the chromosomes; other constituents of the nucleus cannot initiate spindle assembly in the absence of the chromosomes. The initiation of spindle assembly required centrosomes as well as chromosomes. Extracting centrosomes from late prophase cells completely inhibited spindle assembly after dissolution of the nuclear envelope. We conclude that the normal formation of a bipolar spindle in grasshopper spermatocytes is regulated by chromosomes. A possible explanation is an activator, perhaps a chromosomal protein (Yeo, J.-P., F. Alderuccio, and B.-H. Toh. 1994a. Nature (Lond.). 367: 288-291), that promotes and stabilizes the assembly of astral microtubules and thus promotes assembly of the spindle.  相似文献   

16.
17.
To study the role of the centrosome in microtubule organization in interphase cells, we developed a method for obtaining cytoplasts (cells lacking a nucleus) that did or did not contain centrosomes. After drug- induced microtubule depolymerization, cytoplasts with centrosomes made from sparsely plated cells reconstituted a microtubule array typical of normal cells. Under these conditions cytoplasts without centrosomes formed only a few scattered microtubules. This difference in degree of polymerization suggests that centrosomes affect not only the distribution but the amount of microtubules in cells. To our surprise, the extent of microtubules assembled increased with the cell density of the original culture. At confluent density, cytoplasts without centrosomes had many microtubules, equivalent to cytoplasts with centrosomes. The additional microtubules were arranged peripherally and differed from the centrosomal microtubules in their sensitivity to nocodazole. These and other results suggest that the centrosome stabilizes microtubules in the cell, perhaps by capping one end. Microtubules with greater sensitivity to nocodazole arise by virtue of change in the growth state of the cell and may represent free or uncapped polymers. These experiments suggest that the spatial arrangement of microtubules may change by shifting the total tubulin concentration or the critical concentration for assembly.  相似文献   

18.
In centrosome-containing cells, microtubules utilized in spindle formation are thought to be nucleated at the centrosome. However, spindle formation can proceed following experimental destruction of centrosomes or in cells lacking centrosomes, suggesting that non-centrosome-associated microtubules may contribute to spindle formation, at least when centrosomes are absent. Direct observation of prometaphase cells expressing GFP-alpha-tubulin shows that peripheral, non-centrosome-associated microtubules are utilized in spindle formation, even in the presence of centrosomes. Clusters of peripheral microtubules moved into the centrosomal region, demonstrating that a centrosomal microtubule array can be composed of both centrosomally nucleated and peripheral microtubules. Peripheral bundles also moved laterally into the forming spindle between the spindle poles; 3D reconstructions of fixed cells reveal interactions between peripheral and centrosome-associated microtubules. The spindle pole component NuMA and gamma-tubulin were present at the foci of peripheral microtubule clusters, indicating that microtubules moved into the spindle with minus ends leading. Photobleach- and photoactivation-marking experiments of cells expressing GFP-tubulin or a photoactivatable variant of GFP-tubulin, respectively, demonstrate that microtubule motion into the forming spindle results from transport and sliding interactions, not treadmilling. Our results directly demonstrate that non-centrosome-associated microtubules contribute to spindle formation in centrosome-containing cells.  相似文献   

19.
We recently described the identification of a centrosome/spindle pole associated protein, CSPP, involved in cell cycle progression. Here we report a CSPP isoform denoted CSPP-L, with a 294 amino acids longer N-terminus and a 51 amino acids insertion located in the coiled-coil mid-domain. Expression analysis indicates an inverse cell cycle dependent regulation. CSPP mRNA expression is highest in G1 whereas CSPP-L expression is highest in G2/M. Ectopic expression of CSPP-L impairs cell cycle progression weaker in G1 than CSPP. Furthermore, normal mitotic phenotypes were observed in CSPP-L but not in CSPP transfectants. CSPP-L relocates from spindle microtubules and poles in metaphase to the mid-spindle in anaphase and concentrates at the mid-body in telophase/cytokinesis. CSPP-L high-expressing mitotic cells were predominantly characterized by lagging chromosomes or monopolar spindles, in contrast to the predominant multipolar spindles observed with CSPP expression. The different effects of CSPP and CSPP-L on microtubule organization in mitosis depend on the coiled-coil mid-domain insertion. The common C-terminal domain is required to repress that activity until mitosis. Notably, this C-terminal domain alone can associate with centrosomes in a microtubule independent manner. Taken together, CSPP and CSPP-L interact with centrosomes and microtubules and can differently affect microtubule organization.  相似文献   

20.
In the early development of the frog, Xenopus laevis, blastomeres undergo synchronous divisions at about the 12th cell cycle, followed by asynchronous divisions, which is referred to as mid-blastula transition (MBT). We investigated the distribution of several regulating factors for cell cycles around MBT using immunocytochemistry and confocal fluorescence microscopy. At the 8th cell cycle, most of the cdc2/cyclin B was localized in the cortical cytoplasm throughout the cell cycle, in the centrosomes and the nucleus at interphase and prometaphase, and in the spindles at metaphase and anaphase. Cdc2 was also localized in the chromatins at metaphase and anaphase. Cyclin B1 mRNA was localized in the periphery of the nucleus, but not in the cell cortex. At the 13th cell cycle, the amount of cdc2/cyclin B in the cortical cytoplasm decreased, and the inactive form of cdc2, phosphorylated at tyrosine 15, appeared in the nucleus and the centrosomes at interphase, indicating that the regulation of cdc2 by phosphorylation occurs around MBT. When the blastomeres were treated with nocodazole or latrunculin A at the 8th cell cycle, the amount of cortical cdc2 decreased, but that of cyclin B did not change. The cortical localization of cdc2 is dependent upon both microtubules and microfilaments. Most of the cdc27 was localized in the centrosomes, and in the spindle poles, but no significant difference was observed between the 8th and the 13th cell cycles. It is possible that the cortical MPF activity is regulated by the differential localization between cdc2 and cyclin B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号