首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
《Epigenetics》2013,8(9):976-981
During fertilization, two of the most differentiated cells in the mammalian organism, a sperm and oocyte, are combined to form a pluripotent embryo. Dynamic changes in chromatin structure allow the transition of the chromatin on these specialized cells into an embryonic configuration capable of generating every cell type. Initially, this reprogramming activity is supported by oocyte-derived factors accumulated during oogenesis as proteins and mRNAs; however, the underlying molecular mechanisms that govern it remain poorly characterized. Trimethylation of histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic mark that changes dynamically during pre-implantation development in mice, bovine and pig embryos. Here we present data and hypotheses related to the potential mechanisms behind H3K27me3 remodeling during early development. We postulate that the repressive H3K27me3 mark is globally erased from the parental genomes in order to remove the gametic epigenetic program and to establish a pluripotent embryonic epigenome. We discuss information gathered in mice, pigs, and bovine, with the intent of providing a comparative analysis of the reprogramming of this epigenetic mark during early mammalian development.  相似文献   

3.
During fertilization, two of the most differentiated cells in the mammalian organism, a sperm and oocyte, are combined to form a pluripotent embryo. Dynamic changes in chromatin structure allow the transition of the chromatin on these specialized cells into an embryonic configuration capable of generating every cell type. Initially, this reprogramming activity is supported by oocyte-derived factors accumulated during oogenesis as proteins and mRNAs; however, the underlying molecular mechanisms that govern it remain poorly characterized. Trimethylation of histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic mark that changes dynamically during pre-implantation development in mice, bovine and pig embryos. Here we present data and hypotheses related to the potential mechanisms behind H3K27me3 remodeling during early development. We postulate that the repressive H3K27me3 mark is globally erased from the parental genomes in order to remove the gametic epigenetic program and to establish a pluripotent embryonic epigenome. We discuss information gathered in mice, pigs, and bovine, with the intent of providing a comparative analysis of the reprogramming of this epigenetic mark during early mammalian development.  相似文献   

4.
Reversible histone acetylation plays an important role in regulation of chromatin structure and function. Here, we report that the human orthologue of Drosophila melanogaster MOF, hMOF, is a histone H4 lysine K16-specific acetyltransferase. hMOF is also required for this modification in mammalian cells. Knockdown of hMOF in HeLa and HepG2 cells causes a dramatic reduction of histone H4K16 acetylation as detected by Western blot analysis and mass spectrometric analysis of endogenous histones. We also provide evidence that, similar to the Drosophila dosage compensation system, hMOF and hMSL3 form a complex in mammalian cells. hMOF and hMSL3 small interfering RNA-treated cells also show dramatic nuclear morphological deformations, depicted by a polylobulated nuclear phenotype. Reduction of hMOF protein levels by RNA interference in HeLa cells also leads to accumulation of cells in the G(2) and M phases of the cell cycle. Treatment with specific inhibitors of the DNA damage response pathway reverts the cell cycle arrest caused by a reduction in hMOF protein levels. Furthermore, hMOF-depleted cells show an increased number of phospho-ATM and gammaH2AX foci and have an impaired repair response to ionizing radiation. Taken together, our data show that hMOF is required for histone H4 lysine 16 acetylation in mammalian cells and suggest that hMOF has a role in DNA damage response during cell cycle progression.  相似文献   

5.
Vernalization promotes flowering in Arabidopsis through epigenetic repression of the floral repressor, FLOWERING LOCUS C (FLC). Vernalization, like other polycomb-mediated repression events, occurs in two stages; FLC repression is established at low temperatures, then maintained during subsequent growth at 22 degrees C. Low temperatures induce VIN3 activity, which is required for changes in histone modifications and the associated FLC repression. Plant polycomb proteins FIE, VRN2, CLF, and SWN, together with VIN3, form a complex that adds histone H3 lysine 27 methylation at FLC in vernalized plants. VRN1 and LHP1 are required for maintenance of FLC repression. Tissue must be undergoing cell division during low-temperature treatments for acceleration of flowering to occur. We show that low-temperature treatments repress FLC in cells that are not mitotically active, but this repression is not fully maintained. Trimethyl-lysine 27 (K27me3), is enriched at the start of the FLC gene during the cold, before spreading across the locus after vernalization. In the absence of DNA replication, K27me3 is added to chromatin at the start of FLC but is removed on return to 22 degrees C. This suggests that DNA replication is essential for maintenance of vernalization-induced repression of FLC.  相似文献   

6.
7.
8.
The development of multicellular organisms is governed partly by temporally and spatially controlled gene expression. DNA methylation, covalent modifications of histones, and the use of histone variants are the major epigenetic mechanisms governing gene expression in plant development. In this review, we zoom in onto histone H3 lysine 27 trimethylation (H3K27me3), a repressive mark that plays a crucial role in the dynamic regulation of gene expression in plant development, to discuss recent advances as well as outstanding questions in the deposition, recognition, and removal of the mark and the impacts of these molecular processes on plant development.  相似文献   

9.
Trimethylation of histone H3 lysine 27 (H3K27me3) plays critical roles in regulating animal development, and in several cases, H3K27me3 is also required for the proper expression of developmentally important genes in plants. However, the extent to which H3K27me3 regulates plant genes on a genome-wide scale remains unknown. In addition, it is not clear whether the establishment and spreading of H3K27me3 occur through the same mechanisms in plants and animals. We identified regions containing H3K27me3 in the genome of the flowering plant Arabidopsis thaliana using a high-density whole-genome tiling microarray. The results suggest that H3K27me3 is a major silencing mechanism in plants that regulates an unexpectedly large number of genes in Arabidopsis (~4,400), and that the maintenance of H3K27me3 is largely independent of other epigenetic pathways, such as DNA methylation or RNA interference. Unlike in animals, where H3K27m3 occupies large genomic regions, in Arabidopsis, we found that H3K27m3 domains were largely restricted to the transcribed regions of single genes. Furthermore, unlike in animals systems, H3K27m3 domains were not preferentially associated with low–nucleosome density regions. The results suggest that different mechanisms may underlie the establishment and spreading of H3K27me3 in plants and animals.  相似文献   

10.
11.
12.
13.
14.
The plant Polycomb-group (Pc-G) protein CURLY LEAF (CLF) is required to repress targets such as AGAMOUS (AG) and SHOOTMERISTEMLESS (STM). Using chromatin immunoprecipitation, we identify AG and STM as direct targets for CLF and show that they carry a characteristic epigenetic signature of dispersed histone H3 lysine 27 trimethylation (H3K27me3) and localised H3K27me2 methylation. H3K27 methylation is present throughout leaf development and consistent with this, CLF is required persistently to silence AG. However, CLF is not itself an epigenetic mark as it is lost during mitosis. We suggest a model in which Pc-G proteins are recruited to localised regions of targets and then mediate dispersed H3K27me3. Analysis of transgenes carrying AG regulatory sequences confirms that H3K27me3 can spread to novel sequences in a CLF-dependent manner and further shows that H3K27me3 methylation is not sufficient for silencing of targets. We suggest that the spread of H3K27me3 contributes to the mitotic heritability of Pc-G silencing, and that the loss of silencing caused by transposon insertions at plant Pc-G targets reflects impaired spreading.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号