首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assembly of transmembrane (TM) domains is a critical step in the function of membrane proteins, and therefore, determining the amino acid motifs that mediate this process is important. Studies along this line have shown that the GXXXG motif is involved in TM assembly. In this study we characterized the minimal dimerization motif in the bacterial Tar-1 homodimer TM domain, which does not contain a GXXXG sequence. We found that a short polar motif QXXS is sufficient to induce stable TM-TM interactions. Statistical analysis revealed that this motif appears to be significantly over-represented in a bacterial TM data base compared with its theoretical expectancy, suggesting a general role for this motif in TM assembly. A truncated short TM peptide (9 residues) that contains the QXXS motif interacted slightly with the wild-type Tar-1. However, the same short TM peptide regained wild-type-like activity when conjugated to an octanoyl aliphatic moiety. Biophysical studies indicated that this modification compensated for the missing hydrophobicity, stabilized alpha-helical structure, and enabled insertion of the peptide into the membrane core. These findings serve as direct evidence that even a short peptide containing a minimal recognition motif is sufficient to inhibit the proper assembly of TM domains. Interestingly, electron microscopy revealed that above the critical micellar concentration, the TM lipopeptide forms a network of nanofibers, which can serve for the slow release of the active lipopeptide.  相似文献   

2.
CRINKLY4 is a growth factor-like plant receptor kinase designated as CR4 in Zea mays and ACR4 in Arabidopsis. Using the TOXCAT system, a genetic assay that measures helix interactions in a natural membrane environment, we have previously demonstrated that the dimerization potential of the ACR4 transmembrane (TM) domain is significantly weaker than that of CR4 TM domain, even though 13 of the 24 residues are identical. Neither of the TM domains contain the GxxxG motif that has been shown to be important for the dimerization of the TM segments of several receptors. To further investigate the relationship between protein sequence and dimerization potential, we (a) mutated each of the 11 differing residues in the CR4 TM domain to the corresponding residue of ACR4 (b) made reciprocal mutations in ACR4 and (c) made hybrids consisting of half CR4 and half ACR4 TM domains. Our results suggest that most mutations in ACR4 or CR4 TM domains have low to moderate effects on the dimerization potential and that residues in the N-terminal half of the CR4 TM domain are important for dimerization.  相似文献   

3.
Sal-Man N  Gerber D  Shai Y 《Biochemistry》2004,43(8):2309-2313
Transmembrane (TM) helix association is an important process affecting the function of many integral membrane proteins. Consequently, aberrations in this process are associated with diseases. Unfortunately, our knowledge of the factors that control this oligomerization process in the membrane milieu is limited at best. Previous studies have shown a role for polar residues in the assembly of synthetic peptides in vitro and the association of de novo-designed TM helices in vivo. Here we examined, for the first time, the involvement of polar residues in the dimerization of a biological TM domain in its natural environment. We analyzed both the involvement of polar residues in the dimerization process and whether their influence is position-dependent. For this purpose, we used the TM domain of the Escherichia coli aspartate receptor (Tar) and 10 single and double mutants. Polar to nonpolar mutations in the sequence demonstrated the role of the QxxS motif in the dimerization of the Tar TM domain. Moreover, creating a GxxxG motif, instead of the polar motif, almost completely abolished dimerization. Swapping positions between two wild-type polar residues did not affect dimerization, implying a similar contribution from both positions. Interestingly, mutants that contain two identical strong polar residues, EE and QQ, demonstrated a substantially higher level of dimerization than a QE mutant, although all three TM domains contain two strong polar residues. This result suggests that, in addition to the polarity of the residues, the formation of symmetric bonds also plays a role in dimer stability. The results of this study may facilitate a rational modulation of membrane protein function for therapeutic purposes.  相似文献   

4.
Mitochondria-mediated apoptosis is regulated by proteins of the Bcl-2 superfamily, most of which contain a C-terminal hydrophobic domain that plays a role in membrane targeting. Experiments with BNIP3 have implicated the transmembrane (TM) domain in its proapoptotic function, homodimerization, and interactions with Bcl-2 and Bcl-xL. We show that the BNIP3 TM domain self-associates strongly in Escherichia coli cell membranes and causes reversible dimerization of a soluble protein in the detergent SDS when expressed as an in-frame fusion. Limited mutational analysis identifies specific residues that are critical for BNIP3 TM self-association in membranes, and these residues are also important for dimerization in SDS micelles, suggesting that the self-association observed in membranes is preserved in detergent. The effects of sequence changes at positions Ala176 and Gly180 suggest that the BNIP3 TM domain associates using a variant of the GXXXG motif previously shown to be important in the dimerization of glycophorin A. The importance of residue His173 in BNIP3 TM domain dimerization indicates that polar residues, which have been implicated in self-association of model TM peptides, can act in concert with the AXXXG motif to stabilize TM domain interactions. Our results demonstrate that the hydrophobic C-terminal TM domain of the pro-apoptotic BNIP3 protein dimerizes tightly in lipidic environments, and that this association has a strong sequence dependence but is independent of the identity of flanking regions. Thus, the transmembrane domain represents another region of the Bcl-2 superfamily of proteins that is capable of mediating strong and specific protein-protein interactions.  相似文献   

5.
Assembly of transmembrane domains (TMDs) is a critical step in the function of membrane proteins. In recent years, the role of specific amino acids in TMD–TMD interactions has been better characterized, with more emphasis on polar and aromatic residues. Despite the high abundance of proline residues in TMDs, contribution of proline to TMD–TMD association has not been intensively studied. Here, we evaluated statistically the frequency of appearance, and experimentally the contribution of proline, compared to other hydrophobic amino acids (Gly, Ala, Val, Leu, Ile, and Met), with regard to TMD–TMD self-assembly. Our model system is the assembly motif (22QxxS25) found previously in TMDs of the Escherichia coli aspartate receptor (Tar-1). Statistically, our data revealed that all different motifs, except PxxS (P/S), have frequencies similar to their theoretical random expectancy within a database of 41916 sequences of TMDs, while PxxS motif is underrepresented. Experimentally, using the ToxR assembly system, the SDS-gel running pattern of biotin-conjugated TMD peptides, and FRET experiments between fluorescence-labeled peptides, we found that only the P/S motif preserves the dimerization ability of wild-type Tar-1 TMD. Although proline is known as a helix breaker in solution, Circular Dichroism spectroscopy revealed that the secondary structure of the P/S and the wild-type peptides are similar. All together, these data suggest that proline can stabilize TM self-assembly when localized to the interaction interface of a transmembrane oligomer. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

6.
We recognized a common dimerization motif between the transmembrane (TM) domain of zeta-chain family members and glycophorin A. We have shown that a glycine within the zeta-dimerization motif is critical for zeta-homodimerization and also for its association with the TCR/CD3 complex. Similarly, two residues within the CD3 delta gamma TM domains have proven to be critical for their interaction with the zeta-homodimer. A three-dimensional homology model of the zeta-chain TM domain highlights potential residues preferentially involved either in the zeta 2-CD3 or zeta 2-TCR alpha beta association, confirming our experimental findings. These results indicate that, for symmetrical reasons, the zeta-homodimer participates in the TCR/CD3 complex assembly by interacting with CD3 gamma delta TM domains, thereby masking their degradation signals located in the cytoplasmic tails.  相似文献   

7.
Experiments with the transmembrane (TM) domains of the glycoprotein (GP) Ib-IX complex have indicated that the associations between the TM domains of these subunits play an important role in the proper assembly of the complex. As a first step toward understanding these associations, we previously found that the Ibβ TM domain dimerized strongly in Escherichia coli cell membranes and led to Ibβ TM-CYTO (cytoplasmic domain) dimerization in the SDS-PAGE assay, while neither Ibα nor IX TM-CYTO was able to dimerize. In this study, we used the TOXCAT assay to probe the Ibβ TM domain dimerization interface by Ala- and Leu-scanning mutagenesis. Our results show that this interface is based on a leucine zipper-like heptad repeat pattern of amino acids. Mutating either one of polar residues Gln129 or His139 to Leu or Ala disrupted Ibβ TM dimerization dramatically, indicating that polar residues might form part of the leucine zipper-based dimerization interface. Furthermore, these specific mutational effects in the TOXCAT assay were confirmed in the thiol-disulfide exchange and SDS-PAGE assays. The computational modeling studies further revealed that the most likely leucine zipper interface involves hydrogen bonding of Gln129 and electrostatic interaction of the His139 side chain. Correlation of computer modeling results with experimental mutagenesis studies on the Ibβ TM domain may provide insights for understanding the role of the association of TM domains on the assembly of GP Ib-IX complex.  相似文献   

8.
Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin’s TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes.  相似文献   

9.
Hepatitis C virus (HCV) NS4A is a single-pass transmembrane (TM) protein essential for viral replication and particle assembly. The sequence of the NS4A TM domain is highly conserved, suggesting that it may be important for protein-protein interactions. To test this hypothesis, we measured the potential dimerization of the NS4A TM domain in a well-characterized two-hybrid TM protein interaction system. The NS4A TM domain exhibited a strong homotypic interaction that was comparable in affinity to glycophorin A, a well-studied human blood group antigen that forms TM homodimers. Several mutations predicted to cluster on a common surface of the NS4A TM helix caused significant reductions in dimerization, suggesting that these residues form an interface for NS4A dimerization. Mutations in the NS4A TM domain were further examined in the JFH-1 genotype 2a replicon system; importantly, all mutations that destabilized NS4A dimers also caused defects in RNA replication and/or virus assembly. Computational modeling of NS4A TM interactions suggests a right-handed dimeric interaction of helices with an interface that is consistent with the mutational effects. Furthermore, defects in NS4A oligomerization and virus particle assembly of two mutants were rescued by NS4A A15S, a TM mutation recently identified through forward genetics as a cell culture-adaptive mutation. Together, these data provide the first example of a functionally important TM dimer interface within an HCV nonstructural protein and reveal a fundamental role of the NS4A TM domain in coordinating HCV RNA replication and virus particle assembly.  相似文献   

10.
G protein-coupled receptors (GPCRs) can form dimeric or oligomeric complexes in vivo. However, the functions and mechanisms of oligomerization remain poorly understood for most GPCRs, including the alpha-factor receptor (STE2 gene product) of the yeast Saccharomyces cerevisiae. Here we provide evidence indicating that alpha-factor receptor oligomerization involves a GXXXG motif in the first transmembrane domain (TM1), similar to the transmembrane dimerization domain of glycophorin A. Results of fluorescence resonance energy transfer, fluorescence microscopy, endocytosis assays of receptor oligomerization in living cells, and agonist binding assays indicated that amino acid substitutions affecting the glycine residues of the GXXXG motif impaired alpha-factor receptor oligomerization and biogenesis in vivo but did not significantly impair agonist binding affinity. Mutant receptors exhibited signaling defects that were not due to impaired cell surface expression, indicating that oligomerization promotes alpha-factor receptor signal transduction. Structure-function studies suggested that the GXXXG motif in TM1 of the alpha-factor receptor promotes oligomerization by a mechanism similar to that used by the GXXXG dimerization motif of glycophorin A. In many mammalian GPCRs, motifs related to the GXXXG sequence are present in TM1 or other TM domains, suggesting that similar mechanisms are used by many GPCRs to form dimers or oligomeric arrays.  相似文献   

11.
12.
E-cadherin is a transmembrane glycoprotein which is involved in the Ca2+-dependent cell–cell adhesion, and the adhesiveness is heavily dependent on the homodimerization of this molecule. Previous studies have shown that both the extracellular domain and cytoplasmic domain of E-cadherin contribute to its homodimerization. However, the roles of the transmembrane(TM) domain in the E-cadherin homodimerization have not been discussed in detail. In our experiments, SDS-PAGE showed higher molecular weight bands for the synthetic E-cadherin TM peptide, which indicated that the E-cadherin TM peptide is able to dimerize in the SDS micelle. The TOXCAT assay proved that the E-cadherin TM domain can form a moderate homo-oligomer in the Escherichia coli inner membrane. Furthermore, mutational analyses using the TOXCAT assays revealed that, instead of the common GxxxG dimerization motif, the leucine zipper motif is essential for the dimerization of the E-cadherin TM domain. Combining our experiment data and the computational simulation results, we provide insights for understanding the roles of the TM domain in the E-cadherin dimerization.  相似文献   

13.
In present work the interaction of two TM α-helices of the ErbB3 receptor tyrosine kinase from the ErbB or HER family (residues 639-670) was studied by means of NMR spectroscopy in a membrane-mimicking environment provided by the DPC micelles. The ErbB3 TM segment appeared to form a parallel symmetric dimer in a left-handed orientation. The interaction between TM spans is accomplished via the non-standard motif and is supported by apolar contacts of bulky side chains and by stacking of aromatic rings together with π-cation interactions of Phe and Arg side chains. The investigation of the dimer--monomer equilibrium revealed thermodynamic properties of the assembly and the presence of two distinct regimes of the dimerization at low and at high peptide/detergent ratio. It was found that the detergent in case of ErbB3 behaves not as an ideal solvent, thus affecting the dimer--monomer equilibrium. Such behavior may account for the problems occurring with the refolding and stability of multispan helical membrane proteins in detergent solutions. The example of ErbB3 allows us to conclude that the thermodynamic parameters of dimerization, measured in micelles for two different helical pairs, cannot be compared without the investigation of their dependence on detergent concentration.  相似文献   

14.
Studies of the dimerization of transmembrane (TM) helices have been ongoing for many years now, and have provided clues to the fundamental principles behind membrane protein (MP) folding. Our understanding of TM helix dimerization has been dominated by the idea that sequence motifs, simple recognizable amino acid sequences that drive lateral interaction, can be used to explain and predict the lateral interactions between TM helices in membrane proteins. But as more and more unique interacting helices are characterized, it is becoming clear that the sequence motif paradigm is incomplete. Experimental evidence suggests that the search for sequence motifs, as mediators of TM helix dimerization, cannot solve the membrane protein folding problem alone. Here we review the current understanding in the field, as it has evolved from the paradigm of sequence motifs into a view in which the interactions between TM helices are much more complex. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

15.
Type I deiodinase is the best characterized member of a small family of selenoenzymes catalyzing the bioactivation and disposal of thyroid hormone. This enzyme is an integral membrane protein composed of two 27-kDa subunits that assemble into a functional enzyme after translation using a highly conserved sequence of 16 amino acids in the C-terminal half of the polypeptide, (148)DFLXXYIXEAHXXDGW(163). In this study, we used alanine scanning mutagenesis to identify the key residues in this domain required for holoenzyme assembly. Overexpression of sequential alanine-substituted mutants of a dimerization domain-green fluorescent protein fusion showed that sequence (152)IYI(154) was required for type I enzyme assembly and that a catalytically active monomer was generated by a single I152A substitution. Overexpression of the sequential alanine-substituted dimerization domain mutants in type II selenodeiodinase-expressing cells showed that five residues ((153)FLIVY(157)) at the beginning and three residues ((164)SDG(166)) at the end of this region were required for the assembly of the type II enzyme. In vitro binding analysis revealed a free energy of association of -60 +/- 5 kJ/mol for the noncovalent interaction between dimerization domain monomers. These data identify and characterize the essential residues in the dimerization domain that are responsible for the post-translational assembly of selenodeiodinases.  相似文献   

16.
The monomer-dimer equilibrium of the glycophorin A (GpA) transmembrane (TM) fragment has been used as a model system to investigate the amino acid sequence requirements that permit an appropriate helix-helix packing in a membrane-mimetic environment. In particular, we have focused on a region of the helix where no crucial residues for packing have been yet reported. Various deletion and replacement mutants in the C-terminal region of the TM fragment showed that the distance between the dimerization motif and the flanking charged residues from the cytoplasmic side of the protein is important for helix packing. Furthermore, selected GpA mutants have been used to illustrate the rearrangement of TM fragments that takes place when leucine repeats are introduced in such protein segments. We also show that secondary structure of GpA derivatives was independent from dimerization, in agreement with the two-stage model for membrane protein folding and oligomerization.  相似文献   

17.
A mechanism by which ligand binding to the extracellular domain of a growth factor receptor causes activation of its cytoplasmic tyrosine kinase domain is that binding promotes receptor dimerization. Recently we proposed a model in which dimerization of the transmembrane alpha-helices in one member of this family, rat neu, is mediated by the presence of three specific residues. This paper shows that a similar sequence motif is observed in 18 of the 20 transmembrane alpha-helices of the tyrosine kinase family of growth factor receptors. The motif encompasses a five residue segment in which position 0 (P0) requires a small side chain (Gly, Ala, Ser, Thr or Pro), P3 an aliphatic side chain (Ala, Val, Leu or Ile) and P4 only the smallest side chains (Gly or Ala). In addition other features of the transmembrane sequences are reported. It is concluded that the dimerization of transmembrane alpha-helices may be a general mechanism of tyrosine kinase activation in this family of growth factor receptors.  相似文献   

18.
19.
The Agrobacterium tumefaciens VirB/VirD4 type IV secretion system is composed of a translocation channel and an extracellular T pilus. Bitopic VirB10, the VirB7 lipoprotein, and VirB9 interact to form a cell envelope-spanning structural scaffold termed the “core complex” that is required for the assembly of both structures. The related pKM101-encoded core complex is composed of 14 copies each of these VirB homologs, and the transmembrane (TM) α helices of VirB10-like TraF form a 55-Å-diameter ring at the inner membrane. Here, we report that the VirB10 TM helix possesses two types of putative dimerization motifs, a GxxxA (GA4) motif and two leucine (Leu1, Leu2) zippers. Mutations in the Leu1 motif disrupted T-pilus biogenesis, but these or other mutations in the GA4 or Leu2 motif did not abolish substrate transfer. Replacement of the VirB10 TM domain with a nondimerizing poly-Leu/Ala TM domain sequence also blocked pilus production but not substrate transfer or formation of immunoprecipitable complexes with the core subunits VirB7 and VirB9 and the substrate receptor VirD4. The VirB10 TM helix formed weak homodimers in Escherichia coli, as determined with the TOXCAT assay, whereas replacement of the VirB10 TM helix with the strongly dimerizing TM helix from glycophorin A blocked T-pilus biogenesis in A. tumefaciens. Our findings support a model in which VirB10''s TM helix contributes to the assembly or activity of the translocation channel as a weakly self-interacting membrane anchor but establishes a heteromeric TM-TM helix interaction via its Leu1 motif that is critical for T-pilus biogenesis.  相似文献   

20.
Mitochondrial and peroxisomal fission are essential processes with defects resulting in cardiomyopathy and neonatal lethality. Central to organelle fission is Fis1, a monomeric tetratricopeptide repeat (TPR)-like protein whose role in assembly of the fission machinery remains obscure. Two nonfunctional, Saccharomyces cerevisiae Fis1 mutants (L80P or E78D/I85T/Y88H) were previously identified in genetic screens. Here, we find that these two variants in the cytosolic domain of Fis1 (Fis1ΔTM) are unexpectedly dimeric. A truncation variant of Fis1ΔTM that lacks an N-terminal regulatory domain is also found to be dimeric. The ability to dimerize is a property innate to the native Fis1ΔTM amino acid sequence as we find this domain is dimeric after transient exposure to elevated temperature or chemical denaturants and is kinetically trapped at room temperature. This is the first demonstration of a specific self-association in solution for the Fis1 cytoplasmic domain. We propose a three-dimensional domain-swapped model for dimerization that is validated by a designed mutation, A72P, which potently disrupts dimerization of wild-type Fis1. A72P also disrupts dimerization of nonfunctional variants, indicating a common structural basis for dimerization. The obligate monomer variant A72P, like the dimer-promoting variants, is nonfunctional in fission, consistent with a model in which Fis1 activity depends on its ability to interconvert between monomer and dimer species. These studies suggest a new functionally important manner in which TPR-containing proteins may reversibly self-associate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号