首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Major Histocompatibility Complex (Mhc) genomic region of many vertebrates is known to contain at least one highly polymorphic class II gene that is homologous in sequence to one or other of the human Mhc DRB1 class II genes. The diversity of the avian Mhc class II gene sequences have been extensively studied in chickens, quails, and some songbirds, but have been largely ignored in the oceanic birds, including the flightless penguins. We have previously reported that several penguin species have a high degree of polymorphism on exon 2 of the Mhc class II DRB1-like gene. In this study, we present for the first time the complete nucleotide sequences of exon 2, intron 2, and exon 3 of the DRB1-like gene of 20 Humboldt penguins, a species that is presently vulnerable to the dangers of extinction. The Humboldt DRB1-like nucleotide and amino acid sequences reveal at least eight unique alleles. Phylogenetic analysis of all the available avian DRB-like sequences showed that, of five penguin species and nine other bird species, the sequences of the Humboldt penguins grouped most closely to the Little penguin and the mallard, respectively. The present analysis confirms that the sequence variations of the Mhc class II gene, DRB1, are useful for discriminating among individuals within the same penguin population as well those within different penguin population groups and species.The nucleotide sequence and amino acid sequence data reported in this paper have been submitted to the DDBJ database and have been assigned the accession numbers AB088371–AB088374, AB089199, AB154393–AB154399, and AB162144.  相似文献   

4.
5.
6.
7.
Hughes AL 《Immunogenetics》2000,51(6):473-486
 The phylogenetic relationships and patterns of nucleotide substitution were compared for introns and exons of class II major histocompatibility complex (MHC) genes in three datasets: human DRB1, human DQA1, and cyprinid fish DAB1. In both human DRB1 and cyprinid DAB1, there was strong evidence that recombination events between alleles have occurred in such a way that intron and exon sequences of a given allele do not necessarily share the same evolutionary history. In the case of human DRB1, recombination was found to have homogenized intron 1 and intron 2 sequences relative to exon 2 sequences within lineages of alleles but not between lineages. As a result, mean divergence times of intron sequences are much more recent than those of exonic sequences. Thus, the divergence time of DRB1 introns cannot be used to date that of exons in the same alleles, and the hypothesis that most human DRB1 polymorphism is of very recent origin is not supported. Received: 5 September 1999 / Revised: 30 December 1999  相似文献   

8.
9.
10.
The human Rh blood-group system is encoded by two homologous genes,RhD andRhCE. TheRH genes in gorillas and chimpanzees were investigated to delineate the phylogeny of the humanRH genes. Southern blot analysis with an exon 7-specific probe suggested that gorillas have more than twoRH genes, as has recently been reported for chimpanzees. Exon 7 was well conserved between humans, gorillas, and chimpanzees, although the exon 7 nucleotide sequences from gorillas were more similar to the humanD gene, whereas the nucleotide sequences of this exon in chimpanzees were more similar to the humanCE gene. The intron between exon 4 and exon 5 is polymorphic and can be used to distinguish the humanD gene from theCE gene. Nucleotide sequencing revealed that the basis for the intron polymorphism is anAlu element inCE which is not present in theD gene. Examination of gorilla and chimpanzee genomic DNA for this intron polymorphism demonstrated that theD intron was present in all the chimpanzees and in all but one gorilla. TheCE intron was found in three of six gorillas, but in none of the seven chimpanzees. Sequence data suggested that theAlu element might have previously been present in the chimpanzeeRH genes but was eliminated by excision or recombination. Conservation of theRhD gene was also apparent from the complete identity between the 3′-noncoding region of the human D cDNA and a gorilla genomic clone, including anAlu element which is present in both species. The data suggest that at least twoRH genes were present in a common ancestor of humans, chimpanzees, and gorillas, and that additionalRH gene duplication has taken place in gorillas and chimpanzees. TheRhCE gene appears to have diverged more thanRhD among primates. In addition, theRhD gene deletion associated with the Rh-negative phenotype in humans seems to have occurred after speciation. Correspondence to: C.M. Westhoff  相似文献   

11.
Aromatic L-amino acid decarboxylase (AADC) is responsible for the conversion of L-3,4-dihydroxyphenylalanine (L-DOPA) and L-5-hydroxytryptophan to dopamine and serotonin, respectively, which are important neurotransmitters. We characterized genomic clones derived from the rat AADC locus by Southern blot and nucleotide sequencing analyses to explore the exonal organization of the gene. Our results suggest that the rat AADC gene is relatively large, containing at least 12 exons and spanning at least 40 kb in the rat genome. In this study, nine exons corresponding to 71% of the published cDNA sequence were identified, the smallest of which was as short as 20 base pairs (bp). In the Drosophila dopa decarboxylase (DDC) gene, the sequences homologous to these nine exons are all present in the fourth exon. This implies that either multiple intron sequences have been added to the vertebrate AADC gene or alternatively, deleted from the invertebrate gene after the divergence of vertebrates and invertebrates during evolution.  相似文献   

12.
We have been using the rat beta-tropomyosin (beta-TM) gene as a model system to study the mechanism of alternative splicing. The beta-TM gene spans 10 kb with 11 exons and encodes two distinct isoforms, namely skeletal muscle beta-TM and fibroblast TM-1. Exons 1-5, 8, and 9 are common to all mRNAs expressed from this gene. Exons 6 and 11 are used in fibroblasts, as well as in smooth muscle cells, whereas exons 7 and 10 are used exclusively in skeletal muscle cells. Our previous studies localized the critical elements for regulated alternative splicing to sequences within exon 7 and the adjacent upstream intron. We also demonstrated that these sequences function, in part, to regulate splice-site selection in vivo by interacting with cellular factors that block the use of the skeletal muscle exon in nonmuscle cells (1). Here we have further characterized the critical cis-acting elements involved in alternative splice site selection. Our data demonstrate that exon 7 and its flanking intron sequences are sufficient to regulate the suppression of exon 7 in nonmuscle cells when flanked by heterologous exons derived from adenovirus. We have also shown by both in vivo and in vitro assays that the blockage of exon 7 in nonmuscle cells is primarily at its 3'-splice site. A model is presented for regulated alternative splicing in both skeletal muscle and nonmuscle cells.  相似文献   

13.
SPG7 is a newly identified gene involved in an autosomal recessive form of hereditary spastic paraplegia (HSP), a genetically heterogeneous group of neurodegenerative disorders. This gene encodes a protein characterized as a nuclear-encoded mitochondrial metalloprotease. The present report describes the genomic structure of the SPG7 gene. It is organized into 17 exons ranging from 78 to 242 bp and spans approximately 52 kb within three overlapping cosmids. The exon/intron boundaries and all splice junctions are consistent with the published consensus sequences for donor and acceptor sites. The provided genomic structure of SPG7 should facilitate the screening for mutations in this gene in patients with HSP and other related mitochondrial disease syndromes. SPG7 has been mapped to chromosome 16q24.3, a region of frequent loss of heterozygosity (LOH) seen in sporadic breast and prostate cancer. We have performed single-strand conformation polymorphism analysis of ten exons of this gene in a number of sporadic breast cancer samples showing LOH at 16q24.3. No mutations were detected; only single nucleotide polymorphisms were observed in exon 11, intron 7, intron 10 and intron 12. An expression analysis study has revealed the differential expression of SPG7 mRNA in various tissues and at different developmental stages. Electronic Publication  相似文献   

14.
ABSTRACT

The membrane-bound adenylyl cyclases (ACs) represent one of the major families of effector enzymes for G protein-coupled receptors. Eight human AC isoforms, encoded by separate genes, have been identified up to now. However, in several cases only partial cDNA sequences are available (ADCY1,2,5). A ninth expected isoform, the human ortholog of rat ADCY4, has not been described yet. Using the high inter-species homology of mammalian AC isoforms, we searched the human genome and we succeeded to identify full-length coding sequences for all enzymes. Where required, missing sequence information was provided experimentally. Analysis of genomic sequences from the Celera database also allowed us to determine the exon–intron boundaries for ADCY1–9 and to establish the gene structures. We found that human AC genes comprise 11 to 26 exons, which are distributed over 16 to 430?kb. We further report expression profiles for the nine ACs in a panel of 16 human tissues and in human embryonic kidney (HEK) cells.  相似文献   

15.
16.
Structure of the human ornithine transcarbamylase gene   总被引:21,自引:0,他引:21  
Complementary and genomic DNA clones corresponding to the human ornithine transcarbamylase (OTC) [EC 2.1.3.3]mRNA have been isolated and analyzed. The OTC gene is about 73 kilobase pairs (kb) long and contains 10 exons interrupted by 9 introns of highly variable sizes. The smallest intron is 80 base pairs and the largest, 21.7 kb. The 5'- and 3'-flanking regions, entire exons and all the exon/intron boundaries were sequenced. The nucleotide and deduced amino acid sequences of isolated OTC cDNAs as well as the corresponding regions of the genomic DNA were compared with those of human OTC cDNA (Horwich, A.L., Fenton, W.A., Williams, K.R., Kalousek, F., Kraus, J.P., Doolittle, R.F., Koningsberg, W., & Rosenberg, L.E. (1984) Science 224, 1068-1074). We found 20 nucleotide substitutions among these sequences, of which 6 related to amino acid changes. The nature of these nucleotide substitutions is discussed.  相似文献   

17.
Two distinct PDE3 [cyclic GMP-inhibited cyclic nucleotide phosphodiesterase (cGI PDE)] isoforms, cGIP1 and cGIP2, have been identified. Here we report cloning of the cDNA and gene encoding human (H)cGIP1 (classified as PDE3B). The cDNA encodes a protein of 1112 amino acids (123 kDa). Northern blots indicate that its mRNA is expressed in several adipose tissue depots. The human PDE3B gene is composed of 16 exons spanning more than 114 kb and was localized to chromosome 11p15 byin situhybridization. Exon/intron boundaries were determined, and genetic polymorphism, confirmed by single-strand conformational polymorphism of DNA from 25 healthy subjects, was demonstrated in exon 4 at nucleotide 1389 (A/G). Two polymorphic dinucleotide repeat sequences were identified in introns 5 and 12.  相似文献   

18.
Two theories about MHC allele generation have been put forward: (1) point mutation diversification and/or (2) gene conversion events. A model supporting the existence of both of these mechanisms is shown in this paper; the possible evolution of the HLA-B*570101 and HLA-B*5801 alleles (which belong to the HLA-B17 serology group) is studied. The hypothesis favoured is that gene conversion events have originated these alleles, because intron sequences are also analysed. Evolution by point mutation should only be accepted if flanking introns have also been sequenced.The nucleotide sequence data (exons and introns) reported in this paper have been sequenced in our laboratory. They are in the GenBank nucleotide sequence database and have been assigned the accession numbers: B*150101—(a) exon 1, L79939; (b) exon 2 and exon 3, L48400; (c) intron 1, L76249; (d) intron 2, L42468; B*1515—(a) exon 1, exon 2 and exon 3, L49343; (b) intron 1 and intron 2, L76254; B*1539—(a) exon 2, AF033501; (b) exon 3, AF033502; (c) intron 1, AF034961; (d) intron 2 AF034962; B*350101—(a) exon 1, exon 2 and exon 3, L63544; (b) intron 1, L79921; (c) intron 2, L57505; B*510101—(a) exon 1, L77204; (b) exon 2 and exon 3, L47985; (c) intron 1, L76245; (d) intron 2, L42469; B*520102—(a) exon 1, L77205; (b) exon 2 and exon 3, L47984; (c) intron 1, L76244; (d) intron 2, L76251; B*5301—(a) exon 1, intron 1, exon 2, intron 2 and exon 3, U90566; B*1302—(a) intron 1, exon 2, intron 2, exon 3, AF196182; B*400101/02—(a) exon 2 and exon 3, L79937; (b) intron 1, L79919; (c) intron 2, L76629; B*4101—(a) intron 1, exon 2, intron 2 and exon 3, U90560; B*4102 (a) intron 1, exon 2, intron 2 and exon 3, AF 126199; B*4501—(a) intron 1, exon 2, intron 2 and exon 3, U90562; B*570101—(a) intron 1, exon 2, intron 2 and exon 3, AF196183; B*5801—(a) intron 1, exon 2, intron 2 and exon 3, AF196184All exon sequences were officially assigned as confirmatory by the WHO Nomenclature Committee in December 2003: B*1302, B*150101, B*350101, B*400101/02, B*4101, B*510101, B*570101, B*5801, B*5301, B*4501, B*520102, B*1515, B*4102 and B*1539. This follows the agreed policy that, subject to the conditions stated in the Nomenclature Report [Marsh et al. (2002) Tissue Antigens 60:407–464], names will be assigned to new sequences as they are identified. Lists of such new names will be published in the following WHO Nomenclature Report  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号