首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ammonium uptake by cucumber seedlings was estimated from ammonium ions depletion in an uptake solution. The uptake of NH 4 + was decreased by about 60 % after one hour and by about 90 % after two hours of 100 μM Cu2+ treatment. On the contrary the accumulation of ammonium in roots of Cu2+-treated seedlings at the same time was higher than in the control. Cu2+ in the concentration inhibiting NH 4 + absorption during one hour inhibited also glutamine synthetase (GS) (EC 6.3.1.2) and NADH-glutamate dehydrogenase (NADH-GDH) (EC 1.4.1.2) activities both localized in the roots of seedlings. After one hour and at least up to the 4th hour Cu2+ accumulated mainly in roots (95 %). It was probably the reason of the GS activity in cotyledons of seedling treated with Cu2+ that it was at the same level as in the control. NADH-GDH activity in cotylcdons after one hour of the Cu2+ treatment was lower than in the control but the influence of Cu2+ action on the activity of this enzyme in roots was by far stronger. 100 μM Cu2+ did not affect the activities of both enzymes in in vitro experiments. Copper added into the incubation medium in 1000 μM concentration decreased GS activity, but still did not change NADH-GDH activity. These results suggested the indirect Cu2+ action on the investigated enzymes in in vivo experiments. However, no substantial effect on enzyme activities extracted from control plants was observed after the addition of the extract from Cu2+-treated plants into the incubation medium. The data suggest that the influence of Cu2+ on uptake and assimilation of ammonium may be connected not only with changes of plasma membrane properties in the root cells of Cu2+ treated seedlings but also with Cu2+ action on two major enzymes involved in NH 4 + assimilation: glutamate synthetase and NADH-glutamate dehydrogenase.  相似文献   

2.
A highly active ferrous iron oxidation Acidithiobacillus ferrooxidans strain SY, was isolated from an ancient copper mining area in Daye, Hubei Province. Analysis of 16S rDNA sequence showed that the strain has high similarity to the sequence of A. ferrooxidans (DQ 062116.1). Physiological and biochemical determinations showed that the strain was a chemical energy autotrophically with the optimal growth pH at 2.0 and optimal growth temperature at 30 ℃. The MTC of the strain to resist Cu2+, Cd2+, Ni2+, and Zn2+ were respectively at 300, 350, 700, and 800 (mmol/L), demonstrated it has high resistance against multiple heavy metal ions. Bioleaching data of SY showed its bioleaching rate on native ore was as high as 84.28%, higher than bioleaching rate on the ore from other mining areas, showing it has very high superiority on bioleaching native ore. The strain SY has great potential in the application of native minerals bioleaching.  相似文献   

3.
The intermediate and terminal products of cyanide and thiocyanate decomposition by individual strains of the genus Pseudomonas, P. putida strain 21 and P. stutzeri strain 18, and by their association were analyzed. The activity of the enzymes of nitrogen and sulfur metabolism in these strains was compared with that of the collection strains P. putida VKM B-2187T and P. stutzeri VKM B-975T. Upon the introduction of CN and SCN into cell suspensions of strains 18 and 21 in phosphate buffer (pH 8.8), the production of NH 4 + was observed. Due to the high rate of their utilization, NH3, NH 4 + , and CNO were absent from the culture liquids of P. putida strain 21 and P. stutzeri strain 18 grown with CN or SCN. Both Pseudomonas strains decomposed SCN via cyanate production. The cyanase activity was 0.75 μmol/(min mg protein) for P. putida strain 21 and 1.26 μmol/(min mg protein) for P. stutzeri strain 18. The cyanase activity was present in the cells grown with SCN but absent in cells grown with NH 4 + . Strain 21 of P. putida was a more active CN decomposer than strain 18 of P. stutzeri. Ammonium and CO2 were the terminal nitrogen and carbon products of CN and SCN decomposition. The terminal sulfur products of SCN decomposition by P. stutzeri strain 18 and P. putida strain 21 were thiosulfate and tetrathionate, respectively. The strains utilized the toxic compounds in the anabolism only, as sources of nitrogen (CN and SCN) and sulfur (SCN). The pathway of thiocyanate decomposition by the association of bacteria of the genus Pseudomonas is proposed based on the results obtained. Original Russian Text ? N.V. Grigor’eva, T.F. Kondrat’eva, E.N. Krasil’nikova, G.I. Karavaiko, 2006, published in Mikrobiologiya, 2006, Vol. 75, No. 3, pp. 320–328.  相似文献   

4.
It has been predicted that elevated atmospheric CO2 will increase enzyme activity as a result of CO2-induced carbon entering the soil. The objective of this study was to investigate the effects of elevated atmospheric CO2 on soil enzyme activities under a rice/wheat rotation. This experiment was conducted in Wuxi, Jiangsu, China as part of the China FACE (Free Air Carbon Dioxide Enrichment) Project. Two atmospheric CO2 concentrations (580±60) and (380±40) μmol·mol-1) and three N application treatments (low-150, normal-250 and high-350 kg N·hm-2) were included. Soil samples (0-10 cm) were collected for analysis of β-glucosidase, invertase, urease, acid phosphates and β-glucosaminidase activities. The results revealed that with elevated atmospheric CO2 β-glucosidase activity significantly decreased (P < 0.05) at low N application rates; had no significant effect with a normal N application rate; and significantly increased (P < 0.05) with a high N application rate. For urease activity, at low and normal N application rates (but not high N application rate), elevated atmospheric CO2 significantly increased (P < 0.05) it. With acid phosphatase elevated atmospheric CO2 only had significant higher effects (P < 0.05) at high N application rates. Under different CO2 concentration, effects of N fertilization are also different. Soil β-glucosidase activity at ambient CO2 concentration decreased with N fertilization, while it increased at elevated CO2 concentration. In addition, invertase and acid phosphatase activities at elevated CO2 concentration, significantly increased (P < 0.05) with N treatments, but there was no effect with the ambient CO2 concentration. For urease activity, at ambient CO2 concentration, N fertilization increased it significantly (P < 0.05), whereas at elevated CO2 concentration it was not significant. Additionally, with β-glucosaminidase activity, there were no significant effects from N application. In general, then, elevated atmospheric CO2 increased soil enzyme activity, which may be attributed to the following two factors: (1) elevated atmospheric CO2 led to more plant biomass in the soil, which in turn stimulated soil microbial biomass and activity; and (2) elevated atmospheric CO2 increased plant photosynthesis, thereby increasing plant-derived soil enzymes.  相似文献   

5.
It has been predicted that elevated atmospheric CO2 will increase enzyme activity as a result of CO2-induced carbon entering the soil. The objective of this study was to investigate the effects of elevated atmospheric CO2 on soil enzyme activities under a rice/wheat rotation. This experiment was conducted in Wuxi, Jiangsu, China as part of the China FACE (Free Air Carbon Dioxide Enrichment) Project. Two atmospheric CO2 concentrations (580±60) and (380±40) μmol·mol-1) and three N application treatments (low-150, normal-250 and high-350 kg N·hm-2) were included. Soil samples (0-10 cm) were collected for analysis of β-glucosidase, invertase, urease, acid phosphates and β-glucosaminidase activities. The results revealed that with elevated atmospheric CO2 β-glucosidase activity significantly decreased (P < 0.05) at low N application rates; had no significant effect with a normal N application rate; and significantly increased (P < 0.05) with a high N application rate. For urease activity, at low and normal N application rates (but not high N application rate), elevated atmospheric CO2 significantly increased (P < 0.05) it. With acid phosphatase elevated atmospheric CO2 only had significant higher effects (P < 0.05) at high N application rates. Under different CO2 concentration, effects of N fertilization are also different. Soil β-glucosidase activity at ambient CO2 concentration decreased with N fertilization, while it increased at elevated CO2 concentration. In addition, invertase and acid phosphatase activities at elevated CO2 concentration, significantly increased (P < 0.05) with N treatments, but there was no effect with the ambient CO2 concentration. For urease activity, at ambient CO2 concentration, N fertilization increased it significantly (P < 0.05), whereas at elevated CO2 concentration it was not significant. Additionally, with β-glucosaminidase activity, there were no significant effects from N application. In general, then, elevated atmospheric CO2 increased soil enzyme activity, which may be attributed to the following two factors: (1) elevated atmospheric CO2 led to more plant biomass in the soil, which in turn stimulated soil microbial biomass and activity; and (2) elevated atmospheric CO2 increased plant photosynthesis, thereby increasing plant-derived soil enzymes.  相似文献   

6.
In this report,the β-glucosidase from the C.thermocopriae JT3-3 strain was studied.By purifying,the enzyme specific activity was increased about 30 times,and the yield was about 2%.The molecular weight of β-glucosidase is 50000 by gel filtration chromatography,and about 46000 by SDS polyacrylamide eIectrophoresis.Next the effects of pH and temperature on enzyme activity were studied and the Km value for β-glucosidase was calculated from Lineweaver-Burk.In addition,we succeeded in the cloning and expression of β-glucosidase gene from C.thermocopriae to E.coli cells using pBR322 as a vector.  相似文献   

7.
The celT gene of Clostridium thermocellum strain F1 was found downstream of the mannanase gene man26B [Kurokawa J et al. (2001) Biosci Biotechnol Biochem 65:548–554] in pKS305. The open reading frame of celT consists of 1,833 nucleotides encoding a protein of 611 amino acids with a predicted molecular weight of 68,510. The mature form of CelT consists of a family 9 cellulase domain and a dockerin domain responsible for cellulosome assembly, but lacks a family 3c carbohydrate-binding module (CBM) and an immunoglobulin (Ig)-like domain, which are often found with family 9 catalytic domains. CelT devoid of the dockerin domain (CelTΔdoc) was constructed and purified from a recombinant Escherichia coli, and its enzyme properties were examined. CelTΔdoc showed strong activity toward carboxymethylcellulose (CMC) and barley β-glucan, and low activity toward xylan. The V max and K m values were 137 μmol min–1 mg–1 and 16.7 mg/ml, respectively, for CMC. Immunological analysis indicated that CelT is a catalytic component of the C. thermocellum F1 cellulosome. This is the first report describing the characterization of a family 9 cellulase without an Ig-like domain or family 3c CBM. Electronic Publication  相似文献   

8.
Purified β-glucosidase fromCellulomonas biazotea had an apparentK m andV for 2-nitrophenyl β-d-glucopyranoside (oNPG) of 0.416 mmol/L and 0.22 U/mg protein, respectively. The activation energy for the hydrolysis of pNPG of β-glucosidase was 65 kJ/mol. The inhibition by Mn2+ vs. oNPG of parental β-glucosidase was of mixed type with apparent inhibition constants of 0.19 and 0.60 μmol/L for the enzyme and enzyme-substrate complex, respectively. Ethanol at lower concentrations activated while at higher concentrations it inhibited the enzyme. The determination of apparent pK a’s at different temperatures and in the presence of 30 % dioxane indicated two carboxyl groups which control theV value. The thermal stability of β-glucosidase decreased in the presence of 10 % ethanol. The half-life of β-glucosidase in 1.75 mol/L urea at 35 °C was 145 min, as determined by 0–9 mol/L transverse urea gradient-PAGE. This work was financed in part by a grant made by theUS Agency for International Development under PSTC proposal 6-163,USAID grant no. 9365542-G-00-89-42-00, and PAEC.  相似文献   

9.
Summary The lethal effects of crude venom prepared from the ectoparasitic wasp Nasonia vitripennis were examined with cultured cells from six insect and two vertebrate species. Venom caused cells from Sarcophaga peregrina (NIH SaPe4), Drosophila melanogaster (CRL 1963), Trichoplusia ni (TN-368 and BTI-TN-5B1-4), Spodoptera frugiperda (SF-21AE), and Lymantria dispar (IPL-Ldfbc1) to round up, swell, and eventually die. Despite similar sensitivities and overlapping LC50 values [0.0004–0.0015 venom reservoir equivalents (VRE)/μl], profound differences were noted at the onset of cytotoxicity among the six insect cell lines: over 80% of the NIH SaPe4 and SF21AE cells were nonviable within 1 h after addition of an LC99 dose of venom, whereas the other cells required a 5–10-fold longer incubation period to produce mortality approaching 100%. In contrast, cells from the grass frog, Rana pipiens (ICR-2A), and goldfish, Carassius auratus (CAR), showed little sensitivity to the venom: six venom reservoir equivalents were needed to induce 50% mortality in ICR-2A cells [50% lethal concentration (LC50)=0.067 VRE/μl), and 9 VRE did not yield sufficient mortality in CAR cells for us to calculate an LC50. All susceptible cells showed similar responses when incubated with wasp venom: retraction of cytoplasmic extensions (when present), blebbing of the plasma membrane, swelling of the plasma and nuclear membranes, condensation of nuclear material, and eventual cell death attributed to lysis. The rate of swelling and lysis in NIH SaPe4 and BTI-TN-5B1-4 cells exposed to venom appeared to be dependent on the diffusion potential of extracellular solutes (Na+=choline>sucrose≥raffinose>K+), which is consistent with a colloid-osmotic lysis mechanism of cell death. When T. ni cells were cotreated with venom and the K+ channel blocker 4-aminopyridine, cell swelling and lysis increased with increasing drug concentration. In contrast, cells from S. peregrina were protected from the effects of the venom when treated in a similar manner. Addition of certain divalent cations (Zn+2 and Ca+2) to the extracellular media 1 h postvenom incubation rescued both BTI-TN-5B1-4 and NIH SaPe4 cells, suggesting that protection was gained from closure of open pores rather than prevention of pore formation. Venom from N. vitripennis displayed no hemolytic activity toward sheep erythrocytes, supporting the view that venom intoxication is not by a nondiscriminate mechanism. A possible mode of action of the venom is discussed.  相似文献   

10.
Nattokinase is a fibrinolytic enzyme that is considered to be a promising agent for thrombosis therapy. In this study, nattokinase was purified from fermentation broth of a Bacillus subtilis strain by ammonium sulfate salting-out, gel filtration chromatography, and hydrophobic interaction chromatography with a purification fold of 5.2 and at a yield of 46.3%. The purified enzyme has molecular mass of 28 kDa and fibrinolytic activity of 4 580 U/mg. Since the concentration of nattokinase on fermentation broth was quite low, we cloned nattokinase gene from B. subtilis and expressed it in E. coli BL21 (DE3). Nattokinase was actively expressed in the recombinant strain. The yield of nattokinase was increased significantly, but the activity of the protein produced by recombinant strain was low.  相似文献   

11.
Cytokinin dehydrogenase (CKX) is responsible for regulating the endogenous cytokinin content by oxidative removal of the side chain and seven distinct genes, AtCKX1 to AtCKX7, code for the enzyme in Arabidopsis thaliana. The recombinant enzyme AtCKX2 was produced in Saccharomyces cerevisiae after expressing the corresponding gene from a plasmid (pDR197) or following chromosomal integration, under either the constitutive promoter PMA1 or the inducible promoter GAL1. The recombinant protein was purified from yeast culture media using a sequence of chromatographic steps. The purified enzyme had a molecular mass of 61 kDa and a typical flavoprotein spectrum. The specific activity of the enzyme was 87.8 μkat g−1, with isopentenyladenine as a substrate and 2,3-dimethoxy-5-methyl-p-benzoquinone as an electron acceptor. The pH optimum lay between 7.0 and 8.0, depending on the electron acceptor used. AtCKX2 reacts both with isoprenoid and aromatic cytokinins, the activity with isoprenoid cytokinins being two to three orders of magnitude higher. AtCKX2 prefers p-quinones and the synthetic dye 2,6-dichlorophenol indophenol as electron acceptors, although low reactivity with oxygen can also be observed. This study presents the first purification and characterization of the enzyme from Arabidopsis thaliana.  相似文献   

12.
Successful transformation of plant tissue using Agrobacterium relies on several factors including bacterial infection, host recognition, and transformation competency of the target tissue. Although soybean [Glycine max (L.) Merrill] embryogenic suspension cultures have been transformed via particle bombardment, Agrobacterium-mediated transformation of this tissue has not been demonstrated. We report here transformation of embryogenic suspension cultures of soybean using “Sonication-Assisted Agrobacterium-mediated Transformation” (SAAT). For SAAT of suspension culture tissue, 10–20 embryogenic clumps (2–4 mm in diameter) were inoculated with 1 ml of diluted (OD600nm 0.1–0.5) log phase Agrobacterium and sonicated for 0–300 s. After 2 days of co-culture in a maintenance medium containing 100 μM acetosyringone, the medium was removed and replaced with fresh maintenance medium containing 400 mg/l Timentin?. Two weeks after SAAT, the tissue was placed in maintenance medium containing 20 mg/l hygromycin and 400 mg/l Timentin?, and the medium was replenished every week thereafter. Transgenic clones were observed and isolated 6–8 weeks following SAAT. When SAAT was not used, hygromycin-resistant clones were not obtained. Southern hybridization analyses of transformed embryogenic tissue confirmed T-DNA integration. Received: 22 August 1997 / Revision received: 22 October 1997 / Accepted: 11 November 1997  相似文献   

13.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

14.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on deoxyuridine 5′-triphosphatase (dUTPase) in the cytosol of rat liver was investigated. Addition of Ca2+ up to 5.0 μM to the enzyme reaction mixture caused a significant decrease of dUTPase activity, while Zn2+, Cd2+, Co2+, Al3+, Mn2+ and Ni2+ (10 μM) did not have an appreciable effect. The Ca2+-induced decrease of dUTPase activity was reversed by the presence of regucalcin; the effect was complete at 1.0 μM of the protein. Regucalcin had no effect on the basal activity of the enzyme. Meanwhile, the reversible effect of regucalcin on the Ca2+ (10 μM)-induced decrease of dUTPase activity was not altered by the coexistence of Cd2+ or Zn2+ (10 μM). The present data suggest that liver cytosolic dUTPase is uniquely regulated by Ca2+ of various metals, and that the Ca2+ effect is reversed by regucalcin.  相似文献   

15.
Summary Factors affecting the activity of nitrate reductase (E.C.1.7.7.2) from the halotolerant cyanobacterium Aphanothece halophytica were investigated. Cells grown in nitrate-containing medium exhibited higher nitrate reductase activity than cells grown in medium in which nitrate was replaced by glutamine. When ammonium was present in the medium instead of nitrate, the activity of nitrate reductase was virtually non-detectable, albeit with normal cell growth. The enzyme was localized mainly in the cytoplasm. The enzyme was purified 406-fold with a specific activity of 40.6 μmol/min/mg protein. SDS-PAGE revealed a subunit molecular mass of 58 kDa. Gel filtration experiments revealed a native molecular mass of 61 kDa. The K m value for nitrate was 0.46 mM. Both methyl viologen and ferredoxin could serve as electron donor with K m values of 4.3 mM and 5.2 μM, respectively. The enzyme was strongly inhibited by sulfhydryl-reactive agents and cyanide. Nitrite, the product of the enzyme reaction, showed little inhibition. Chlorate, the substrate analog, could moderately inhibit the enzyme activity. NaCl up to 200 mM stimulated the activity of the enzyme whereas enzyme inhibition was observed at ≥300 mM NaCl.  相似文献   

16.
Summary. The effects of dioxygen on tyrosine hydroxylase (TH) activity was studied, measuring the formation of DOPA from tyrosine, 3H2O from 3,5-3H-tyrosine, or by direct oxygraphic determination of oxygen consumption. A high enzyme activity was observed during the initial 1–2 min of the reactions, followed by a decline in activity, possibly related to a turnover dependent substoichiometrical oxidation of enzyme bound Fe(II) to the inactive Fe(III) state. During the initial reaction phase, apparent K m-values of 29–45 μM for dioxygen were determined for all human TH isoforms, i.e. 2–40 times higher than previously reported for TH isolated from animal tissues. After 8 min incubation, the K m (O2)-values had declined to an average of 20 ± 4 μM. Thus, TH activity may be severely limited by oxygen availability even at moderate hypoxic conditions, and the enzyme is rapidly and turnover dependent inactivated at the experimental conditions commonly employed to measure in vitro activities. Authors’ address: Jan Haavik, Department of Biomedicine, University of Bergen, 5009 Bergen, Norway  相似文献   

17.
A purified peptide from Androctonus australis Garzoni venom (AaG) affects selectively a K+-current recorded from cerebellum granular cells. This current is characterized by fast activating and inactivating kinetics similar to an IA-type current. Addition of 2 μm peptide Aa1 (from Androctonus australis, toxin 1) to the external side of the channel suppressed completely and in a selective manner the IA-type current, with an IC50 value of 130 nm, whereas in the same conditions, the other potassium current, identified as delayed rectifier (Id), was not affected. Additionally, we show that another partially purified peptide (III-12) from the same venom was able to block reversibly both K+-currents. Received: 10 February 1997 / Accepted: 7 August 1997  相似文献   

18.
A yellow leaf colouration mutant (named ycm) generated from rice T-DNA insertion lines was identified with less grana lamellae and low thylakoid membrane protein contents. At weak irradiance [50 μmol(photon) m−2 s−1], chlorophyll (Chl) contents of ycm were ≈20 % of those of WT and Chl a/b ratios were 3-fold that of wild type (WT). The leaf of ycm showed lower values in the actual photosystem 2 (PS2) efficiency (ΦPS2), photochemical quenching (qP), and the efficiency of excitation capture by open PS2 centres 1 (Fv′/Fm′) than those of WT, except no difference in the maximal efficiency of PS2 photochemistry (Fv/Fm). With progress in irradiance [100 and 200 μmol(photon) m−2 s−1], there was a change in the photosynthetic pigment stoichiometry. In ycm, the increase of total Chl contents and the decrease in Chl a/b ratio were observed. ΦPS2, qP, and Fv′/Fm′ of ycm increased gradually along with the increase of irradiance but still much less than in WT. The increase of xanthophyll ratio [(Z+A)/(V+A+Z)] associated with non-photochemical quenching (qN) was found in ycm which suggested that ycm dissipated excess energy through the turnover of xanthophylls. No significant differences in pigment composition were observed in WT under various irradiances, except Chl a/b ratio that gradually decreased. Hence the ycm mutant developed much more tardily than WT, which was caused by low photon energy utilization independent of irradiance.  相似文献   

19.
Short-term treatment of potato tuber (Solanum tuberosum L.) discs with CdCl2 changed glutathione reductase (GR) activity depending on cadmium ions concentrations, kind of tuber and time of incubation. The increase of GR activity at 10 and 100 μmol·dcm−3 of CdCl2 solutions was marked in less resistant tissues of cv. Bintje after 24 hrs, and was slight in more resistant tissues of cv. Bzura after 72 hrs. At 1 mmol·dcm−3 concentration of CdCl2 rapid and total inactivation in both kind of tissues was observed, which disappeared after a few days. However this elevation was faster in more resistant tissues. These inhibition effects come from the inactivation process of GR by cadmium. The values of KI for cadmium and KM for GSSG of GR from potato tuber tissues indicated that enzyme from more resistant tissues possessed lower affinity to toxic metal and higher affinity to substrate.  相似文献   

20.
The whole-cell voltage-clamp technique was applied to isolated ventricular myocytes to investigate the effects of extracellular and intracellular zinc application on L-type Ca2+ channel currents (I Ca). Extracellular zinc exposure at micromolar concentration induced a reversible (with washout of ZnCl2) reduction (30%) of I Ca with no change in current-voltage relationship. On the other hand, an increase of intracellular free-zinc concentration, [Zn2+]i, from normal (less than 1 nM) to approx 7 nM with 10 μM Zn-pyrithione exposure caused an inhibition of 33±6% in the peak of the I Ca and altered the voltage dependency of L-type Ca2+ channels with a 10-mV left shift and a hump at around −40 mV in its current-voltage relation. In contrast, N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly inhibited the I Ca (42±2%), with only a small but detectable outward shift of the holding current measured at the end of the pulses. Zn-pyrithione and TPEN caused a reproducible decrease of the I Ca. Interestingly, TPEN application, without Zn-pyrithione pretreatment, inhibited the I Ca (35±2%) with no change in voltage dependency. Taken together, the results suggest that both extracellular and intracellular zinc increases under pathological conditions in cardiomyocytes can alter the I Ca, but their effects are not in the same order and same manner. One should consider these possible side effects when it is suggested to be vital to cardiovascular cell integrity and functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号