首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
S Ahmad  R A Jensen 《FEBS letters》1987,216(1):133-139
The prephenate dehydrogenase component of the bifunctional T-protein (chorismate mutase:prephenate dehydrogenase) has been shown to utilize L-arogenate, a common precursor of phenylalanine and tyrosine in nature, as a substrate. Partially purified T-protein from Klebsiella pneumoniae and from Escherichia coli strains K 12, B, C and W was used to demonstrate the utilization of L-arogenate as an alternative substrate for prephenate in the presence of nicotinamide adenine dinucleotide as cofactor. The formation of L-tyrosine from L-arogenate by the T-protein dehydrogenase was confirmed by high-performance liquid chromatography. As expected of a common catalytic site, dehydrogenase activity with either prephenate or L-arogenate was highly sensitive to inhibition by L-tyrosine.  相似文献   

2.
A pattern of allosteric control for aromatic biosynthesis in cyanobacteria relies upon early-pathway regulation as the major control point for the entire branched pathway. In Synechococcus sp. strain PCC6301 (Anacystis nidulans), two enzymes which form precursors for L-phenylalanine biosynthesis are subject to control by feedback inhibition. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (first pathway enzyme) is feedback inhibited by L-tyrosine, whereas prephenate dehydratase (enzyme step 9) is feedback inhibited by L-phenylalanine and allosterically activated by L-tyrosine. Mutants lacking feedback inhibition of prephenate dehydratase excreted relatively modest quantities of L-phenylalanine. In contrast, mutants deregulated in allosteric control of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase excreted large quantities of L-phenylalanine (in addition to even greater quantities of L-tyrosine). Clearly, in the latter mutants, the elevated levels of prephenate must overwhelm the inhibition of prephenate dehydratase by L-phenylalanine, an effect assisted by increased intracellular L-tyrosine, an allosteric activator. The results show that early-pathway flow regulated in vivo by 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase is the dominating influence upon metabolite flow-through to L-phenylalanine. L-Tyrosine biosynthesis exemplifies such early-pathway control even more simply, since 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase is the sole regulatory enzyme subject to end-product control by L-tyrosine.  相似文献   

3.
The biosynthetic route to L-tyrosine was identified in isogenic suspension-cultured cells of N. silvestris. Arogenate (NADP+) dehydrogenase, the essential enzyme responsible for the conversion of L-arogenato L-tyrosine, was readily observed in crude extracts. In contrast, prephenate dehydrogenase (EC 1.3.1.13) activity with either NAD+ or NADP+ was absent altogether. Therefore, it seems likely that this tobacco species utilizes the arogenate pathway as the exclusive metabolic route to L-tyrosine. L-Tyrosine (but not L-phenylalanine) was a very effective endproduct inhibitor of arogenate dehydrogenase. In addition, analogs of L-tyrosine (m-fluoro-DL-tyrosine [MFT], D-tyrosine and N-acetyl-DL-tyrosine), but not of L-phenylalanine (o-fluoro-DL-phenylalanine and p-fluoro-DL-phenylalanine), were able to cause inhibition of arogenate dehydrogenase. The potent antimetabolite of L-tryptophan, 6-fluoro-DL-tryptophan, had no effect upon arogenate dehydrogenase activity. Of the compounds tested, MFT was actually more effective as an inhibitor of arogenate dehydrogenase than was L-tyrosine. Since MFT was found to be a potent antimetabolite inhibitor of growth in N. silvestris and since inhibition was specifically and effectively reversed by L-tyrosine, arogenate dehydrogenase is an outstanding candidate as the in vivo target of analog action. Although chorismate mutase (EC 5.4.99.5) cannot be the prime target of MFT action, MFT can mimick L-tyrosine in partially inhibiting this enzyme activity. The activity of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15) was insensitive to L-phenylalanine or L-tyrosine. The overall features of this system indicate that MFT should be a very effective analog mimick for selection of feedback-insensitive regulatory mutants L-tyrosine biosynthesis.Abbreviations DAHP synthase 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase - 6FT 6-fluoro-DL-tryptophan - MFT m-fluoro-DL-tyrosine - OFP o-fluoro-DL-phenylalanine - PFP p-fluoro-DL-phenylalanine  相似文献   

4.
A cohesive phylogenetic cluster that is limited to enteric bacteria and a few closely related genera possesses a bifunctional protein that is known as the T-protein and is encoded by tyrA. The T-protein carries catalytic domains for chorismate mutase and for cyclohexadienyl dehydrogenase. Cyclohexadienyl dehydrogenase can utilize prephenate or L-arogenate as alternative substrates. A portion of the tyr A gene cloned from Erwinia herbicola was deleted in vitro with exonuclease III and fused in-frame with a 5' portion of lacZ to yield a new gene, denoted tyrA*, in which 37 N-terminal amino acids of the T-protein are replaced by 18 amino acids encoded by the polycloning site/5' portion of the lacZ alpha-peptide of pUC19. The TyrA* protein retained dehydrogenase activity but lacked mutase activity, thus demonstrating the separability of the two catalytic domains. While the Km of the TyrA* dehydrogenase for NAD+ remained unaltered, the Km for prephenate was fourfold greater and the Vmax was almost twofold greater than observed for the parental T-protein dehydrogenase. Activity with L-arogenate, normally a relatively poor substrate, was reduced to a negligible level. The prephenate dehydrogenase activity encoded by tyrA* was hypersensitive to feedback inhibition by L-tyrosine (a competitive inhibitor with respect to prephenate), partly because the affinity for prephenate was reduced and partly because the Ki value for L-tyrosine was decreased from 66 microM to 14 microM. Thus, excision of a portion of the chorismate mutase domain is shown to result in multiple extra-domain effects upon the cyclohexadienyl dehydrogenase domain of the bifunctional protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Acinetobacter calcoaceticus belongs to a large phylogenetic cluster of gram-negative procaryotes that all utilize a bifunctional P-protein (chorismate mutase-prephenate dehydratase) [EC 5.4.99.5-4.2.1.51] for phenylalanine biosynthesis. These two enzyme activities from Ac. calcoaceticus were inseparable by gel-filtration or DEAE-cellulose chromatography. The molecular weight of the P-protein in the absence of effectors was 65,000. In the presence of L-tyrosine (dehydratase activator) or L-phenylalanine (inhibitor of both P-protein activities), the molecular weight increased to 122,000. Maximal activation (23-fold) of prephenate dehydratase was achieved at 0.85 mM L-tyrosine. Under these conditions, dehydratase activity exhibited a hysteretic response to increasing protein concentration. Substrate saturation curves for prephenate dehydratase were hyperbolic at L-tyrosine concentrations sufficient to give maximal activation (yielding a Km,app of 0.52 mM for prephenate), whereas at lower L-tyrosine concentrations the curves were sigmoidal. Dehydratase activity was inhibited by L-phenylalanine, and exhibited cooperative interactions for inhibitor binding. A Hill plot yielded an n' value of 3.1. Double-reciprocal plots of substrate saturation data obtained in the presence of L-phenylalanine indicated cooperative interactions for prephenate in the presence of inhibitor. The n values obtained were 1.4 and 3.0 in the absence or presence of 0.3 mM L-phenylalanine, respectively. The hysteretic response of chorismate mutase activity to increasing enzyme concentration was less dramatic than that of prephenate dehydratase. A Km,app for chorismate of 0.63 mM was obtained. L-Tyrosine did not affect chorismate mutase activity, but mutase activity was inhibited both by L-phenylalanine and by prephenate. Interpretations are given about the physiological significance of the overall pattern of allosteric control of the P-protein, and the relationship between this control and the effector-induced molecular-weight transitions. The properties of the P-protein in Acinetobacter are considered within the context of the ubiquity of the P-protein within the phylogenetic cluster to which this genus belongs.  相似文献   

6.
Pseudomonas aeruginosa is representative of a large group of pseudomonad bacteria that possess coexisting alternative pathways to L-phenylalanine (as well as to L-tyrosine). These multiple flow routes to aromatic end products apparently account for the inordinate resistance of P. aeruginosa to end product analogs. Manipulation of carbon source nutrition produced a physiological state of sensitivity to p-fluorophenylalanine and m-fluorophenylalanine, each a specific antimetabolite of L-phenylalanine. Analog-resistant mutants obtained fell into two classes. One type lacked feedback sensitivity of prephenate dehydratase and was the most dramatic excretor of L-phenylalanine. The presence of L-tyrosine curbed phenylalanine excretion to one-third, a finding explained by potent early-pathway regulation of 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase-Tyr (a DAHP synthase subject to allosteric inhibition by L-tyrosine). The second class of regulatory mutants possessed a completely feedback-resistant DAHP synthase-Tyr, the major species (greater than 90%) of two isozymes. Deregulation of DAHP synthase-Tyr resulted in the escape of most chorismate molecules produced into an unregulated overflow route consisting of chorismate mutase (monofunctional), prephenate aminotransferase, and arogenate dehydratase. In the wild type the operation of the overflow pathway is restrained by factors that restrict early-pathway flux. These factors include the highly potent feedback control of DAHP synthase isozymes by end products as well as the strikingly variable abilities of different carbon source nutrients to supply the aromatic pathway with beginning substrates. Even in the wild type, where all allosteric regulation in intact, some phenylalanine overflow was found on glucose-based medium, but not on fructose-based medium. This carbon source-dependent difference was much more exaggerated in each class of regulatory mutants.  相似文献   

7.
Highly purified enzymes from Alcaligenes eutrophus H 16 were used for kinetic studies. Chorismate mutase was feedback inhibited by phenylalanine. In the absence of the inhibitor, the double-reciprocal plot was linear, yielding a Km for chorismate of 0.2 mM. When phenylalanine was present, a pronounced deviation from the Michaelis-Menten hyperbola occurred. The Hill coefficient (n) was 1.7, and Hill plots of velocity versus inhibitor concentrations resulted in a value of n' = 2.3, indicating positive cooperativity. Chorismate mutase was also inhibited by prephenate, which caused downward double-reciprocal plots and a Hill coefficient of n = 0.7, evidence for negative cooperativity. The pH optimum of chorismate mutase ranged from 7.8 to 8.2; its temperature optimum was 47 C. Prephenate dehydratase was competitively inhibited by phenylalanine and activated by tyrosine. Tyrosine stimulated its activity up to 10-fold and decreased the Km for prephenate, which was 0.67 mM without effectors. Tryptophan inhibited the enzyme competitively. Its inhibition constant (Ki = 23 muM) was almost 10-fold higher than that determined for phenylalanine (Ki = 2.6 muM). The pH optimum of prephenate dehydratase was pH 5.7; the temperature optimum was 48 C. Prephenate dehydrogenase was feedback inhibited by tyrosine. Inhibition was competitive with prephenate (Ki = 0.06 mM) and noncompetitive with nicotinamide adenine dinucleotide. The enzyme was further subject to product inhibition by p-hydroxyphenylpyruvate (Ki = 0.13 mM). Its Km for prephenate was 0.045 mM, and that for nicotinamide adenine dinucleotide was 0.14 mM. The pH optimum ranged between 7.0 and 7.6; the temperature optimum was 38 C. It is shown how the sensitive regulation of the entire enzyme system leads to a well-balanced amino acid production.  相似文献   

8.
Dual biosynthetic pathways diverge from prephenate to L-tyrosine in Pseudomonas aeruginosa, with 4-hydroxyphenylpyruvate and L-arogenate being the unique intermediates of these pathways. Prephenate dehydrogenase and arogenate dehydrogenase activities could not be separated throughout fractionation steps yielding a purification of more than 200-fold, and the ratio of activities was constant throughout purification. Thus, the enzyme is a cyclohexadienyl dehydrogenase. The native enzyme has a molecular weight of 150,000 and is a hexamer made up of identical 25,500 subunits. The enzyme is specific for NAD+ as an electron acceptor, and identical Km values of 0.25 mM were obtained for NAD+, regardless of whether activity was assayed as prephenate dehydrogenase or as arogenate dehydrogenase. Km values of 0.07 mM and 0.17 mM were calculated for prephenate and L-arogenate, respectively. Inhibition by L-tyrosine was noncompetitive with respect to NAD+, but was strictly competitive with respect to either prephenate or L-arogenate. With cyclohexadiene as variable substrate, similar Ki values for L-tyrosine of 0.06 mM (prephenate) and 0.05 mM (L-arogenate) were obtained. With NAD+ as the variable substrate, similar Ki values for L-tyrosine of 0.26 mM (prephenate) and 0.28 mM (L-arogenate), respectively, were calculated. This is the first characterization of a purified, monofunctional cyclohexadienyl dehydrogenase.  相似文献   

9.
The bifunctional P protein (chorismate mutase: prephenate dehydratase) from Acinetobacter calcoaceticus has been purified. It was homogeneous in polyacrylamide gels and was more than 95% pure on the basis of the immunostaining of purified P protein with the antibodies raised against the P protein. The native enzyme is a homodimer (Mr = 91,000) composed of 45-kDa subunits. A twofold increase in the native molecular mass of the P protein occurred in the presence of L-phenylalanine (inhibitor of both activities) or L-tyrosine (activator of the dehydratase activity) during gel filtration. Chorismate mutase activity followed Michaelis-Menten kinetics with a Km of 0.55 mM for chorismate. L-Phenylalanine was a relatively poor non-competitive inhibitor of the mutase activity. The chorismate mutase activity was also competitively inhibited by prephenate (reaction product). Substrate-saturation curves for the dehydratase activity were sigmoidal showing positive cooperativity among the prephenate-binding sites. L-Tyrosine activated prephenate dehydratase strongly but did not abolish positive cooperativity with respect to prephenate. L-Phenylalanine inhibited the dehydratase activity, and the substrate-saturation curves became increasingly sigmoidal as phenylalanine concentrations were increased with happ values changing from 2.0 (no phenylalanine) to 4.0 (0.08 mM L-phenylalanine). A sigmoidal inhibition curve of the dehydratase activity by L-phenylalanine gave Hill plots having a slope of -2.9. Higher ionic strength increased the dehydratase activity by reducing the positive cooperative binding of prephenate, and the sigmoidal substrate-saturation curves were changed to near-hyperbolic form. The happ values decreased with increase in ionic strength. Antibodies raised against the purified P protein showed cross-reactivity with the P proteins from near phylogenetic relatives of A. calcoaceticus. At a greater phylogenetic distance, cross-reaction was superior with P protein from Neisseria gonorrhoeae than with that from the more closely related Escherichia coli.  相似文献   

10.
The pattern of allosteric control in the biosynthetic pathway for aromatic amino acids provides a basis to explain vulnerability to growth inhibition by l-phenylalanine (0.2 mM or greater) in the unicellular cyanobacterium Synechocystis sp. 29108. We attribute growth inhibition to the hypersensitivity of 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase to feedback inhibition by l-phenylalanine. Hyperregulation of this initial enzyme of aromatic biosynthesis depletes the supply of precursors needed for biosynthesis of l-tyrosine and l-tryptophan. Consistent with this mechanism is the total reversal of phenylalanine inhibition by a combination of tyrosine and tryptophan. Inhibited cultures also contained decreased levels of phycocyanin pigments, a characteristic previously correlated with amino acid starvation in cyanobacteria. l-Phenylalanine is a potent noncompetitive inhibitor (with both substrates) of 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase, whereas l-tyrosine is a very weak inhibitor. Prephenate dehydratase also displays allosteric sensitivity to phenylalanine (inhibition) and to tyrosine (activation). Both 2-fluoro and 4-fluoro derivatives of phenylalanine were potent analog antimetabolites, and these were used in addition to l-phenylalanine as selective agents for resistant mutants. Mutants were isolated which excreted both phenylalanine and tyrosine, the consequence of an altered 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase no longer sensitive to feedback inhibition. Simultaneous insensitivity to l-tyrosine suggests that l-tyrosine acts as a weak analog mimic of l-phenylalanine at a common binding site. Prephenate dehydratase in the regulatory mutants was unaltered. Surprisingly, in view of the lack of regulation in the tyrosine branchlet of the pathway, such mutants excrete more phenylalanine than tyrosine, indicating that l-tyrosine activation dominates l-phenylalanine inhibition of prephenate dehydratase in vivo. In mutant Phe r19 the loss in allosteric sensitivity of 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase was accompanied by a threefold increase in specific activity. This could suggest that existence of a modest degree of repression control (autogenous) over 3-deoxy-d-arabinoheptulosonate synthase, although other explanations are possible. Specific activities of chorismate mutase, prephenate dehydratase, shikimate/nicotinamide adenine dinucleotide phosphate dehydrogenase, and arogenate/nicotinamide adenine dinucleotide phosphate dehydrogenase in mutant Phe r19 were identical with those of the wild type.  相似文献   

11.
Species of coryneform bacteria (Corynebacterium glutamicum, Brevibacterium flavum, and B. ammoniagenes) utilize pretyrosine [beta-(1-carboxy-4-hydroxy-2,5-cyclohexadien-1-yl) alanine] as an intermediate in L-tyrosine biosynthesis. Pretyrosine is formed from prephenate via the activity of at least one species of aromatic aminotransferase which is significantly greater with prephenate as substrate than with either phenylpyruvate or 4-hydroxyphenylpyruvate. Pretyrosine dehydrogenase, capable of converting pretyrosine to L-tyrosine, has been partially purified from all three species. Each of the three pretyrosine dehydrogenases is catalytically active with either nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate as cofactors. The Km values for nicotinamide adenine dinucleotide phosphate in C. glutamicum and B. flavum are 55 microM and 14.2 microM, respectively, and corresponding Km values for nicotinamide adenine dinucleotide are 350 microM and 625 microM, respectively. The molecular weights of pretyrosine dehydrogenase in C. glutamicum and in B. flavum are both about 158,000, compared with 68,000 moleculr weitht in B. ammoniagenes. In all three species the enzyme is not feedback inhibited by L-tyrosine. Results obtained with various auxotropic mutants, which were used to manipulate internal concentrations of L-tyrosine, suggest that pretyrosine dehydrogenase is expressed constitutively. Pretyrosine dehydrogenase is quite sensitive to p-hydroxymercuribenzoic acid, complete inhibition being achieved at 10 to 25 microM concentrations. This inhibition is readily reversed by thiol reagents such as 2-mercaptoethanol. Coryneform organisms, like species of blue-green bacteria, appear to lack the 4-hydroxyphenylpyruvate pa thway of L-tyrosine synthesis altogether. The loss of pretyrosine dehydrogenase in extracts prepared from a tyrosine auxotroph affirms the exclusive role of pretyrosine dehydrogenase in L-tyrosine biosynthesis. Other reports in the literature, in which the presence in these organisms of prephenate dehydrogenase is described, appear to be erroneous.  相似文献   

12.
The effects of a variety of structural analogs of L-tyrosine on the mutase and dehydrogenase activities of hydroxyphenylpyruvate synthase have been investigated. From these studies it is concluded that the alpha-NH3+ alpha-COO-, and the 4-OH groups are essential for binding of L-tyrosine as an inhibitor of the dehydrogenase and that the L configuration is also essential. Dixon plots for inhibition of the dehydrogenase activity by some of these analogs were nonlinear and could be described by a velocity equation that is the ratio of quadratic polynomials (a 2/1 function). Dixon plots for inhibition of the mutase by prephenate at low concentrations of chorismate could also be described by a 2/1 function, but at low concentrations of prephenate chorismate acts as an apparent hyperbolic activator of the dehydrogenase activity. Up to concentrations of 300 microM, L-tyrosine activates the mutase but acts as a potent inhibitor of the dehydrogenase. Such data for the dehydrogenase could not be described by a 2/1 function in 1/[prephenate] but could be fitted to the Hill equation with increasing concentrations of L-tyrosine in the presence of 1.0 mM NAD yielding increasing values for the Hill number (n): in the absence of L-tyrosine, n = 1.6 +/- 0.1; at 150 microM L-tyrosine, n = 2.1 +/- 0.1; at 300 microM L-tyrosine, n = 2.3 +/- 0.4. L-Tyrosine bears a close structural resemblance to both prephenate and hydroxyphenylpyruvate, and evidence is presented which is consistent with L-tyrosine acting as a competitive inhibitor with respect to prephenate of the dehydrogenase.  相似文献   

13.
Clinical isolates of Neisseria gonorrhoeae are commonly subject to growth inhibition by phenylpyruvate or by L-phenylalanine. A blockade of tyrosine biosynthesis is indicated since inhibition is reversed by either L-tyrosine or 4-hydroxyphenylpyruvate. Phenylalanine-resistant (PheR) and phenylalanine-sensitive (PheS) isolates both have a single 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase that is partially inhibited by L-phenylalanine (80%). However, PheS and PheR isolates differ in that the ratio of phenylpyruvate aminotransferase to 4-hydroxyphenylpyruvate aminotransferase is distinctly greater in PheS isolates than in PheR isolates. A mechanism for growth inhibition is proposed in which phenylalanine exerts two interactive effects. (i) Phenylalanine decreases precursor flow to 4-hydroxyphenylpyruvate through its controlling effect upon DAHP synthase; and (ii) phenylalanine is largely transaminated to phenylpyruvate, which saturates both aminotransferases, preventing transamination of an already limited supply of 4-hydroxyphenylpyruvate to L-tyrosine.  相似文献   

14.
The pathway construction for biosynthesis of aromatic amino acids in Escherichia coli is atypical of the phylogenetic subdivision of gram-negative bacteria to which it belongs (R. A. Jensen, Mol. Biol. Evol. 2:92-108, 1985). Related organisms possess second pathways to phenylalanine and tyrosine which depend upon the expression of a monofunctional chorismate mutase (CM-F) and cyclohexadienyl dehydratase (CDT). Some enteric bacteria, unlike E. coli, possess either CM-F or CDT. These essentially cryptic remnants of an ancestral pathway can be a latent source of biochemical potential under certain conditions. As one example of advantageous biochemical potential, the presence of CM-F in Salmonella typhimurium increases the capacity for prephenate accumulation in a tyrA auxotroph. We report the finding that a significant fraction of the latter prephenate is transaminated to L-arogenate. The tyrA19 mutant is now the organism of choice for isolation of L-arogenate, uncomplicated by the presence of other cyclohexadienyl products coaccumulated by a Neurospora crassa mutant that had previously served as the prime biological source of L-arogenate. Prephenate aminotransferase activity was not conferred by a discrete enzyme, but rather was found to be synonymous with the combined activities of aspartate aminotransferase (aspC), aromatic aminotransferase (tyrB), and branched-chain aminotransferase (ilvE). This conclusion was confirmed by results obtained with combinations of aspC-, tyrB-, and ilvE-deficient mutations in E. coli. An example of disadvantageous biochemical potential is the presence of a cryptic CDT in Klebsiella pneumoniae, where a mutant carrying multiple enzyme blocks is the standard organism used for accumulation and isolation of chorismate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The pathway construction for biosynthesis of aromatic amino acids in Escherichia coli is atypical of the phylogenetic subdivision of gram-negative bacteria to which it belongs (R. A. Jensen, Mol. Biol. Evol. 2:92-108, 1985). Related organisms possess second pathways to phenylalanine and tyrosine which depend upon the expression of a monofunctional chorismate mutase (CM-F) and cyclohexadienyl dehydratase (CDT). Some enteric bacteria, unlike E. coli, possess either CM-F or CDT. These essentially cryptic remnants of an ancestral pathway can be a latent source of biochemical potential under certain conditions. As one example of advantageous biochemical potential, the presence of CM-F in Salmonella typhimurium increases the capacity for prephenate accumulation in a tyrA auxotroph. We report the finding that a significant fraction of the latter prephenate is transaminated to L-arogenate. The tyrA19 mutant is now the organism of choice for isolation of L-arogenate, uncomplicated by the presence of other cyclohexadienyl products coaccumulated by a Neurospora crassa mutant that had previously served as the prime biological source of L-arogenate. Prephenate aminotransferase activity was not conferred by a discrete enzyme, but rather was found to be synonymous with the combined activities of aspartate aminotransferase (aspC), aromatic aminotransferase (tyrB), and branched-chain aminotransferase (ilvE). This conclusion was confirmed by results obtained with combinations of aspC-, tyrB-, and ilvE-deficient mutations in E. coli. An example of disadvantageous biochemical potential is the presence of a cryptic CDT in Klebsiella pneumoniae, where a mutant carrying multiple enzyme blocks is the standard organism used for accumulation and isolation of chorismate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The recent placement of major Gram-negative prokaryotes (Superfamily B) on a phylogenetic tree (including, e.g., lineages leading to Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus) has allowed initial insights into the evolution of the biochemical pathway for aromatic amino acid biosynthesis and its regulation to be obtained. Within this prokaryote grouping, Xanthomonas campestris ATCC 12612 (a representative of the Group V pseudomonads) has played a key role in facilitating deductions about the major evolutionary events that shaped the character of aromatic biosynthesis within this grouping. X. campestris is like P. aeruginosa (and unlike E. coli) in its possession of dual flow routes to both L-phenylalanine and L-tyrosine from prephenate. Like all other members of Superfamily B, X. campestris possesses a bifunctional P-protein bearing the activities of both chorismate mutase and prephenate dehydratase. We have found an unregulated arogenate dehydratase similar to that of P. aeruginosa in X. campestris. We separated the two tyrosine-branch dehydrogenase activities (prephenate dehydrogenase and arogenate dehydrogenase); this marks the first time this has been accomplished in an organism in which these two activities coexist. Superfamily B organisms possess 3-deoxy-D-arabino-heptulosonate 7-P (DAHP) synthase as three isozymes (e.g., in E. coli), as two isozymes (e.g., in P. aeruginosa), or as one enzyme (in X. campestris). The two-isozyme system has been deduced to correspond to the ancestral state of Superfamily B. Thus, E. coli has gained an isozyme, whereas X. campestris has lost one. We conclude that the single, chorismate-sensitive DAHP synthase enzyme of X. campestris is evolutionarily related to the tryptophan-sensitive DAHP synthase present throughout the rest of Superfamily B. In X. campestris, arogenate dehydrogenase, prephenate dehydrogenase, the P-protein, chorismate mutase-F, anthranilate synthase, and DAHP synthase are all allosteric proteins; we compared their regulatory properties with those of enzymes of other Superfamily B members with respect to the evolution of regulatory properties. The network of sequentially operating circuits of allosteric control that exists for feedback regulation of overall carbon flow through the aromatic pathway in X. campestris is thus far unique in nature.  相似文献   

17.
Acholeplasma laidlawii possesses a biochemical pathway for tyrosine and phenylalanine biosynthesis, while Mycoplasma iowae and Mycoplasma gallinarum do not. The detection of 7-phospho-2-dehydro-3-deoxy-D-arabino-heptonate (DAHP) synthase (EC 4.1.2.15), dehydro-shikimate reductase (EC 1.1.1.25) and 3-enol-pyruvoylshikimate-5-phosphate synthase (EC 2.5.1.19) activities in cell-free extracts established the presence in A. laidlawii of a functional shikimate pathway. L-Phenylalanine synthesis occurs solely through the phenylpyruvate route via prephenate dehydratase (EC 4.2.1.51), no arogenate dehydratase activity being found. Although arogenate dehydrogenase was detected, L-tyrosine synthesis appears to occur mainly through the 4-hydroxyphenylpyruvate route, via prephenate dehydrogenase (EC 1.3.1.12), which utilized NAD+ as a preferred coenzyme substrate. L-Tyrosine was found to be the key regulatory molecule governing aromatic biosynthesis. DAHP synthase was feedback inhibited by L-tyrosine, but not by L-phenylalanine or L-tryptophan; L-tyrosine was a potent feedback inhibitor of prephenate dehydrogenase and an allosteric activator of prephenate dehydratase. Chorismate mutase (EC 5.4.99.5) was sensitive to product inhibition by prephenate. Prephenate dehydratase was feedback inhibited by L-phenylalanine. It was also activated by hydrophobic amino acids (L-valine, L-isoleucine and L-methionine), similar to results previously found in a number of other genera that share the Gram-positive line of phylogenetic descent. Aromatic-pathway-encoded cistrons present in saprophytic large-genome mycoplasmas may have been eliminated in the parasitic small-genome mycoplasmas.  相似文献   

18.
L-Arogenate is a commonplace amino acid in nature in consideration of its role as a ubiquitous precursor of L-phenylalanine and/or L-tyrosine. However, the questions of whether it serves as a chemoattractant molecule and whether it can serve as a substrate for catabolism have never been studied. We found that Pseudomonas aeruginosa recognizes L-arogenate as a chemoattractant molecule which can be utilized as a source of both carbon and nitrogen. Mutants lacking expression of either cyclohexadienyl dehydratase or phenylalanine hydroxylase exhibited highly reduced growth rates when utilizing L-arogenate as a nitrogen source. Utilization of L-arogenate as a source of either carbon or nitrogen was dependent upon (sigma)(sup54), as revealed by the use of an rpoN null mutant. The evidence suggests that catabolism of L-arogenate proceeds via alternative pathways which converge at 4-hydroxyphenylpyruvate. In one pathway, prephenate formed in the periplasm by deamination of L-arogenate is converted to 4-hydroxyphenylpyruvate by cyclohexadienyl dehydrogenase. The second route depends upon the sequential action of periplasmic cyclohexadienyl dehydratase, phenylalanine hydroxylase, and aromatic aminotransferase.  相似文献   

19.
The inhibition of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase (4-hydroxyphenylpyruvate synthase) by substrate analogues has been investigated at pH 6.0 with the aim of elucidating the spatial relationship that exists between the sites at which each reaction occurs. Several chorismate and adamantane derivatives, as well as 2-hydroxyphenyl acetate and diethyl malonate, act as linear competitive inhibitors with respect to chorismate in the mutase reaction and with respect to chorismate in the mutase reaction and with respect to prephenate in the dehydrogenase reaction. The similarity of the dissociation constants for the interaction of these compounds with the free enzyme, as determined from the mutase and dehydrogenase reactions, indicates that the reaction of these inhibitors at a single site prevents the binding of both chorismate and prephenate. However, not all the groups on the enzyme, which are responsible for the binding of these two substrates, can be identical. At lower concentrations, citrate or malonate prevents reaction of the enzyme with prephenate, but not with chorismate. Nevertheless, the combining sites for chorismate and prephenate are in such close proximity that the diethyl derivative of malonate prevents the binding of both substrates. The results lead to the proposal that the sites at which chorismate and prephenate react on hydroxyphenylpyruvate synthase share common features and can be considered to overlap.  相似文献   

20.
Candida maltosa synthesizes phenylalanine and tyrosine only via phenylpyruvate and p-hydroxyphenylpyruvate. Tryptophan is absolutely necessary for the enzymatic reaction of chorismate mutase and prephenate dehydrogenase; activity of prephenate dehydratase can be increased 2.5-fold in the presence of tryptophan. Activation of the chorismate mutase, prephenate dehydratase and prephenate dehydrogenase by tryptophan is competitive with respect to chorismate and prephenate with Ka 0.06mM, 0.56mM and 1.7mM. In addition tyrosine is a competitive inhibitor of chorismate mutase (Ki = 0.55mM) and prephenate dehydrogenase (Ki = 5.5mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号