首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Individuals infected with human immunodeficiency virus (HIV) are at increased risk for Burkitt lymphoma, a B-cell malignancy which occurs after a chromosomal translocation rearranging the MYC oncogene with an immunoglobulin gene locus, usually the IGH heavy chain gene locus. We have previously reported that the HIV protein Tat which circulates in all HIV-positive individuals whatever their immune status caused an increased rate of colocalization between IGH and MYC in B-cells nuclei. We here present in vitro evidence that Tat activates the expression of the AICDA gene that encodes the activation-induced cytidine deaminase whose physiological function is to create double-strand breaks for immunoglobulin gene maturation. In the presence of Tat, DNA damage was observed concomitantly in both MYC and IGH, followed by DNA repair by nonhomologous end joining. AICDA was further found overexpressed in vivo in peripheral blood B-cells from HIV-infected individuals. Thus, the capacity of Tat to spontaneously penetrate B-cells could be sufficient to favor the occurrence of MYC-IGH oncogenic rearrangements during erroneous repair, a plausible cause for the increased incidence of Burkitt lymphoma in the HIV-infected population.  相似文献   

2.
    
Declined quality and quantity of sperm is currently the major cause of patients suffering from infertility. Male germ cell development is spatiotemporally regulated throughout the whole developmental process. While it has been known that exogenous factors, such as environmental exposure, diet and lifestyle, et al, play causative roles in male infertility, recent progress has revealed abundant genetic mutations tightly associated with defective male germline development. In mammals, male germ cells undergo dramatic morphological change (i.e., nuclear condensation) and chromatin remodeling during post-meiotic haploid germline development, a process termed spermiogenesis; However, the molecular machinery players and functional mechanisms have yet to be identified. To date, accumulated evidence suggests that disruption in any step of haploid germline development is likely manifested as fertility issues with low sperm count, poor sperm motility, aberrant sperm morphology or combined. With the continually declined cost of next-generation sequencing and recent progress of CRISPR/Cas9 technology, growing studies have revealed a vast number of disease-causing genetic variants associated with spermiogenic defects in both mice and humans, along with mechanistic insights partially attained and validated through genetically engineered mouse models (GEMMs). In this review, we mainly summarize genes that are functional at post-meiotic stage. Identification and characterization of deleterious genetic variants should aid in our understanding of germline development, and thereby further improve the diagnosis and treatment of male infertility.  相似文献   

3.
    
  相似文献   

4.
    
Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-αscFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient.  相似文献   

5.
从上世纪50年代发现DNA双螺旋结构以来,科学家积累了大量的有关生物的生理和病理分子机理的知识。人们期望从生物学的基础研究中衍生出高效、环保的生物相关制造产业,为人类服务。为了发展生物制造产业,生物基础元件蛋白质和基因的制造技术必不可少。最近出现了一种基于基因高频突变的蛋白质人工进化技术。这一技术已成功应用于新抗体的产生,以及抗体和荧光蛋白质的改造。这一技术的进一步发展将成为蛋白质改造、乃至新蛋白质制造的重要工具。  相似文献   

6.
The most common mutations in cancer are C to T transitions, but their origin has remained elusive. Recently, mutational signatures of APOBEC-family cytosine deaminases were identified in many common cancers, suggesting off-target deamination of cytosine to uracil as a common mutagenic mechanism. Here we present evidence from mass spectrometric quantitation of deoxyuridine in DNA that shows significantly higher genomic uracil content in B-cell lymphoma cell lines compared to non-lymphoma cancer cell lines and normal circulating lymphocytes. The genomic uracil levels were highly correlated with AID mRNA and protein expression, but not with expression of other APOBECs. Accordingly, AID knockdown significantly reduced genomic uracil content. B-cells stimulated to express endogenous AID and undergo class switch recombination displayed a several-fold increase in total genomic uracil, indicating that B cells may undergo widespread cytosine deamination after stimulation. In line with this, we found that clustered mutations (kataegis) in lymphoma and chronic lymphocytic leukemia predominantly carry AID-hotspot mutational signatures. Moreover, we observed an inverse correlation of genomic uracil with uracil excision activity and expression of the uracil-DNA glycosylases UNG and SMUG1. In conclusion, AID-induced mutagenic U:G mismatches in DNA may be a fundamental and common cause of mutations in B-cell malignancies.  相似文献   

7.
    
Wang  Bei  Wang  Fei  Huang  He  Zhao  Zhendong 《中国病毒学》2019,34(6):641-647
Early etiological diagnosis is very important for the control of sudden viral infections, and requires antibodies with both high sensitivity and high specificity. Traditional antibody preparation methods have limitations, such as a long and arduous cycle, complicated operation, and high expenses. A chicken lymphoma cell line, DT40, is known to produce Ig M-type antibodies and undergo gene conversion and somatic mutation in the variable region of the immunoglobulin gene during culture. Here, the DT40 cell line was developed to produce antibody libraries and prepare antibody rapidly in vitro. Since hypermutation in DT40 cells was regulated by the activation-induced cytidine deaminase(AID) gene, AID expression needs to be controlled to either fix the Ig sequence by stopping mutation or improve affinity by resuming mutation after the antibodies have been selected. In this study, we generated a novel AID-inducible DT40 cell line(DT40-H7), in which the endogenous AID gene was knocked out using the CRISPR/Cas9 genome editing system, and an inducible AID gene, based on the Tet-Off expression system, was stably transfected. AID expression was controlled in DT40-H7 cells in a simple and efficient manner; gene conversion and point mutations were observed only when AID was expressed. Using the antibody library generated from this cell line, we successfully obtained monoclonal antibodies against the NS1 protein of Zika virus.The DT40-H7 cell line represents a useful tool for the selection and evolution of antibodies and may also be a powerful tool for the rapid selection and generation of diagnostic antibodies for emerging infectious diseases.  相似文献   

8.
目的:探讨AID在前列腺癌中的表达情况,AID对前列腺癌细胞C4-2的侵袭、迁移、增殖以及凋亡方面的影响。方法:应用靶向敲减AID的慢病毒对前列腺癌细胞C4-2进行干扰,运用Western-blot、免疫组化、平板克隆形成、流式、Transwell实验对前列腺癌组织和前列腺癌细胞C4-2表型的变化情况进行研究。结果:临床前列腺癌样本中AID高表达,良性前列腺增生组织中AID低表达,正常前列腺组织不表达(*P0.05);shRNA干扰以后的shAICDA-C4-2单克隆细胞株中AID的表达量显著降低,其增殖、迁移和侵袭能力阳性对照组(Monoclonal6)与阴性对照组(NC)相比分别降低49%、80%、63%,凋亡率阳性对照组(Monoclonal6)为阴性对照组(NC)的3.2倍。结论:前列腺癌组织中AID高表达,AID在促进前列腺癌细胞的增殖、迁移、侵袭,抑制前列腺自细胞的凋亡中具有极其重要的作用。AID表达极可能与前列腺癌的进展、预后明显相关。  相似文献   

9.
10.
11.
12.
The mRNA levels of neuropoietic cytokines, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), and interleukin-6 (IL-6), and their receptor components (CNTFR, LIFR, IL-6R, and gp130) were examined in seventy-six patients with various peripheral neuropathies to determine the extent of expression of these cytokines and receptors, and their relationship to nerve fiber pathology and cell infiltration in the diseased nerves. The CNTF mRNA levels were significantly decreased in the diseased nerves and were correlated to residual myelinated fiber population. In contrast, the mRNA levels of LIF, IL-6 and the ligand-binding receptor components (CNTFR, LIFR and IL-6R) were elevated to variable extent in the diseased nerves. The CNTFR, LIFR, and IL-6R mRNA levels showed a weak positive correlation with the extent of demyelinating pathology and their levels were related to each other. Moreover, the CNTF and LIF mRNA levels were inversely proportional to the extent of macrophage invasion, whereas the CNTFR and IL-6R mRNA expressions were correlated to the increase in macrophage infiltration. The neuropoietic cytokine family and its receptor expressions in the diseased human nerves are regulated by an underlying pathology-related process rather than type of diseases, and could play a role in peripheral nerve regeneration and repair.  相似文献   

13.
The IL-6 signaling complex is described as a hexamer, formed by the association of two IL-6·IL-6 receptor (IL-6R)·gp130 trimers, with gp130 being the signal transducer inducing cis- and trans-mediated signaling via a membrane-bound or soluble form of the IL-6R, respectively. 25F10 is an anti-mouse IL-6R mAb that binds to both membrane-bound IL-6R and soluble IL-6R with the unique property of specifically inhibiting trans-mediated signaling events. In this study, epitope mapping revealed that 25F10 interacts at site IIb of IL-6R but allows the binding of IL-6 to the IL-6R and the recruitment of gp130, forming a trimer complex. Binding of 25F10 to IL-6R prevented the formation of the hexameric complex obligate for trans-mediated signaling, suggesting that the cis- and trans-modes of IL-6 signaling adopt different mechanisms for receptor complex assembly. To study this phenomenon also in the human system, we developed NI-1201, a mAb that targets, in the human IL-6R sequence, the epitope recognized by 25F10 for mice. Interestingly, NI-1201, however, did not selectively inhibit human IL-6 trans-signaling, although both mAbs produced beneficial outcomes in conditions of exacerbated IL-6 as compared with a site I-directed mAb. These findings shed light on the complexity of IL-6 signaling. First, triggering cis- versus trans-mediated IL-6 signaling occurs via distinctive mechanisms for receptor complex assembly in mice. Second, the formation of the receptor complex leading to cis- and trans-signaling biology in mice and humans is different, and this should be taken into account when developing strategies to inhibit IL-6 clinically.  相似文献   

14.
人体肿瘤的形成是一个复杂的过程.在这个过程中会发生许多基因突变,这些突变中只有较少一部分具有驱动肿瘤发生的作用,大部分突变作为伴随性变化对肿瘤的发生并无明确的贡献.要确定哪些变异具有驱动肿瘤发生的作用及其作用机制,需要通过实验验证.伴随着新的研究技术的出现,鉴定肿瘤驱动基因的手段也不断演变.从早期主要是从动物诱癌实验、...  相似文献   

15.
Low concentrations of exogenously added recombinant interleukin 2 (rIL-2) were able to augment OK-432-induced natural killer (NK) cell activity. This kind of augmenting effect depended on the dose of rIL-2 and manifested itself only in PBMC stimulated with OK-432 (OK-MC) followed by rIL-2; augmentation did not happen in the reverse order. The existence of CD16+/CD25+ (IL-2 receptor positive; IL-2R+) and CD57+/CD25+ double positive cells which possess NK cell surface markers in OK-MC markedly increased in a long-term culture (12 days). A strong positive correlation was observed between the IL-2-dependent augmentation of NK activity and the quantitative changes in cell populations that possessed NK cell phenotypes. Treatment of the day-12-OK-MC with monoclonal anti-CD56 antibody plus complement could almost completely abrogate the augmented NK cytotoxicity. Furthermore, this augmenting effect was detectable within 4 hr after addition of rIL-2 at single cell level, suggesting that the effect did not require NK cell's DNA synthesis. Thus it was suggested that OK-432 could promote and upregulate the expression of IL-2 receptor (CD25) on CD56+ NK cell populations. Moreover, it was considered that the interaction of low concentration rIL-2 with IL-2 receptors on OK-432-activated NK cells could augment their lytic function.  相似文献   

16.
The present study was designed to evaluate the effect of rTNF alone or in combination with other BRMs on human digestive organ cancers. Six kinds of human digestive organ cancer xenografts (esophageal, stomach, colonic, pancreatic, bile duct, and liver cancers: EC-YO, GC-YN, CC-KK, PC-HN, BDC-SN and Li-7, respectively) were transplanted in nude mice, and rTNF was administered at 103, 5 × 103, or 104U/head directly into the tumor 3 times a week for 2 weeks. EC-YO was the most sensitive to rTNF, and intratumoral administration of rTNF at 103 U/head caused tumor regression. PC-HN, CC-KK and GC-YN were relatively sensitive to rTNF, and their growth was significantly inhibited by rTNF at 5 × 103 U/head, however, the tumors regrew after treatment. Li-7 and BDC-SN were resistant to rTNF. The effects of rTNF in combination with recombinant interferon- (rIFN-), recombinant interleukin-2 (rIL-2), or streptococcal preparation OK-432 were assessed in mice transplanted with GC-YN. All combinations of rTNF at 5 × 103 U/head and other BRMs were more effective than rTNF alone, and GC-YN tumors were completely regressed after treatment with a combination of rTNF and rIFN- or rTNF and OK-432. However in all cases, the combination of rTNF at 103 U/head and any other BRM did not improve the effect. Furthermore, the adverse effects of the combinations were more serious than those of rTNF alone.TNF may still be a useful cytokine, because it can induce the regression of tumors. However, for its clinical application, a method should be developed to reduce its side effects.  相似文献   

17.
通过定点诱变技术得到6个生物活性剧烈下降的人白细胞介素-2(IL-2)突变体,其中两个突变体即15Val-IL-2和126Asp-IL-2可以在一定浓度范围内使IL-2的生物效应降低.在对高亲和力IL-2受体(IL-2R)的竞争抑制实验中,15Val-IL-2和126Asp-IL-2又表现了一定的竞争能力.这些结果表明15Val-IL-2和126Asp-IL-2的部分拮抗天然IL-2的作用.结合IL-2二级结构分析及对IL-2与IL-2R相互作用的已有认识,可认为15Val-IL-2和126Asp-IL-2的部分拮抗作用产生的原因在于替换残基在空间上对IL-2与IL-2R βγ亚基结合微环境的轻微扰动,干扰了IL-2有关残基与IL-2R βγ亚基的结合,但尚不能完全阻止其与IL-2R βγ亚基的结合.  相似文献   

18.
    
PAX5 is a tumor suppressor in B-ALL, while the role of PAX5 fusion proteins in B-ALL development is largely unknown. Here, we studied the function of PAX5-ETV6 and PAX5-FOXP1 in mice expressing these proteins from the Pax5 locus. Both proteins arrested B-lymphopoiesis at the pro-B to pre-B-cell transition and, contrary to their proposed dominant-negative role, did not interfere with the expression of most regulated Pax5 target genes. Pax5-Etv6, but not Pax5-Foxp1, cooperated with loss of the Cdkna2a/b tumor suppressors in promoting B-ALL development. Regulated Pax5-Etv6 target genes identified in these B-ALLs encode proteins implicated in pre-B-cell receptor (BCR) signaling and migration/adhesion, which could contribute to the proliferation, survival, and tissue infiltration of leukemic B cells. Together with similar observations made in human PAX5-ETV6+ B-ALLs, these data identified PAX5-ETV6 as a potent oncoprotein that drives B-cell leukemia development.  相似文献   

19.
促炎因子在心脏修复中的作用   总被引:1,自引:0,他引:1  
肿 瘤 坏死 因 子 TN F)、白介 素 -1(IL-1)、白 介 素 -2(IL-2)以 及 白介 素 -6(IL-6)等 分子 ,叫 作 促 炎细 胞 因 (子 .一 般 认为 它 们不 属于 免 疫系 统,而 只是 与 组织 炎症 的起 始 有关 .促 炎因 子在 心 脏中 也 有表 达,它 的短 期表 达可 以 帮助 心 脏适 应外 界 压力 的损 伤 ,而其 长期 的 表达 却会 引 起明 显的 心 脏代 谢失 常 .主要 就 促炎 因子 在心 脏中 的 作用 作 一综 述 .  相似文献   

20.
    
In recent years, tremendous progress has been made in the elucidation of the biological roles and molecular mechanisms of the apolioprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of enzymes. The APOBEC family of cytidine deaminases has important functional roles within the adaptive and innate immune system. Activation induced cytidine deaminase (AID) plays a central role in the biochemical steps of somatic hypermutation and class switch recombination during antibody maturation, and the APOBEC 3 enzymes are able to inhibit the mobility of retroelements and the replication of retroviruses and DNA viruses, such as the human immunodeficiency virus type-1 and hepatitis B virus. Recent advances in structural and functional studies of the APOBEC enzymes provide new biochemical insights for how these enzymes carry out their biological roles. In this review, we provide an overview of these recent advances in the APOBEC field with a special emphasis on AID and APOBEC3G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号