首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Arabidopsis KRYPTONITE gene encodes a member of the Su(var)3-9 family of histone methyltransferases. Mutations of kryptonite cause a reduction of methylated histone H3 lysine 9, a loss of DNA methylation, and reduced gene silencing. Lysine residues of histones can be either monomethylated, dimethylated or trimethylated and recent evidence suggests that different methylation states are found in different chromatin domains. Here we show that bulk Arabidopsis histones contain high levels of monomethylated and dimethylated, but not trimethylated histone H3 lysine 9. Using both immunostaining of nuclei and chromatin immunoprecipitation assays, we show that monomethyl and dimethyl histone H3 lysine 9 are concentrated in heterochromatin. In kryptonite mutants, dimethyl histone H3 lysine 9 is nearly completely lost, but monomethyl histone H3 lysine 9 levels are only slightly reduced. Recombinant KRYPTONITE can add one or two, but not three, methyl groups to the lysine 9 position of histone H3. Further, we identify a KRYPTONITE-related protein, SUVH6, which displays histone H3 lysine 9 methylation activity with a spectrum similar to that of KRYPTONITE. Our results suggest that multiple Su(var)3-9 family members are active in Arabidopsis and that dimethylation of histone H3 lysine 9 is the critical mark for gene silencing and DNA methylation.  相似文献   

2.
3.
Olivier Binda 《Epigenetics》2013,8(5):457-463
Lysine methylation of histones and non-histone proteins has emerged in recent years as a posttranslational modification with wide-ranging cellular implications beyond epigenetic regulation. The molecular interactions between lysine methyltransferases and their substrates appear to be regulated by posttranslational modifications surrounding the lysine methyl acceptor. Two very interesting examples of this cross-talk between methyl-lysine sites are found in the SET (Su(var)3–9, Enhancer-of-zeste, Trithorax) domain-containing lysine methyltransferases SET7 and SETDB1, whereby the histone H3 trimethylated on lysine 4 (H3K4me3) modification prevents methylation by SETDB1 on H3 lysine 9 (H3K9) and the histone H3 trimethylated on lysine 9 (H3K9me3) modification prevents methylation by SET7 on H3K4. A similar cross-talk between posttranslational modifications regulates the functions of non-histone proteins such as the tumor suppressor p53 and the DNA methyltransferase DNMT1. Herein, in cis effects of acetylation, phosphorylation, as well as arginine and lysine methylation on lysine methylation events will be discussed.  相似文献   

4.
Methylation of position-specific lysine residues in histone N termini is a central modification for regulating epigenetic transitions in chromatin. Each methylatable lysine residue can exist in a mono-, di-, or trimethylated state, thereby extending the indexing potential of this particular modification. Here, we examine all possible methylation states for histone H3 lysine 9 (H3-K9) and lysine 27 (H3-K27) in mammalian chromatin. Using highly specific antibodies together with quantitative mass spectrometry, we demonstrate that pericentric heterochromatin is selectively enriched for H3-K27 monomethylation and H3-K9 trimethylation. This heterochromatic methylation profile is dependent on the Suv39h histone methyltransferases (HMTases) but independent of the euchromatic G9a HMTase. In Suv39h double null cells, pericentric heterochromatin is converted to alternative methylation imprints and accumulates H3-K27 trimethylation and H3-K9 monomethylation. Our data underscore the selective presence of distinct histone lysine methylation states in partitioning chromosomal subdomains but also reveal a surprising plasticity in propagating methylation patterns in eukaryotic chromatin.  相似文献   

5.
Mammalian telomeres have heterochromatic features, including trimethylated histone H3 at lysine 9 (H3K9me3) and trimethylated histone H4 at lysine 20 (H4K20me3). In addition, subtelomeric DNA is hypermethylated. The enzymatic activities responsible for these modifications at telomeres are beginning to be characterized. In particular, H4K20me3 at telomeres could be catalyzed by the novel Suv4-20h1 and Suv4-20h2 histone methyltransferases (HMTases). In this study, we demonstrate that the Suv4-20h enzymes are responsible for this histone modification at telomeres. Cells deficient for Suv4-20h2 or for both Suv4-20h1 and Suv4-20h2 show decreased levels of H4K20me3 at telomeres and subtelomeres in the absence of changes in H3K9me3. These epigenetic alterations are accompanied by telomere elongation, indicating a role for Suv4-20h HMTases in telomere length control. Finally, cells lacking either the Suv4-20h or Suv39h HMTases show increased frequencies of telomere recombination in the absence of changes in subtelomeric DNA methylation. These results demonstrate the importance of chromatin architecture in the maintenance of telomere length homeostasis and reveal a novel role for histone lysine methylation in controlling telomere recombination.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
How long organisms live is not entirely written in their genes. Recent findings reveal that epigenetic factors that regulate histone methylation, a type of chromatin modification, can affect lifespan. The reversible nature of chromatin modifications suggests that therapeutic targeting of chromatin regulators could be used to extend lifespan and healthspan. This review describes the epigenetic regulation of lifespan in diverse model organisms, focusing on the role and mode of action of chromatin regulators that affect two epigenetic marks, trimethylated lysine 4 of histone H3 (H3K4me3) and trimethylated lysine 27 of histone H3 (H3K27me3), in longevity.  相似文献   

15.
16.
Xiong J  Wang H  Guo G  Wang S  He L  Chen H  Wu J 《PloS one》2011,6(6):e20751
Multiglycosides of Tripterygium wilfordii Hook f (GTW), a Chinese herb-derived medicine used as a remedy for rheumatoid arthritis, are considered to be a reversible anti-fertility drug affecting the mammalian spermatids. However, the mechanism behind this effect is still unknown. To study the possible mechanism behind the impact of GTW on spermatogenesis, we administered 4 groups of 4-week-old male mice with different doses of GTW. We found a dose-dependent decrease in the number of germ cells after 40 days of GTW treatment, and an increase in apoptotic cells from the low-dose to the high-dose group. During this same period the dimethylated level of histone H3 lysine 9 (H3K9me2) in GTW-treated testes germ cells declined. Additionally, spermatogonial stem cells (SSCs) from 6-day-old mice were isolated to evaluate the possible effect of GTW or triptolide on development of SSCs. We found a significantly higher incidence of apoptosis and lower dimethylation level of H3K9me2 in the SSCs of GTW or triptolide treatment than in controls. Thus, these data suggest that the GTW-induced apoptosis might be responsible for the fertility impairment in mice. This damage could be traced back to the early stages of spermatogenesis. GTW also affected the epigenetic modification of H3K9 in spermatogenesis. Molecular dynamics simulation suggested that triptolide and dimethylated or trimethylated H3K9 might have similar interaction mechanisms with EED (embryonic ectoderm development). These candidate activation mechanisms provide the first glimpse into the pathway of GTW-induced gonad toxicity, which is crucial for further research and clinical application.  相似文献   

17.
Methylation of histone tails is a key determinant in forming active and silent states of chromatin. Histone methylation was regarded as irreversible until the recent identification of a lysine-specific histone demethylase (LSD1), which acts specifically on mono- and dimethylated histone H3 lysine 4. Here, we propose that the fission yeast protein Epe1 is a putative histone demethylase that could act by oxidative demethylation. Epe1 modulates the stability of silent chromatin and contains a JmjC domain. The Epe1 protein can be modelled onto the structure of the 2-oxoglutarate-Fe(II)-dependent dioxygenase, factor inhibiting hypoxia inducible factor (FIH), which is a protein hydroxylase that also contains a JmjC domain. Thus, Epe1 and certain other chromatin-associated JmjC-domain proteins may be protein hydroxylases that catalyse a novel histone modification. Another intriguing possibility is that, by hydroxylating the methyl groups, Epe1 and certain other JmjC-domain proteins may be able to demethylate mono-, di- or trimethylated histones.  相似文献   

18.
《Theriogenology》2011,75(9):1539-1547
Aging decreases the fertility of mammalian females. In old oocytes at metaphase II stage (MII) there are alterations of the chromatin configuration and chromatin modifications such as histone acetylation. Recent data indicate that alterations of histone acetylation at MII initially arise at germinal vesicle stage (GV). Therefore, we hypothesized that the chromatin configuration and histone methylation could also change in old GV oocytes. In agreement with our hypothesis, young GV oocytes had non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) chromatin configurations, while old GV oocytes also had chromatin configurations that could not be classified as NSN or SN. Regarding histone methylation, young GV and MII oocytes showed dimethylation of lysines 4, 9, 36 and 79 in histone 3 (H3K4me2, H3K9me2, H3K36me2, H3K79me2), lysine 20 in histone H4 (H4K20me2) and trimethylation of lysine 9 in histone 3 (H3K9me3) while a significant percentage of old GV and MII oocytes lacked H3K9me3, H3K36me2, H3K79me2 and H4K20me2. The percentage of old oocytes lacking histone methylation was similar at GV and MII suggesting that alterations of histone methylation in old MII oocytes initially arise at GV. Besides, the expression of the histone methylation-related factors Cbx1 and Sirt1 was also found to change in old GV oocytes. In conclusion, our study reports changes of chromatin configuration and histone methylation in old GV oocytes, which could be very useful for further understanding of human infertility caused by aging.  相似文献   

19.
Aging decreases the fertility of mammalian females. In old oocytes at metaphase II stage (MII) there are alterations of the chromatin configuration and chromatin modifications such as histone acetylation. Recent data indicate that alterations of histone acetylation at MII initially arise at germinal vesicle stage (GV). Therefore, we hypothesized that the chromatin configuration and histone methylation could also change in old GV oocytes. In agreement with our hypothesis, young GV oocytes had non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) chromatin configurations, while old GV oocytes also had chromatin configurations that could not be classified as NSN or SN. Regarding histone methylation, young GV and MII oocytes showed dimethylation of lysines 4, 9, 36 and 79 in histone 3 (H3K4me2, H3K9me2, H3K36me2, H3K79me2), lysine 20 in histone H4 (H4K20me2) and trimethylation of lysine 9 in histone 3 (H3K9me3) while a significant percentage of old GV and MII oocytes lacked H3K9me3, H3K36me2, H3K79me2 and H4K20me2. The percentage of old oocytes lacking histone methylation was similar at GV and MII suggesting that alterations of histone methylation in old MII oocytes initially arise at GV. Besides, the expression of the histone methylation-related factors Cbx1 and Sirt1 was also found to change in old GV oocytes. In conclusion, our study reports changes of chromatin configuration and histone methylation in old GV oocytes, which could be very useful for further understanding of human infertility caused by aging.  相似文献   

20.
Histone post-translational modifications mark distinct structural and functional chromatin states but little is known of their involvement in the progression of different cell cycle types across phylogeny. We compared temporal and spatial dynamics of histone H4 post-translational modifications during both mitotic and endoreduplicative cycles of the urochordate, Oikopleura dioica, and proliferating mammalian cells. Endocycling cells showed no signs of chromosome condensation or entry into mitosis. They exhibited an evolution of replication patterns indicative of reduced chromatin compartmentalization relative to proliferating mammalian cells. In the latter cells, published cell cycle profiles of histone H4 acetylated at lysine 16 (H4AcK16) or dimethylated at lysine 20 (H4Me2K20) are disputed. Our results, using different, widely used H4AcK16 antibodies, revealed significant antibody-specific discrepancies in spatial and temporal cell cycle regulation of this modification, with repercussions for interpretation of previous immunofluorescence and immunoprecipitation data based on these reagents. On the other hand, three different antibodies to H4Me2K20 revealed similar cell cycle profiles of this modification that were conserved throughout the mitotic cell cycle in urochordate and mammalian cells, with accumulation at mitosis and a decrease during S-phase. H4Me2K20 also cycled in endocycles, indicating that dynamics of this modification are not strictly constrained by the mitotic phase of the cell cycle and suggesting additional roles during G- and S-phase progression. This article contains Supplementary Material available at http://www.mrw.interscience.wiley.com/suppmat/0730-2312/suppmat/2005/95/spada.html.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号