首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the role of arachidonic acid (AA) in regulating vascular smooth muscle cell (VSMC) growth, its effects on phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E were studied. Arachidonic acid stimulated phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E in a time-dependent manner in VSMC. Arachidonic acid stimulation of phosphorylation of the above signaling molecules is specific, as these events were not affected by other unsaturated or saturated fatty acids. Metabolic conversion of AA via the LOX/MOX and/or COX pathways, to some extent, was required for its effects on the phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E. In addition, AA increased PI3K activity in a time-dependent manner in VSMC. LY294002, an inhibitor of PI3K, completely blocked AA-induced phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E, suggesting a role for PI3K in these effects. Consistent with its effects on translation initiation signaling events, AA induced global protein synthesis in VSMC and this response was dependent, to some extent, on its metabolism via the LOX/MOX and/or COX pathways, and mediated by the PI3K/Akt/mTOR pathway. Thus, the above observations provide the first biochemical evidence for the role of AA in the activation of translation initiation signaling in VSMC.  相似文献   

2.
The regulation of amphiregulin, an epidermal growth factor (EGF) family member, and its effect on vascular smooth muscle cells (VSMC) were examined. Amphiregulin mRNA was upregulated by amphiregulin itself as well as alpha-thrombin. Amphiregulin caused an approximate 3-fold increase in DNA synthesis. Its effect on growth was compared with those of other mitogens, and was found to be approximately 3.5-, 2.4-, and 1.0-fold greater than those of endothelin-I (ET-I), alpha-thrombin, and platelet-derived growth factor-AB (PDGF-AB), respectively. As evidenced by Western blot analysis, amphiregulin stimulated the phosphorylation of p42/p44-mitogen-activated protein kinase (MAPK), p38-MAPK, c-Jun NH2-terminal protein kinase (JNK), and Akt/protein kinase B (PKB), respectively. By statistical analysis, the amphiregulin-induced growth effect was significantly decreased by the MAP kinase/ extracellular regulated kinase kinase-1 (MEK-1) inhibitor PD98059, p38-MAPK inhibitor SB203580, and phosphatidylinositol 3-kinase (PI-3 kinase) inhibitor wortmannin, respectively, but was not decreased by JNK inhibitor SP600125. These results suggest that amphiregulin is the most potent mitogen of the mitogens tested, and its growth effect is mediated at least in part through the p42/p44-MAPK, p38-MAPK, and PI-3 kinase-Akt/PKB pathways in VSMC.  相似文献   

3.
Kanda Y  Watanabe Y 《Life sciences》2007,80(15):1409-1414
Cigarette smoke has been firmly established as an independent risk factor for atherosclerosis and other vascular diseases. The proliferation and migration of vascular smooth muscle cells (VSMC) induced by growth factors have been proposed to play an important role in the progression of atherosclerosis. In the present study, we investigated the effects of nicotine, which is one of the important constituents of cigarette smoke, on vascular endothelial growth factor (VEGF) release, in rat VSMC. The stimulation of cells with nicotine resulted in a time- and concentration-dependent release of VEGF. Hexamethonium, an antagonist of nicotinic acetylcholine receptor (nAChR), inhibited nicotine-induced VEGF release. We next investigated the mechanisms by which nicotine induces VEGF release in the cells. The nicotine-induced VEGF release was inhibited by treatment with U0126, a selective inhibitor of MEK, which attenuated the nicotine-induced ERK phosphorylation. Nicotine induced a transient phosphorylation of ERK. Furthermore, AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) kinase, inhibited nicotine-induced ERK phosphorylation and VEGF release. These data suggest that nicotine releases VEGF through nAChR in VSMC. Moreover, VEGF release induced by nicotine is mediated by an EGFR-ERK pathway in VSMC. VEGF may contribute to the risk of cardiovascular diseases in cigarette smokers.  相似文献   

4.
Studies were conducted to determine if in vivo exposure to dinitrotoluenes (DNT), which is associated with circulatory disorders of atherosclerotic etiology in humans, is associated with alterations of vascular smooth muscle cells (SMC) consistent with the atherogenic process. Sprague-Dawley rats (150-180 g) were injected IP for 5 days/week for 8 weeks with 2,4- or 2,6-DNT (0.5, 5, or 10 mg/kg) or medium chain triglyceride (MCT) oil. Histopathologic evaluation of aortae from animals exposed to either isomer showed dysplasia and rearrangement of SMC at all doses tested. Reduced 3H-thymidine incorporation was observed in primary cultures of aortic SMC from DNT-exposed animals relative to vehicle controls. This inhibitory response was maintained for up to two passages in culture after which a significant increase in thymidine incorporation was observed. Exposure of SMC from naive animals to DNT in vitro (1–100 µM) did not alter the extent of thymidine incorporation in cycling or growth-arrested cultures. In contrast, exposure to 2,4- or 2,6-diaminotoluene (DAT) (1–100 µM), carcinogens which share toxic metabolic intermediates in common with DNT, inhibited replicative DNA synthesis and stimulated unscheduled DNA synthesis in cycling and growth-arrested cultures of SMC, respectively. Our results suggest that modulation of DNA synthesis in aortic SMC by DNT metabolites generated in vivo contribute to the development of vascular lesions.Abbreviation DAT diaminotuluene - tDNT technical grade dinitrotoluene - DNT dinitrotoluenes - HU hydroxyurea - IP intraperitoneal - LDH lactate dehydrogenase - MCT oil medium chain triglyceride - NPTC non-protein thiol content - RDS replicative DNA synthesis - SEM standard error of the mean - SMC smooth muscle cells - UDS unscheduled DNA synthesis  相似文献   

5.
Summary The weak base chloroquine and the Na+/H+ ionophore monensin were used to study the role of lysosomes in the induction of DNA synthesis by platelet-derived growth factor (PDGF) in rat arterial smooth muscle cells cultivated in vitro. The results show that PDGF initiates DNA synthesis in a defined, serum-free medium. This indicates that a single factor may control, directly or indirectly, the transition from the G0 to the G1 phase, the progress through the G1 phase, and the entrance into the S phase of the cell cycle. It is further demonstrated that PDGF has to be present throughout most of the prereplicative period (12–16 h) to induce DNA synthesis in the maximum number of cells, suggesting that one or more processes need to be stimulated continually or successively to push the cell into the S phase. Chloroquine and monensin inhibit induction of DNA replication by PDGF, with maximum effect at 50 M and 5 M, respectively. To be fully active, the drugs have to be added within 4–8 h after the growth factor, but a partial inhibition persists if they are added at any time during the prereplicative period. Both drugs reduce PDGF-stimulated RNA and protein synthesis, and suppress degradation of [3H]leucine-labeled cellular protein and [125I]-labeled PDGF. Fine-structurally, they give rise to an accumulation of lysosomes or prelysosomal vacuoles with inclusions of incompletely degraded material. These findings suggest that the mitogenic effect of PDGF is dependent on a normal function of lysosomes during the prereplicative phase, especially its first half (0–8 h).  相似文献   

6.
7.
It has been shown that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) modulate vascular smooth muscle cell functions. In the present study, we investigated the effect of simvastatin on vascular endothelial growth factor (VEGF) release, and the underlying mechanism, in a rat aortic smooth muscle cell line, A10 cells. Administration of simvastatin increased the VEGF level in rat plasma in vivo. In cultured cells, simvastatin significantly stimulated VEGF release in a dose-dependent manner. Simvastatin induced the phosphorylation of p44/p42 MAP kinase but not p38 MAP kinase or SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). PD98059 and U-0126, inhibitors of the upstream kinase that activates p44/p42 MAP kinase, significantly reduced the simvastatin-induced VEGF release in a dose-dependent manner. The phosphorylation of p44/p42 MAP kinase induced by simvastatin was reduced by PD98059 or U-0126. Moreover, a bolus injection of PD98059 truly suppressed the simvastatin-increased VEGF level in rat plasma in vivo. These results strongly suggest that p44/p42 MAP kinase plays a role at least partly in the simvastatin-stimulated VEGF release in vascular smooth muscle cells.  相似文献   

8.
Manipulation of the genetic machinery of cells both in vitro and in vivo is becoming an ever more important means of elucidating pathways of molecular and cellular biochemistry. In addition, gene therapy has been proposed as a novel and potentially powerful treatment for both inherited and acquired diseases. Successful gene transfer and gene blockade generally depend on high efficiency delivery of exogenous DNA or RNA into living cells, and much effort has therefore been focused on the development of methods for achieving this delivery in a safe and effective manner. We describe here our application of fusigenic Sendai virus (HVJ)-liposome technology toward the effective delivery of DNA into vascular smooth muscle cells (VSMC) in cell culture. Cellular uptake and intracellular distribution of oligodeoxynucleotide (ODN) after transfection with HVJ-liposome complexes was characterized using fluorescent (FITC)-labeled ODN, and the biologic effect of HVJ-liposome mediated transfection was demonstrated via inhibition of DNA synthesis in cultured VSMC using antisense ODN against basic fibroblast growth factor.  相似文献   

9.
10.
11.
Apelin is an adipokine that has a critical role in the development of atherosclerosis, which may offer potential for therapy. Because migration of vascular smooth muscle cells (VSMCs) is a key event in the development of atherosclerosis, understanding its effect on the atherosclerotic vasculature is needed. Here we investigated the effect of apelin on VSMC migration and the possible signaling mechanism. In cultured rat VSMCs, apelin dose- and time-dependently promoted VSMC migration. Apelin increased the phosphorylation of Akt, whereas LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), and an Akt1/2 kinase inhibitor blocked the apelin-induced VSMC migration. Apelin dose-dependently induced phosphorylation of Forkhead box O3a (FoxO3a) and promoted its translocation from the nucleus to cytoplasm, which were blocked by LY294002 and Akt1/2 kinase inhibitor. Furthermore, apelin increased matrix metalloproteinase 2 (MMP-2) expression and gelatinolytic activity. Overexpression of a constitutively active, phosphorylation-resistant mutant, TM-FoxO3a, in VSMCs abrogated the effect of apelin on MMP-2 expression and VSMC migration. ARP101, an inhibitor of MMP-2, suppressed apelin-induced VSMC migration. Moreover, the levels of apelin, phosphorylated Akt, FoxO3a, and MMP-2 were higher in human carotid-artery atherosclerotic plaque than in adjacent normal vessels. We demonstrate that PI3K/Akt/FoxO3a signaling may be involved in apelin inducing VSMC migration. Phosphorylation of FoxO3a plays a central role in mediating the apelin-induced MMP-2 activation and VSMC migration.  相似文献   

12.
Summary During in vitro culture arterial smooth muscle cells of adult rats are able to produce a platelet-derived growth factor (PDGF)-like protein and to promote their own growth in an autocrine manner. Here, this process has been studied using suramin, a polyanionic drug that has been reported to interfere with the cellular binding of several growth factors. Our results indicate that suramin speeds up the transition of the cells from a contractile to a synthetic phenotype early in primary culture. It inhibits the binding of PDGF to the cells, displaces PDGF bound to the cell surface, and slows down the degradation of PDGF internalized by the cells. It reduces the specific activities of the lysosomal enzymes acid phosphatase, -N-ace-tylglucosaminidase and -glucuronidase, and gives rise to an accumulation of lysosomes with myelin-like inlcusions. It blocks PDGF- and serum-induced DNA synthesis and cellular proliferation in secondary cultures, but lacks a distinct inhibitory effect on DNA synthesis in primary cultures under serum-free conditions. The results suggest that the PDGF-like protein produced by the smooth muscle cells under the latter conditions may bind to its receptor and exert its autocrine effect intracellularly, without prior release into the pericellular space.  相似文献   

13.
Phosphatidylinositol 3-kinases (PI3K) phosphorylate the 3-position of the inositol ring of phosphatidylinositol-4,5-bisphosphate to produce phosphatidylinositol-3,4,5-trisphosphate. It is not clear whether PI3K can phosphorylate the inositol group in other biomolecules. We sought to determine whether PI3K was able to use glycosyl-phosphatidylinositol (GPI) as a substrate. This phospholipid may exist either in free form (GPIfree) or forming a lipid anchor (GPIanchor) for the attachment of extracellular proteins to the plasma membrane. We demonstrate the specific PI3K-mediated phosphorylation of the inositol 3-hydroxyl group within both types of GPI by incubating this phospholipid with immunoprecipitated PI3K. The phosphorylated product behaves in HPLC as a derivative of a PI3K lipid product. To our knowledge, this is the first demonstration that PI3K uses lipid substrates other than phosphoinositides. Further, we show that this has potential functional consequences. When GPIfree is phosphorylated, it becomes a poorer substrate for GPI-specific phospholipase D, but a better substrate for phosphatidylinositol-specific phospholipase C. These phosphorylation events may constitute the basis of a previously undescribed signal transduction mechanism.  相似文献   

14.
Regulation of (Na+ + K+)-adenosine triphosphatase (NaK-ATPase) by platelet-derived growth factor (PDGF) in cultured rat thoracic aortic smooth muscle cells (SMC) was examined. PDGF-BB enhances SMC proliferation and NaK-ATPase activity. Ouabain, an inhibitor of NaK-ATPase activity, prevents PDGF-BB-induced SMC proliferation. As shown by Western blot and immunochemiluminescence analysis, PDGF-BB also enhances 1, truncated 1, and 1 NaK-ATPase subunit levels. PDGF-AA and PDGF-AB show no effect on 1 and truncated 1 levels in slot blot analysis. Induction of NaK-ATPase subunit levels by PDGF-BB could be one of the initial events in vascular SMC proliferation.  相似文献   

15.
Cancer cells depend on chemotaxis for invasion and frequently overexpress and/or activate Src. We previously reported that v-Src accelerates motility by promoting phosphoinositide 3-kinase (PI3-K) signalling but abrogates chemotaxis. We here addressed the mechanism of the loss of chemotactic response to platelet-derived growth factor (PDGF) gradients in fibroblasts harbouring a thermosensitive v-Src kinase. At non-permissive temperature, PDGF receptor (PDGFR) signalling, assessed by phosphoY(751)-specific antibodies (a docking site for PI3-K), was not detected without PDGF and showed a concentration-dependent PDGF response. Both immunolabeling of PI3-K (p110) and live cell imaging of its product (phosphatidylinositol 3,4,5 tris-phosphate) showed PI3-K recruitment and activation at lamellipodia polarized towards a PDGF gradient. Centrosomes and PDGFR- and Src-bearing endosomes were also oriented towards this gradient. Upon v-Src thermoactivation, (i) Y(751) phosphorylation was moderately induced without PDGF and synergistically increased with PDGF; (ii) PI3-K was recruited and activated all along the plasma membrane without PDGF and did not polarize in response to a PDGF gradient; and (iii) polarization of centrosomes and of PDGFR-bearing endosomes were also abrogated. Thus, PDGF can further increase PDGFR auto-phosphorylation despite strong Src kinase activity, but diffuse downstream activation of PI3-K by Src abrogates cell polarization and chemotaxis: "signalling requires silence".  相似文献   

16.
Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. With a view to investigating the molecular mechanisms implicated, we studied the effect of estradiol on the expression of proteins implicated in the insulin-like growth factor signalling pathway. Estradiol dose- and time-dependently increased the expression of insulin receptor substrate-1 and the p85/p110 subunits of phosphatidylinositol 3-kinase but did not change those of ERK2 and Akt/PKB. ICI 182,780 did not inhibit estradiol-induced IRS-1 and p85 expression. Moreover, two distinct estradiol-BSA conjugate compounds were as effective as estradiol in inducing IRS-1 and p85/p110 expression indicating the possible implication of an estradiol membrane receptor. Comparative analysis of steroids-depleted and steroids-treated cells showed that IGF-I only stimulates cell growth in the latter condition. Nevertheless, expression of a constitutively active form of PI 3-kinase in steroid-depleted cells triggers proliferation. These results demonstrate that estradiol positively regulates essential proteins of the IGF signalling pathway and put in evidence that phosphatidylinositol 3-kinase plays a central role in the synergistic pro-proliferative action of estradiol and IGF-I.  相似文献   

17.
18.
Induction of Fibronectin (FN) gene expression by platelet-derived growth factor (PDGF) isoforms in rat thoracic aortic smooth muscle cells (SMC) was examined. PDGF-BB enhances FN levels in SMC cultures in a time- and concentration-response fashion. PDGF-AA and PDGF-AB show no effect on FN levels. The effects of insulin and insulin-like growth factor-I (IGF-I) on PDGF-BB-induced FN levels were examined. No additivity of FN levels is observed between PDGF-BB and insulin and/or IGF-I. Experiments also show that PDGF-BB enhances FN mRNA levels, implying that acquisition of additional FN mRNA units accounts for the increase in FN levels. Induction of FN and FN mRNA levels by PDGF-BB could be one of the initial events in vascular SMC proliferation and extracellular matrix expansion, leading to atherosclerosis and hypertension.  相似文献   

19.
Guo RW  Yang LX  Wang H  Liu B  Wang L 《Regulatory peptides》2008,147(1-3):37-44
Angiotensin II (AngII) is widely recognized as a critical regulator of the development of atherosclerosis. Matrix metalloproteinases (MMPs) are thought to participate in plaque destabilization through degradation of the extracellular matrix. In the present study, we investigated the potential mechanism of AngII-induced MMP-9 expression in vascular smooth muscle cells (VSMC). AngII upregulated the expression of MMP-9 significantly in VSMC obtained from rat aorta. RNAi-mediated knockdown of p65 and losartan, an inhibitor of AngII receptors subtype-1 (AT1), could abolish AngII-induced MMP-9 expression. In addition, AngII induced the NF-κB binding activity via AT1 and AT2 receptors in VSMC, and AngII-induced activation of NF-κB is not associated with significant downregulation of IκB. In summary, this study demonstrates that AngII stimulates NF-κB nuclear translocation in VSMC via AT1 and AT2. AngII increases the expression of MMP-9 in VSMC, and AT1 and NF-κB pathways have an important role in this response.  相似文献   

20.
Insulin-like growth factor-I (IGF-I) stimulates vascular smooth muscle cell proliferation and migration by activating both MAPK and phosphatidylinositol 3-kinase (PI3K). Vascular smooth muscle cells (VSMCs) maintained in 25 mm glucose sustain MAPK activation via increased Shc phosphorylation and Grb2 association resulting in an enhanced mitogenic response compared with cells grown in 5 mm glucose. PI3K plays a major role in IGF-I-stimulated VSMC migration, and hyperglycemia augments this response. In contrast to MAPK activation the role of Shc in modulating PI3K in response to IGF-I has not been determined. In this study we show that impaired Shc association with Grb2 results in decreased Grb2-p85 association, SHPS-1-p85 recruitment, and PI3K activation in response to IGF-I. Exposure of VSMCs to cell-permeable peptides, which contained polyproline sequences from p85 proposed to mediate Grb2 association, resulted in inhibition of Grb2-p85 binding and AKT phosphorylation. Transfected cells that expressed p85 mutant that had specific prolines mutated to alanines resulted in less Grb2-p85 association, and a Grb2 mutant (W36A/W193A) that attenuated p85 binding showed decreased association of p85 with SHPS-1, PI3K activation, AKT phosphorylation, cell proliferation, and migration in response to IGF-I. Cellular exposure to 25 mm glucose, which is required for Shc phosphorylation in response to IGF-I, resulted in enhanced Grb2 binding to p85, activation of PI3K activity, and increased AKT phosphorylation as compared with cells exposed to 5 mm glucose. We conclude that in VSMCs exposed to hyperglycemia, IGF-I stimulation of Shc facilitates the transfer of Grb2 to p85 resulting in enhanced PI3K activation and AKT phosphorylation leading to enhanced cell proliferation and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号