首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
ATR (ataxia telangiectasia and Rad-3-related) is a protein kinase required for survival after DNA damage. A critical role for ATR has been hypothesized to be the regulation of p53 and other cell cycle checkpoints. ATR has been shown to phosphorylate p53 at Ser(15), and this damage-induced phosphorylation is diminished by expression of a catalytically inactive (ATR-kd) mutant. p53 function could not be examined directly in prior studies of ATR, however, because p53 was mutant or because cells expressed the SV40 large T antigen that blocks p53 function. To test the interactions of ATR and p53 directly we generated human U2OS cell lines inducible for either wild-type or kinase-dead ATR that also have an intact p53 pathway. Indeed, ATR-kd expression sensitized these cells to DNA damage and caused a transient decrease in damage-induced serine 15 phosphorylation of p53. However, we found that the effects of ATR-kd expression do not result in blocking the response of p53 to DNA damage. Specifically, prior ATR-kd expression had no effect on DNA damage-induced p53 protein up-regulation, p53-DNA binding, p21 mRNA up-regulation, or G(1) arrest. Instead of promoting survival via p53 regulation, we found that ATR protects cells by delaying the generation of mitotic phosphoproteins and inhibiting premature chromatin condensation after DNA damage or hydroxyurea. Although p53 inhibition (by E6 or MDM2 expression) had little effect on premature chromatin condensation, when combined with ATR-kd expression there was a marked loss of the replication checkpoint. We conclude that ATR and p53 can function independently but that loss of both leads to synergistic disruption of the replication checkpoint.  相似文献   

2.
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint   总被引:12,自引:0,他引:12  
Replicative cell division is an energetically demanding process that can be executed only if cells have sufficient metabolic resources to support a doubling of cell mass. Here we show that proliferating mammalian cells have a cell-cycle checkpoint that responds to glucose availability. The glucose-dependent checkpoint occurs at the G(1)/S boundary and is regulated by AMP-activated protein kinase (AMPK). This cell-cycle arrest occurs despite continued amino acid availability and active mTOR. AMPK activation induces phosphorylation of p53 on serine 15, and this phosphorylation is required to initiate AMPK-dependent cell-cycle arrest. AMPK-induced p53 activation promotes cellular survival in response to glucose deprivation, and cells that have undergone a p53-dependent metabolic arrest can rapidly reenter the cell cycle upon glucose restoration. However, persistent activation of AMPK leads to accelerated p53-dependent cellular senescence. Thus, AMPK is a cell-intrinsic regulator of the cell cycle that coordinates cellular proliferation with carbon source availability.  相似文献   

3.
Triad 1 (2 RING [really interesting new gene] fingers and DRIL [double RING finger linked] 1) is an E3 ligase that induces apoptosis and clonogenic inhibition in myeloid cells through Gfi-1 stabilization. Here we demonstrate that Triad 1 induces apoptosis in several cancer cell lines including MCF7, A549, U2OS, and HCT 116 p53+/+ cells via its RING ligase activity. Interestingly, in these cancer cells, Triad 1-induced apoptosis is not mediated by Gfi-1 stabilization but is instead p53-dependent. Moreover, Triad 1 promotes transactivation of p53. These results suggest that Triad 1 can induce apoptosis through its ligase activity via p53 activation.  相似文献   

4.
In the present study, we investigated the role of p53 in G(2) checkpoint function by determining the mechanism by which p53 prevents premature exit from G(2) arrest after genotoxic stress. Using three cell model systems, each isogenic, we showed that either ectopic or endogenous p53 sustained a G(2) arrest activated by ionizing radiation or adriamycin. The mechanism was p21 and retinoblastoma protein (pRB) dependent and involved an initial inhibition of cyclin B1-Cdc2 activity and a secondary decrease in cyclin B1 and Cdc2 levels. Abrogation of p21 or pRB function in cells containing wild-type p53 blocked the down-regulation of cyclin B1 and Cdc2 expression and led to an accelerated exit from G(2) after genotoxic stress. Thus, similar to what occurs in p21 and p53 deficiency, pRB loss can uncouple S phase and mitosis after genotoxic stress in tumor cells. These results indicate that similar molecular mechanisms are required for p53 regulation of G(1) and G(2) checkpoints.  相似文献   

5.
Genomic DNA replication is tightly controlled to ensure that DNA replication occurs once per cell cycle; loss of this control leads to genomic instability. Geminin, a DNA replication inhibitor, plays an important role in regulation of DNA replication. To investigate the role of human geminin in the maintenance of genomic stability, we eliminated geminin by RNA interference in human cancer cells. Depletion of geminin led to overreplication and the formation of giant nuclei in cells that had wild-type or mutant p53. We found that overreplication caused by depletion of geminin activated both Chk1 and Chk2, which then phosphorylated Cdc25C on Ser216, resulting in its sequestration outside the nucleus, thus inhibiting cyclin B-Cdc2 activity. This activated G(2)/M checkpoint prevented cells with overreplicated DNA from entering mitosis. Addition of caffeine, UCN-01, or inhibitors of checkpoint pathways or silencing of Chk1 suppressed the accumulation of overreplicated cells and promoted apoptosis. From these results, we conclude that geminin is required for suppressing overreplication in human cells and that a G(2)/M checkpoint restricts the proliferation of cells with overreplicated DNA.  相似文献   

6.
Wild-type p53 protein is abnormally sequestered in the cytoplasm of a subset of primary human tumors including neuroblastomas (NB) (U. M. Moll, M. LaQuaglia, J. Benard, and G. Riou, Proc. Natl. Acad. Sci. USA 92:4407-4411, 1995; U. M. Moll, G. Riou, and A. J. Levine, Proc. Natl. Acad. Sci.USA 89:7262-7266, 1992). This may represent a nonmutational mechanism for abrogating p53 tumor suppressor function. To test this hypothesis, we established the first available in vitro model that accurately reflects the wild-type p53 sequestration found in NB tumors. We characterized a series of human NB cell lines that overexpress wild-type p53 and show that p53 is preferentially localized to discrete cytoplasmic structures, with no detectable nuclear p53. These cell lines, when challenged with a variety of DNA strand-breaking agents, all exhibit impaired p53-mediated G1 arrest. Induction analysis of p53 and p53-responsive genes show that this impairment is due to suppression of nuclear p53 accumulation. Thus, this naturally occurring translocation defect compromises the suppressor function of p53 and likely plays a role in the tumorigenesis of these tumors previously thought to be unaffected by p53 alterations.  相似文献   

7.
8.
Ornithine decarboxylase (ODC), which catalyzes polyamine biosynthesis, plays an essential role in cell growth. DL-alpha-Difluoromethylornithine (DFMO), a synthetic inhibitor of ODC, inhibits cell growth. However, the exact mechanism by which polyamine depletion by DFMO results in growth inhibition remains to be elucidated. We clarified the mechanisms by which DFMO inhibits human gastric cancer cell (MKN45) growth. DFMO induced MKN45 cell G(1) phase arrest after 48 h, and the percentage of G(1) arrest cells continued to increase until 72 h. Expression of p21 and phosphorylation of Stat1 were significantly induced by DFMO at 24 h. Luciferase assay and gel shift assay showed specific binding of Stat1 to the p21 promoter, and promoter activity was activated at 24 h. In dominant negative p53 expressing cells, DFMO significantly induced p21 expression, arrested cells at G(1) phase, and suppressed cell growth effectively. These results suggest that DFMO induced MKN45 cell arrest at G(1) phase in a p53 independent manner, and Stat1 is, at least in part, involved in G(1) arrest.  相似文献   

9.
Murine erythroleukemia cells that lack endogenous p53 expression were transfected with a temperature-sensitive p53 allele. The temperature-sensitive p53 protein behaves as a mutant polypeptide at 37 degrees C and as a wild-type polypeptide at 32 degrees C. Three independent clones expressing the temperature-sensitive p53 protein were characterized with respect to p53-mediated G1 cell cycle arrest, apoptosis, and differentiation. Clone ts5.203 responded to p53 activation at 32 degrees C by undergoing G1 arrest, apoptosis, and differentiation. Apoptosis was seen in cells representative of all phases of the cell cycle and was not restricted to cells arrested in G1. The addition of a cytokine (erythropoietin, c-kit ligand, or interleukin-3) to the culture medium of ts5.203 cells blocked p53-mediated apoptosis and differentiation but not p53-mediated G1 arrest. These observations indicate that apoptosis and G1 arrest can be effectively uncoupled through the action of cytokines acting as survival factors and are consistent with the idea that apoptosis and G1 arrest represent separate functions of p53. Clones ts15.15 and tsCB3.4 responded to p53 activation at 32 degrees C by undergoing G1 arrest but not apoptosis. We demonstrate that tsCB3.4 secretes a factor with erythropoietin-like activity and that ts15.15 secretes a factor with interleukin-3 activity and suggest that autocrine secretion of these cytokines blocks p53-mediated apoptosis. These data provide a framework in which to understand the variable responses of cells to p53 overexpression.  相似文献   

10.
Nascent ribosome biogenesis is required during cell growth. To gain insight into the importance of this process during mouse oogenesis and embryonic development, we deleted one allele of the ribosomal protein S6 gene in growing oocytes and generated S6-heterozygous embryos. Oogenesis and embryonic development until embryonic day 5.5 (E5.5) were normal. However, inhibition of entry into M phase of the cell cycle and apoptosis became evident post-E5.5 and led to perigastrulation lethality. Genetic inactivation of p53 bypassed this checkpoint and prolonged development until E12.5, when the embryos died, showing decreased expression of D-type cyclins, diminished fetal liver erythropoiesis, and placental defects. Thus, a p53-dependent checkpoint is activated during gastrulation in response to ribosome insufficiency to prevent improper execution of the developmental program.  相似文献   

11.
p53 is an important mediator of the cellular stress response with roles in cell cycle control, DNA repair, and apoptosis. 53BP2, a p53-interacting protein, enhances p53 transactivation, impedes cell cycle progression, and promotes apoptosis through unknown mechanisms. We now demonstrate that endogenous 53BP2 levels increase following UV irradiation induced DNA damage in a p53-independent manner. In contrast, we found that the presence of a wild-type (but not mutant) p53 gene suppressed 53BP2 steady-state levels in cell lines with defined p53 genotypes. Likewise, expression of a tetracycline-regulated wild-type p53 cDNA in p53-null fibroblasts caused a reduction in 53BP2 protein levels. However, 53BP2 levels were not reduced if the tetracycline-regulated p53 cDNA was expressed after UV damage in these cells. This suggests that UV damage activates cellular factors that can relieve the p53-mediated suppression of 53BP2 protein. To address the physiologic significance of 53BP2 induction, we utilized stable cell lines with a ponasterone A-regulated 53BP2 cDNA. Conditional expression of 53BP2 cDNA lowered the apoptotic threshold and decreased clonogenic survival following UV irradiation. Conversely, attenuation of endogenous 53BP2 induction with an antisense oligonucleotide resulted in enhanced clonogenic survival following UV irradiation. These results demonstrate that 53BP2 is a DNA damage-inducible protein that promotes DNA damage-induced apoptosis. Furthermore, 53BP2 expression is highly regulated and involves both p53-dependent and p53-independent mechanisms. Our data provide new insight into 53BP2 function and open new avenues for investigation into the cellular response to genotoxic stress.  相似文献   

12.
Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. When the G2 checkpoint is abrogated, these cells are forced into mitotic catastrophe. A549 lung adenocarcinoma cells, in which p53 was eliminated with the HPV16 E6 gene, exhibited efficient arrest in the G2 phase when treated with adriamycin. Administration of caffeine to G2-arrested cells induced a drastic change in cell phenotype, the nature of which depended on the status of p53. Flow cytometric and microscopic observations revealed that cells that either contained or lacked p53 resumed their cell cycles and entered mitosis upon caffeine treatment. However, transit to the M phase was slower in p53-negative cells than in p53-positive cells. Consistent with these observations, CDK1 activity was maintained at high levels, along with stable cyclin B1, in p53-negative cells. The addition of butyrolactone I, which is an inhibitor of CDK1 and CDK2, to the p53-negative cells reduced the floating round cell population and induced the disappearance of cyclin B1. These results suggest a relationship between the p53 pathway and the ubiquitin-mediated degradation of mitotic cyclins and possible cross-talk between the G2-DNA damage checkpoint and the mitotic checkpoint.  相似文献   

13.
We have recently shown that induction of the p53 tumour suppressor protein by the small-molecule RITA (reactivation of p53 and induction of tumour cell apoptosis; 2,5-bis(5-hydroxymethyl-2-thienyl)furan) inhibits hypoxia-inducible factor-1α and vascular endothelial growth factor expression in vivo and induces p53-dependent tumour cell apoptosis in normoxia and hypoxia. Here, we demonstrate that RITA activates the canonical ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related DNA damage response pathway. Interestingly, phosphorylation of checkpoint kinase (CHK)-1 induced in response to RITA was influenced by p53 status. We found that induction of p53, phosphorylated CHK-1 and γH2AX proteins was significantly increased in S-phase. Furthermore, we found that RITA stalled replication fork elongation, prolonged S-phase progression and induced DNA damage in p53 positive cells. Although CHK-1 knockdown did not significantly affect p53-dependent DNA damage or apoptosis induced by RITA, it did block the ability for DNA integrity to be maintained during the immediate response to RITA. These data reveal the existence of a novel p53-dependent S-phase DNA maintenance checkpoint involving CHK-1.  相似文献   

14.
Activation of a temperature-sensitive form of p53 in murine erythroleukaemia cells results in a rapid impairment of protein synthesis that precedes inhibition of cell proliferation and loss of cell viability by several hours. The inhibition of translation is associated with specific cleavages of polypeptide chain initiation factors eIF4GI and eIF4B, a phenomenon previously observed in cells induced to undergo apoptosis in response to other stimuli. Although caspase activity is enhanced in the cells in which p53 is activated, both the effects on translation and the cleavages of the initiation factors are completely resistant to inhibition of caspase activity. Moreover, exposure of the cells to a combination of the caspase inhibitor z-VAD.FMK and the survival factor erythropoietin prevents p53-induced cell death but does not reverse the inhibition of protein synthesis. We conclude that the p53-regulated cleavages of eIF4GI and eIF4B, as well as the overall inhibition of protein synthesis, are caspase-independent events that can be dissociated from the induction of apoptosis per se.  相似文献   

15.
16.
The p53 tumor suppressor gene is thought to be required for the induction of programmed cell death (apoptosis) initiated by DNA damage. We show here, however, that the human promyelocytic leukemia cell line HL-60, which is known to be deficient in p53 because of large deletions in the p53 gene, can be induced to undergo apoptosis following X-irradiation. We demonstrate that the decision to undergo apoptosis in this cell line appears to be made at a G2 checkpoint. In addition, we characterize an HL-60 variant, HCW-2, which is radioresistant. HCW-2 cells display DNA damage induction and repair capabilities identical to those of the parental HL-60 cell line. Thus, the difference between the two cell lines appears to be that X-irradiation induces apoptosis in HL-60, but not in HCW-2, cells. Paradoxically, HCW-2 cells display high levels of expression of bax, which enhances apoptosis, and no longer express bcl-2, which blocks apoptosis. HCW-2 cells' resistance to apoptosis may be due to the acquisition of expression of bcl-XL, a bcl-2-related inhibitor of apoptosis. In summary, apoptosis can be induced in X-irradiated HL-60 cells by a p53-independent mechanism at a G2 checkpoint, despite the presence of endogenous bcl-2. The resistance shown by HCW-2 cells suggests that bcl-XL can block this process.  相似文献   

17.
18.
19.
Li J  Wang Y  Sun Y  Lawrence TS 《Radiation research》2002,157(3):322-330
The WEE1 protein kinase carries out the inhibitory phosphorylation of CDC2 on tyrosine 15 (Tyr15), which is required for activation of the G(2)-phase checkpoint in response to DNA damage. PD0166285 is a newly identified WEE1 inhibitor and is a potential selective G(2)-phase checkpoint abrogator. To determine the role of TP53 in PD0166285-induced G(2)-phase checkpoint abrogation, human H1299 lung carcinoma cells expressing a temperature-sensitive TP53 were used. Upon exposure to gamma radiation, cells cultured under nonpermissive conditions (TP53 mutant conformation) underwent G(2)-phase arrest. However, under permissive conditions (TP53 wild-type conformation), PD0166285 greatly inhibited the accumulation of cells in G(2) phase. This abrogation was accompanied by a nearly complete blockage of Tyr15 phosphorylation of CDC2, an increased activity of CDC2 kinase, and an enhanced sensitivity to radiation. However, under permissive conditions (TP53 wild-type conformation), PD0166285 neither disrupted the G(2)-phase arrest nor increased cell death. The compound inhibited Tyr15 phosphorylation only partially and did not activate CDC2 kinase activity. To understand the potential mechanism(s) by which TP53 inhibits PD0166285-induced G(2)-phase checkpoint abrogation, two TP53 target proteins, 14-3-3rho and CDKN1A (also known as p21), that are known to be involved in G(2)-phase checkpoint control in other cell models were examined. It was found that 14-3-3rho was not expressed in H1299 cells, and that although CDKN1A did associate with CDC2 to form a complex, the level of CDKN1A associated with CDC2 was not increased in response to radiation or to PD0166285. The level of cyclin B1, required for CDC2 activity, was decreased in the presence of functional TP53. Thus inhibition of PD0166285-induced G(2)-phase checkpoint abrogation by TP53 was achieved at least in part through partial blockage of CDC2 dephosphorylation of Tyr15 and inhibition of cyclin B1 expression.  相似文献   

20.
Previous experiments in Xenopus egg extracts identified what appeared to be two independently assembled prereplication complexes (pre-RCs) for DNA replication: the stepwise assembly of ORC, Cdc6, and Mcm onto chromatin, and the FFA-1-mediated recruitment of RPA into foci on chromatin. We have investigated whether both of these pre-RCs can be detected in Chinese hamster ovary (CHO) cells. Early- and late-replicating chromosomal domains were pulse-labeled with halogenated nucleotides and prelabeled cells were synchronized at various times during the following G1-phase. The recruitment of Mcm2 and RPA to these domains was examined in relation to the formation of a nuclear envelope, specification of the dihydrofolate reductase (DHFR) replication origin and entry into S-phase. Mcm2 was loaded gradually and cumulatively onto both early- and late-replicating chromatin from late telophase throughout G1-phase. During S-phase, detectable Mcm2 was rapidly excluded from PCNA-containing active replication forks. By contrast, detergent-resistant RPA foci were undetectable until the onset of S-phase, when RPA joined only the earliest-firing replicons. During S-phase, RPA was present with PCNA specifically at active replication forks. Together, our data are consistent with a role for Mcm proteins, but not RPA, in the formation of mammalian pre-RCs during early G1-phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号