首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microarray for influenza A neuraminidase subtyping was presented. Selection of oligoprobes proceeded in two steps. First step included selection of peptides specific for each subtype of neuraminidase. At the second step oligoprobes were calculated using found peptides structures with the subsequent additional selection of the most specific and representative probes. From 19 to 24 probes were used for determination of each subtype of neuraminidase. Microchip testing for 19 samples with the most widespread types (N1 and N2) specifies in unequivocal definition 18 of them and only one isolate has not been identified.  相似文献   

2.
A universal microchip was developed for genotyping Influenza A viruses. It contains two sets of oligonucleotide probes allowing viruses to be classified by the subtypes of hemagglutinin (H1-H13, H15, H16) and neuraminidase (N1-N9). Additional sets of probes are used to detect H1N1 swine influenza viruses. Selection of probes was done in two steps. Initially, amino acid sequences specific to each subtype were identified, and then the most specific and representative oligonucleotide probes were selected. Overall, between 19 and 24 probes were used to identify each subtype of hemagglutinin (HA) and neuraminidase (NA). Genotyping included preparation of fluorescently labeled PCR amplicons of influenza virus cDNA and their hybridization to microarrays of specific oligonucleotide probes. Out of 40 samples tested, 36 unambiguously identified HA and NA subtypes of Influenza A virus.  相似文献   

3.
An oligonucleotide microarray for influenza A hemagglutinine subtyping was presented. The number of probes for determination of each subtype hemagglutinine (H1-H13, H15, H16, pandemic flu H1N1)varied from 13 to 28. When testing of the microarray using 40 type A influenza virus isolates the hemagglutinin subtypes were unambiguously determined for 36 specimens.  相似文献   

4.
An oligonucleotide microarray for influenza A hemagglutinin subtyping was presented. The number of probes for the determination of each subtype of hemagglutinin (H1-H13, H15, H16, pandemic flu H1N1) varied from 13 to 28. When testing the microarray using 40 type-A influenza virus isolates, the hemagglutinin subtypes were unambiguously determined for 36 specimens.  相似文献   

5.
An oligonucleotide microarray was developed for diagnostics of human pathogenic influenza-A virus subtypes. It contained discriminating probes for H1, H2, H3, H5, H7, and H9 subtypes of hemagglutinin and for N1, N2, and N7 subtypes of neuraminidase. An additional set of probes was used for revealing the M-gene of the influenza-A virus. The proposed microarray was tested on samples of pathogenic H5N1 avian influenza virus, pandemic H1N1 swine influenza virus, and seasonal H1N1 and H3N2 influenza viruses. The microarray can be used for the analysis both of cultivated strains and clinical specimens.  相似文献   

6.
Food-borne pathogens are a major health problem. The large and diverse number of microbial pathogens and their virulence factors has fueled interest in technologies capable of detecting multiple pathogens and multiple virulence factors simultaneously. Some of these pathogens and their toxins have potential use as bioweapons. DNA microarray technology allows the simultaneous analysis of thousands of sequences of DNA in a relatively short time, making it appropriate for biodefense and for public health uses. This paper describes methods for using DNA microarrays to detect and analyze microbial pathogens. The FDA-1 microarray was developed for the simultaneous detection of several food-borne pathogens and their virulence factors including Listeria spp., Campylobacter spp., Staphylococcus aureus enterotoxin genes and Clostridium perfringens toxin genes. Three elements were incorporated to increase confidence in the microarray detection system: redundancy of genes, redundancy of oligonucleotide probes (oligoprobes) for a specific gene, and quality control oligoprobes to monitor array spotting and target DNA hybridization. These elements enhance the reliability of detection and reduce the chance of erroneous results due to the genetic variability of microbes or technical problems with the microarray. The results presented demonstrate the potential of oligonucleotide microarrays for detection of environmental and biodefense relevant microbial pathogens.  相似文献   

7.
甲型流感病毒流行毒株检测和分型基因芯片的研制   总被引:1,自引:0,他引:1  
【目的】研制一种可同时对甲型流感病毒H1N1、H1N2、H3N2、H5N1和H9N2等5种流行亚型进行检测和分型的基因芯片。【方法】根据National Center for Biotechnology Information中Influenza Virus Resource数据库,针对H1N1、H1N2、H3N2、H5N1和H9N2等5种亚型甲型流感病毒的HA和NA基因设计46条特异性寡核苷酸探针和1条质控探针,点制成基因芯片。利用通用引物扩增流感病毒HA和NA基因,使用Klenow酶对扩增产物进行荧光标记和片段化,将标记后产物和芯片杂交,清洗、扫描后根据荧光信号判定检测结果。用18株不同种属来源的甲型流感病毒分离毒株和186份咽拭子对芯片特异性、敏感性和临床应用进行初步评价。【结果】所有18株分离毒株均能被芯片准确检测并分型,芯片检测灵敏度能达约1×104个病毒基因拷贝。同时8份咽拭子检测结果为H1N1阳性,4份咽拭子为H3N2阳性。【结论】研究表明该芯片具有较高的特异性和灵敏度,可为甲型流感病毒的监测提供一种有效的方法。  相似文献   

8.
The nature of amino acid replacements in 16 drift variants of hemagglutinin H3 subtype and 5 drift variants of neuraminidase N2 subtype of the influenza A virus were studied. The dependences of relative replacement frequencies and relative quantities of frequent replacements upon differences of properties of substituted residues are plotted. In contrast to most of the known proteins, amino acid replacements in hemagglutinin and neuraminidase depend weakly on the physico-chemical parameters of amino acids. For the antigenic determinants studied the replacement frequencies were compared to those calculated according to two models: one for conservative replacements and the other for accidental mutation of the genetic code. The differences in the nature of amino acid replacements are found in four antigenic determinants of hemagglutinin. The replacements in experimentally selected proteins are shown to go beyond limitations of natural variants. The explanations of the reasons of low epidemicity of some strains and ineffective attempt to imitate the natural antigenic drift of viruses by using experimental selection are proposed. The causes of time-limited circulation of H3N2 influenza virus subtype are discussed.  相似文献   

9.
探讨研制能同时检测HBV、HCV、HIV、HAV、GBV-C/HGV和B19的微阵列监控芯片。根据病毒公开发表序列,序列比对,得出保守区域,设计病毒的特异性检测探针,同时设置阴性、阳性参照探针,制备监控微阵列。利用随机引物PCR方法标记样品中的病毒靶序列,标记产物与微阵列上的探针杂交,清洗、扫描后进行结果分析。通过对质粒或模式分子的检测以及经HBV、HCV、HIV临床标本的验证,发现该微阵列监控芯片具有良好的特异性。其对质粒的检测灵敏度可达102病毒拷贝数,对临床标本的检测灵敏度可达103病毒拷贝数。此外,该微阵列监控芯片可检测出病毒混合感染血清。为微阵列监控芯片应用于此六种血液病毒的检测打下一定的基础。  相似文献   

10.
利用基因芯片技术区分禽流感病毒主要亚型   总被引:1,自引:0,他引:1  
[目的]研制可同时区分AIV的H5、H7、H9血凝素亚型及N1、N2神经氨酸酶亚型的基因诊断芯片.[方法]分别克隆了禽流感病毒的M基因,H5、H7、H9亚型HA基因,N1、N2亚型NA基因以及看家基因GAPDH的重组质粒.以重组质粒为模板,用PCR方法扩增制备探针,纯化后点于氨基修饰的片基上,制备基因芯片.在PCR过程中对待检样品进行标记,然后与芯片杂交,洗涤,扫描并进行结果分析.[结果]结果显示检测探针可特异性的与相应的标记样品进行杂交,呈现较强的杂交信号,且无交叉杂交.同时用RT-PCR、鸡胚接种和基因芯片方法对H1-H15亚型AIV参考毒株、30份人工感染样品、21份现地疑似样品进行检测,结果发现,对人工感染样品芯片检测方法与鸡胚接种和RT-PCR的符合率分别为100%和96%,现地样品符合率为100%.[结论]研究表明该方法可用于同步鉴别部分主要流行的禽流感亚型,是一种有效的新方法.  相似文献   

11.
The results of molecular analysis of 15 influenza A(H3N2) and 17-A(H1N1) epidemic strains isolated in the Russian Federation in 1995-2007 are described. The analysis on the M2 and neuraminidase influenza A virus genes was performed. The M2 sequences analysis among the remantadin resistant viruses demonstrated the S31N substitution in all strains. Besides S31N substitution, additional mutations were detected in both proteins. Mutations associated with S31N substitution were detected in each virus subtype, which may be considered as new markers for the identification of remantadin-resistant strains. The sequencing of the NA segments from all viruses showed no amino acid substitutions known to cause resistance to neuraminidase inhibitors, which indicates susceptibility to NA inhibitors among the strains.  相似文献   

12.
利用基因芯片技术筛选HIV-1F亚型基因限制性显示探针   总被引:2,自引:0,他引:2  
为筛选限制性显示技术制备的HIV 1F亚型基因探针 ,应用基因芯片打印仪将其有序地打印在玻片上制备基因芯片 .在随机引物延伸的过程中进行HIV样品的荧光标记 ,然后与芯片进行杂交 .杂交后清洗玻片并干燥 ,对芯片进行扫描 ,分析各探针的杂交信号 .从中筛选了 14个基因片段作为芯片下一步研究的探针 .实验证明 ,限制性显示技术是一种制备基因芯片探针的实用方法  相似文献   

13.
制备丙型肝炎病毒(HCV) 1b亚型诊断芯片并进行初步验证评价.采用cDNA文库法制备探针,用限制性内切酶Sau3AⅠ消化HCV 1b全长cDNA ,所得的酶切片段72℃补平加A ,AT克隆,PCR初步鉴定,并测序.将筛选出的片段打印在氨基修饰的玻片上制备成检测芯片并进行杂交验证分析.运用cDNA文库法,得到2 2个大小相对一致(2 5 0~75 0bp)的基因片段.序列分析表明,均属于HCV 1b基因,可以作为诊断芯片探针;样品标记采用限制性显示(restrictiondisplay ,RD)技术,标记后进行杂交.杂交结果显示,样品和诊断基因芯片杂交的敏感性和特异性均佳.批内和批间精密度CV值分别为5 4 %和6 8% ,表明用cDNA文库法收集片段是一种快速、简便制备芯片探针的实用方法.  相似文献   

14.
We developed multiplex RT-PCR assays that can detect and identify 12 hemagglutinin (H1-H12) and 9 neuraminidase (N1-N9) subtypes that are commonly isolated from avian, swine, and human influenza A viruses. RT-PCR products with unique sizes characteristic of each subtype were amplified by multiplex RT-PCRs, and sequence analysis of each amplicon was demonstrated to be specific for each subtype with 24 reference viruses. The specificity was demonstrated further with DNA or cDNA templates from 7 viruses, 5 bacteria, and 50 influenza A virus negative specimens. Furthermore, the assays could detect and subtype up to 105 dilution of each of the reference viruses that had an original infectivity titer of 106 EID50/ml. Of 188 virus isolates, the multiplex RT-PCR results agreed completely with individual RT-PCR subtyping results and with results obtained from virus isolations. Furthermore, the multiplex RT-PCR methods efficiently detected mixed infections with at least two different subtypes of influenza viruses in one host. Therefore, these methods could facilitate rapid and accurate subtyping of influenza A viruses directly from field specimens.  相似文献   

15.
The amplification refractory mutation system (ARMS) is routinely used for the identification of specific mutations within genomes. This PCR-based assay, although simple, is performed at a low-throughput scale, usually requiring gel-electrophoresis for the identification of specific mutations. We have applied the ARMS technology to a low-density microarray system to facilitate the needs of the medical clinic; high-throughput capabilities and ease-of-use. Mutations within the cystic fibrosis transmembrane regulator (CFTR) gene (DeltaF508, 1717-1G>A, G542X, 621+1G>T, and N1303K) were detected by multiplex-ARMS-PCR, and fragments were post-PCR labeled with Cy5. Amine-modified probes specific for both the wild-type and mutant forms of each mutation site were attached to glass substrates. Following hybridization of the PCR fragments to the attached probes (in a low-density microarray format), confirmation of the presence of specific sequences was achieved using a commercial scanner, as well as a fabricated low-cost fluorescent detector and applicable software. The novel combination of the ARMS and low-density microarray technologies allows for a high-throughput, simple means to rapidly identify multiple known mutations for many genetic diseases including cystic fibrosis.  相似文献   

16.
The microchip for influenza A subtyping working on the ??one spot-one subtype?? principle was developed. Each spot contains a set of oligonucleotide probes specific for particular subtypes of hemagglutinin, neuraminidase and matrix protein (influenza A marker). Reliability of the proposed chip is the same as for the full-size microchip for separate hemagglutinin and neuraminidase typing which was created in our group earlier. The image was visualized by labeling the analyzed nucleic acid by either fluorescent dye or biotin with the following fixation in streptavidin-gold nanoparticles and development by silver precipitation. In the second case, the image was analyzed using an ordinary scanner that essentially simplifies influenza A subtyping.  相似文献   

17.
In the present study, the possible evidence of positive selection was analyzed for the neuraminidase (NA) sequences of Guangxi H5N1 strains of China. Based on an overall site-specific positive selection analysis, it was found that NA gene of H5N1 Guangxi strains underwent purifying selection and no significant positively selected sites were identified. For the branch-specific positive selection analysis, there was no positive selection evidence for the branches leading to different poultry hosts (chicken, duck and goose). Conclusively, positive selection seems not possible (if not rare) for the NA gene in influenza H5N1 subtype, at least for the samples found in Guangxi Province of China.  相似文献   

18.
In this study, we present a microarray approach for the typing of influenza A and B viruses, and the subtyping of H1 and H3 subtypes. We designed four pairs of specific multiplex RT-PCR primers and eight specific oligonucleotide probes and prepared microarrays to identify the specific subtype of influenza virus. Through amplification and fluorescent marking of the multiplex RT-PCR products on the M gene of influenza A and B viruses and the HA gene of subtypes H1 and H3, the PCR products were hybridized with the microarray, and the results were analyzed using a microarray scanner. The results demonstrate that the chip developed by our research institute can detect influenza A and B viruses specifically and identify the subtypes H1 and H3 at a minimum concentration of 1 × 102 copies/μL of viral RNA. We tested 35 clinical samples and our results were identical to other fluorescent methods. The microarray approach developed in this study provides a reliable method for the monitoring and testing of seasonal influenza.  相似文献   

19.
禽流感病毒分型基因芯片的研制   总被引:11,自引:0,他引:11  
[目的]禽流感病毒是一种全球重要的人和动物呼吸道病病原,快速确定其不同亚型对于全球流感监测具有重要的意义.本研究意在研制一种可同时鉴定禽流感病毒所有亚型的方法.[方法]根据GenBank上已发表的禽流感病毒不同亚型(16个HA亚型和9个NA亚型)的基因序列,设计合成了25对特异性引物和1对通用引物,然后以各亚型病毒的参考株RNA作为模板,建立扩增不同亚型的多重RT-PCR方法.参考各亚型病毒靶cDNAs区域的保守序列设计了52条亚型特异的探针,进而利用扩增的各亚型病毒的靶cDNAs对其特异性进行评价.在此基础上,将设计好的探针点制到处理好的玻片上,制备了禽流感病毒分型鉴定基因芯片,结合所建立的扩增不同亚型的多重RT-PCR方法,开发了禽流感病毒亚型鉴定基因芯片试剂.利用收集自49个地区的2653份标本对其特异性和敏感性进行了初步评价.[结果]用于评价的各亚型参考毒株均出现良好的特异性杂交信号,检测的敏感度可达2.47 PFU/mL或2.5 ng靶DNA片段,而且与禽类常见的IBV、NDV等6种病毒均无交叉反应.[结论]证明该病毒分型基因芯片具有良好的特异性、敏感性.  相似文献   

20.
根据已知H5N1亚型禽流感病毒神经氨酸酶基因(na)序列设计、合成克隆引物。自H5N1亚型病毒感染的鸡胚尿囊液中提取总RNA,反转录后采用高可信度DNA聚合酶(PyobestTMDNAPolymerase)扩增na基因,采用Invitrogen定向表达系统(ChampionTMpETdirectionalTOPOexpressionsystem)进行克隆表达,纯化获得N末端携带多聚组氨酸标签的重组神经氨酸酶,分子量约53.8kDa。分析重组NA的免疫反应性和免疫原性,结果表明:重组NA能与H5N1亚型病毒抗血清发生特异性结合,且其免异动物后能诱导机体产生特异性抗体,具有良好的抗原性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号